Fusion and Enhancement of Consensus Matrix for Multi-View Subspace Clustering
Abstract
:1. Introduction
- We propose a self-representing-based multi-view subspace clustering. The consensus matrix is constructed on both the individual and the joint views to leverage the consensus and complementary information.
- We introduce 2,1-norm to explore the structural sparsity of the multi-view subspace for benefitting the clustering performance.
- Comprehensive experimental results compared the proposed algorithm with its counterparts demonstrate the advantage of the proposed method.
2. Related Work
2.1. Notation
2.2. Subspace Clustering
2.3. Multiview Subspace Clustering
3. The Proposed Multi-View Subspace Clustering
3.1. The Proposed Multi-View Subspace Clustering Model
3.2. Optimization
- Updating as given the values of other variables . Equation (8) is equivalent to the following optimization equation
- 2.
- Updating E as given the values of . The optimization problem with respect to E can be denoted as
- 3.
- Updating as given the values of . Equation (8) is equivalent to the following quadratic programming problem.
- 4.
- Updating V as given the values of . The optimal problem with respect to V also is a convex quadratic programming problem according to problem (8). The formula is
- 5.
- As given the values of , the dual variables and penalty parameter are updated as follows:
Algorithm 1 FEMV algorithm |
Require: Multiview data: Number of the clusters: k; Parameters: and . Ensure: Assignments of the data points to k clusters.
|
3.3. Computational Complexity
4. Experiments
4.1. Datasets
4.2. The Comparison Algorithms and Performance Metrics
- Spectral Clustering (SC) [17]: SC algorithm is applied to each view of the multi-view data. The best clustering result is selected by clustering multiple views separately, denoted as SC-BEST. Then the data obtained by feature union is clustered, denoted as SC-FU.
- Adaptive structure concept factorization for multi-view clustering (MVCF) [42]: This algorithm enhances the use of the correlation between views by jointly optimizing the representation matrix and proposes a multi-view clustering algorithm based on the concept of decomposition.
- Multi-view low-rank sparse subspace clustering (MLRSSC) [39]: This method balances different views by using low-rank and sparse constraints in constructing a consensus matrix of all views.
- graph learning for multi-view clustering (MVGL) [43]: This method obtains the Laplace matrix to obtain clustering metrics by obtaining low-ranked adjacency matrices from each view and integrating them into a global adjacency matrix.
- Graph-based system for multi-view clustering (MVGS) [35]: This method constructs the adjacency matrix by creating the feature matrices of all views and then fuses the adjacency matrices by weighting them to obtain the combined adjacency matrix. Finally, it gets the clustering results.
4.3. Experimental Results
4.4. Parametric Sensitivity Analysis and Convergence Analysis
4.5. Ablation Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Accuracy |
AE2-Nets | Autoencoder in autoencoder networks |
ALM | Augmented Lagrange method |
ASGC-PMVC | Adaptive sample-level graph combination for partial multiview clustering |
GAN | Adversarial generative networks |
SC | Spectral clustering |
SSC | Sparse subspace clustering |
LBP | Local binary pattern |
LRTG | Low-rank tensor graph |
LRR | Low-rank representation |
MSC | Multi-view subspace clustering |
MLRSSC | Multi-view low-rank sparse subspace clustering |
MVCF | Concept factorization for multi-view clustering |
MVGL | Graph learning for multi-view clustering |
MVGS | Graph-based system for multi-view clustering |
MV-RNN | Multi-view recurrent neural network |
NMI | Normalized mutual information |
References
- Houthuys, L.; Langone, R.; Suykens, J.A.K. Multi-View Kernel Spectral Clustering. Inf. Fusion 2018, 44, 46–56. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Z.; Cheng, M.; Liu, Y.; Bian, J.; Zhou, J.T.; Zheng, G.; Zeng, Z. Nonlinear Regression via Deep Negative Correlation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 982–998. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chao, H.; Wang, C. Multi-view Intact Space Clustering. Pattern Recognit. 2019, 86, 344–353. [Google Scholar] [CrossRef]
- Huang, L.; Wang, C.; Chao, H.; Yu, P.S. MVStream: Multiview Data Stream Clustering. IEEE Trans. Neural Networks Learn. Syst. 2020, 31, 3482–3496. [Google Scholar] [CrossRef]
