Investigating the Impact of COVID-19 on E-Learning: Country Development and COVID-19 Response
Abstract
:1. Introduction
2. Background
2.1. The Notion of E-Learning
2.2. E-Learning during the COVID-19 Era
3. Methodology
3.1. Data Sources
3.2. Methodological Process
3.2.1. Step 1: Analysis of E-Learning in 2017 and 2020 in Selected European Countries
3.2.2. Step 2: Fuzzy C-Means Clustering Analysis of E-Learning Indicators in 2017 and 2020
3.2.3. Step 3: The Economic and COVID-19 Indicators in E-Learning Clusters in 2017 and 2020
4. Results
4.1. Step 1: Analysis of E-Learning in 2017 and 2020 in Selected European Countries
4.2. Step 2: Fuzzy C-Means Clustering Analysis of E-Learning Indicators for 2017 and 2020
4.2.1. Determining the Number of Clusters
4.2.2. Cluster Validation
4.2.3. Cluster Solution
4.2.4. Cluster Members and Characteristics
4.3. Step 3: The Impact of Economic and COVID-19 Indicators on E-Learning Clusters for 2017 and 2020
5. Discussion and Conclusions
5.1. Summary of the Research
5.2. Main Conclusions
5.3. Practical Implications
5.4. Research Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bach, M.P.; Zoroja, J.; Vukšić, V.B. Review of corporate digital divide research: A decadal analysis (2003–2012). Int. J. Inf. Syst. Proj. Manag. 2022, 1, 41–55. [Google Scholar] [CrossRef]
- Bach, M.P.; Zoroja, J.; Vukšić, V.B. Determinants of Firms’ Digital Divide: A Review of Recent Research. Procedia Technol. 2013, 9, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Cullen, R. Addressing the digital divide. Online Inf. Rev. 2001, 25, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jesus, F.; Oliveira, T.; Bacao, F. Digital divide across the European Union. Inf. Manag. 2021, 49, 278–291. [Google Scholar] [CrossRef]
- Kovács, T.Z.; Bittner, B.; Huzsvai, L.; Nábrádi, A. Convergence and the Matthew Effect in the European Union Based on the DESI Index. Mathematics 2022, 10, 613. [Google Scholar] [CrossRef]
- Maatuk, A.M.; Elberkawi, E.K.; Aljawarneh, S.; Rashaideh, H.; Alharbi, H. The COVID-19 pandemic and E-learning: Challenges and opportunities from the perspective of students and instructors. J. Comput. High. Educ. 2022, 34, 21–38. [Google Scholar] [CrossRef]
- Šumak, B.; Heričko, M.; Pušnik, M. A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Comput. Hum. Behav. 2011, 27, 2067–2077. [Google Scholar] [CrossRef]
- Liu, S.H.; Liao, H.L.; Pratt, J.A. Impact of media richness and flow on e-learning technology acceptance. Comput. Educ. 2009, 52, 599–607. [Google Scholar] [CrossRef]
- Hunady, J.; Pisár, P.; Vugec, D.S.; Bach, M.P. Digital Transformation in European Union: North is leading, and South is lagging behind. Int. J. Inf. Syst. Proj. Manag. 2022, 10, 58–81. [Google Scholar] [CrossRef]
- Siriopoulos, C.; Pomonis, G.A. Alternatives to “Chalk and Talk”: Active Vs. Passive Learning—A Literature Review of the Debate. SSRN Electron. J. 2006. [Google Scholar] [CrossRef]
- Malin, M. Enhancing lecture presentation through tablet technology. Account. Res. J. 2014, 27, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Głodowska, A.; Wach, K.; Knežević, B. Pros and Cons of e-Learning in Economics and Business in Central and Eastern Europe: Cross-country Empirical Investigation. Bus. Syst. Res. Int. J. Soc. Adv. Innov. Res. Econ. 2022, 13, 28–44. [Google Scholar] [CrossRef]
- Shallcross, D.E.; Harrison, T.G. Lectures: Electronic presentations versus chalk and talk—A chemist’s view. Chem. Educ. Res. Pract. 2007, 8, 73–79. [Google Scholar] [CrossRef]
- Engzell, P.; Frey, A.; Verhagen, M.D. Learning loss due to school closures during the COVID-19 pandemic. Proc. Natl. Acad. Sci. USA 2021, 118, e2022376118. [Google Scholar] [CrossRef]
- Brozović, M.; Ercegović, M.; Meeh-Bunse, G. e-Learning in Higher Institutions and Secondary Schools during COVID-19: Crisis Solving and Future Perspectives. Bus. Syst. Res. Int. J. Soc. Adv. Innov. Res