- Jia, Y.; Hou, J.; Kwong, S. Constrained Clustering with Dissimilarity Propagation-Guided Graph-Laplacian PCA. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3985–3997. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Kwong, S.; Hou, J. Semi-Supervised Spectral Clustering with Structured Sparsity Regularization. IEEE Signal Process. Lett. 2018, 25, 403–407. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, X.; Peng, C.; Lu, G.; Zhou, Y. Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 92–104. [Google Scholar] [CrossRef]
- Wang, H.; Han, G.; Zhang, B.; Hu, Y.; Peng, H.; Han, C.; Cai, H. Tensor-based Low-rank and Graph Regularized Representation Learning for Multi-view Clustering. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; pp. 821–826. [Google Scholar] [CrossRef]
- Chao, G.; Sun, S.; Bi, J. A Survey on Multiview Clustering. IEEE Trans. Artif. Intell. 2021, 2, 146–168. [Google Scholar] [CrossRef]
- Cui, Q.; Wu, S.; Liu, Q.; Zhong, W.; Wang, L. MV-RNN: A Multi-View Recurrent Neural Network for Sequential Recommendation. IEEE Trans. Knowl. Data Eng. 2020, 32, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, H.; Fu, Y. Incomplete Multi-Modal Visual Data Grouping. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 2392–2398. [Google Scholar]
- Gu, F.; Liu, H.L.; Cheung, Y.M.; Zheng, M. A Rough-to-Fine Evolutionary Multiobjective Optimization Algorithm. IEEE Trans. Cybern. 2022, 52, 13472–13485. [Google Scholar] [CrossRef]
- Komeili, M.; Armanfard, N.; Hatzinakos, D. Multiview Feature Selection for Single-View Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3573–3586. [Google Scholar] [CrossRef]
- Yu, J.; Duan, Q.; Huang, H.; He, S. Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion. Mathematics 2023, 11, 652. [Google Scholar] [CrossRef]
- Fu, L.; Lin, P.; Vasilakos, A.V.; Wang, S. An Overview of Recent Multi-view Clustering. Neurocomputing 2020, 402, 148–161. [Google Scholar] [CrossRef]
- Cheung, Y.m.; Zeng, H. Local Kernel Regression Score for Selecting Features of High-Dimensional Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1798–1802. [Google Scholar] [CrossRef]
- Xia, T.; Tao, D.; Mei, T.; Zhang, Y. Multiview Spectral Embedding. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2010, 40, 1438–1446. [Google Scholar] [CrossRef]
- Kumar, A.; Rai, P.; Daume, H. Co-regularized Multi-view Spectral Clustering. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 1413–1421. [Google Scholar]
- Balcan, M.; Blum, A.; Yang, K. Co-Training and Expansion: Towards Bridging Theory and Practice. In Proceedings of the 17th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 13–18 December 2004; pp. 89–96. [Google Scholar]
- Tzortzis, G.; Likas, A. Kernel-Based Weighted Multi-view Clustering. In Proceedings of the 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 675–684. [Google Scholar]
- Liu, X.; Wang, L.; Zhu, X.; Li, M.; Zhu, E.; Liu, T.; Liu, L.; Dou, Y.; Yin, J. Absent Multiple Kernel Learning Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1303–1316. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Huang, R.; Chen, Y.; Qin, Y. Deep Multi-view Document Clustering with Enhanced Semantic Embedding. Inf. Sci. 2021, 564, 273–287. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Z.; Tao, Z.; Gao, Q.; Fu, Y. Partial Multi-view Clustering via Consistent GAN. In Proceedings of the IEEE International Conference on Data Mining, Los Angeles, CA, USA, 5–9 February 2018; pp. 1290–1295. [Google Scholar] [CrossRef]
- Tan, Q.; Yu, G.; Wang, J.; Domeniconi, C.; Zhang, X. Individuality- Furthermore, Commonality-Based Multiview Multilabel Learning. IEEE Trans. Cybern. 2021, 51, 1716–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Wu, H.; Huang, S. Multi-View Graph Clustering by Adaptive Manifold Learning. Mathematics 2022, 10, 1821. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, Z.; Xu, Y.; Zhang, B.; Fei, L.; Liu, H. Unified Embedding Alignment with Missing Views Inferring for Incomplete Multi-view Clustering. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019), Honolulu, HI, USA, 29–31 January 2019; pp. 5393–5400. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, Y.; Fu, H. AE2-Nets: Autoencoder in Autoencoder Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2577–2585. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Qiu, Y.; Wang, Y.; Zhang, Y.; Xie, S. Deep Graph Regularized Non-negative Matrix Factorization for Multi-view Clustering. Neurocomputing 2020, 390, 108–116. [Google Scholar] [CrossRef]
- Ashraphijuo, M.; Wang, X.; Aggarwal, V. Fundamental Sampling Patterns for Low-rank Multi-view Data Completion. Pattern Recognit. 2020, 103, 107307. [Google Scholar] [CrossRef]
- Guo, J.; Ye, J. Anchors Bring Ease: An Embarrassingly Simple Approach to Partial Multi-View Clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 29–31 January 2019; pp. 118–125. [Google Scholar] [CrossRef] [Green Version]
- Rong, W.; Zhuo, E.; Peng, H.; Chen, J.; Wang, H.; Han, C.; Cai, H. Learning a Consensus Affinity Matrix for Multi-view Clustering via Subspaces Merging on Grassmann Manifold. Inf. Sci. 2021, 547, 68–87. [Google Scholar] [CrossRef]
- Chen, M.; Huang, L.; Wang, C.; Huang, D.; Lai, J. Relaxed Multi-view Clustering in Latent Embedding Space. Inf. Fusion 2021, 68, 8–21. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Z.; Ling, H.; Cheung, Y.M. MTFH: A Matrix Tri-Factorization Hashing Framework for Efficient Cross-Modal Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 964–981. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, Y.; Jin, Y.; Cen, Y.; Li, Y.; Zhang, L. Error-robust Low-rank Tensor Approximation for Multi-view Clustering. Knowl. Based Syst. 2021, 215, 106745. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liu, B.; Fujita, H. A Study of Graph-based System for Multi-view Clustering. Knowl. Based Syst. 2019, 163, 1009–1019. [Google Scholar] [CrossRef]
- Yang, L.; Shen, C.; Hu, Q.; Jing, L.; Li, Y. Adaptive Sample-Level Graph Combination for Partial Multiview Clustering. IEEE Trans. Image Process. 2020, 29, 2780–2794. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, H.; Hu, Q.; Cao, X.; Xie, Y.; Tao, D.; Xu, D. Generalized Latent Multi-View Subspace Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 86–99. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, H.; Hou, J.; Kwong, S.; Zhang, Q. Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4784–4797. [Google Scholar] [CrossRef]
- Brbic, M.; Kopriva, I. Multi-view Low-rank Sparse Subspace Clustering. Pattern Recognit. 2018, 73, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Zhu, J.; Li, Z.; Pang, S.; Wang, J.; Li, Y. Feature Concatenation Multi-view Subspace Clustering. Neurocomputing 2020, 379, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zong, L.; Zhang, X.; Liu, X.; Yu, H. Multi-view Clustering Via Clusterwise Weights Learning. Knowl. Based Syst. 2020, 193, 105459. [Google Scholar] [CrossRef]
- Zhan, K.; Shi, J.; Wang, J.; Wang, H.; Xie, Y. Adaptive Structure Concept Factorization for Multiview Clustering. Neural Comput. 2018, 30, 1080–1103. [Google Scholar] [CrossRef]
- Zhan, K.; Zhang, C.; Guan, J.; Wang, J. Graph Learning for Multiview Clustering. IEEE Trans. Cybern. 2018, 48, 2887–2895. [Google Scholar] [CrossRef] [PubMed]
Dataset | Instance | Views | Classes |
---|---|---|---|
BBCsport | 544 | 2 | 5 |
BBC4views | 685 | 4 | 5 |
HandWritten | 2000 | 6 | 10 |
MSRCv1 | 210 | 4 | 7 |
WEBkb | 1051 | 2 | 2 |
NGs | 500 | 3 | 5 |
100 leaves | 1600 | 3 | 100 |
Datasets | Algorithms | ACC | NMI | F-Score |
---|---|---|---|---|
BBCsport | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVCF | ||||
MVGS | ||||
FEMV | ||||
BBC4view | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVCF | ||||
MVGS | ||||
FEMV | ||||
HandWritten | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVCF | ||||
MVGS | ||||
FEMV | ||||
MSRCv1 | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVCF | ||||
MVGS | ||||
FEMV | ||||
WEBKb | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVGS | ||||
FEMV | ||||
NGs | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVCF | ||||
MVGS | ||||
FEMV | ||||
100leaves | SC-BEST | |||
SC-FU | ||||
MVGL | ||||
MLRSSC | ||||
MVCF | ||||
MVGS | ||||
FEMV |
Dataset | Algorithms | ACC | NMI | F-Score |
---|---|---|---|---|
BBCsport | FEMV | |||
del-FEMV | ||||
BBC4views | FEMV | |||
del-FEMV | ||||
HandWritten | FEMV | |||
del-FEMV | ||||
MSRCv1 | FEMV | |||
del-FEMV | ||||
Webkb | FEMV | |||
del-FEMV | ||||
NGS | FEMV | |||
del-FEMV | ||||
100leaves | FEMV | |||
del-FEMV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Zhang, Y.; Gu, F. Fusion and Enhancement of Consensus Matrix for Multi-View Subspace Clustering. Mathematics 2023, 11, 1509. https://doi.org/10.3390/math11061509
Deng X, Zhang Y, Gu F. Fusion and Enhancement of Consensus Matrix for Multi-View Subspace Clustering. Mathematics. 2023; 11(6):1509. https://doi.org/10.3390/math11061509
Chicago/Turabian StyleDeng, Xiuqin, Yifei Zhang, and Fangqing Gu. 2023. "Fusion and Enhancement of Consensus Matrix for Multi-View Subspace Clustering" Mathematics 11, no. 6: 1509. https://doi.org/10.3390/math11061509
APA StyleDeng, X., Zhang, Y., & Gu, F. (2023). Fusion and Enhancement of Consensus Matrix for Multi-View Subspace Clustering. Mathematics, 11(6), 1509. https://doi.org/10.3390/math11061509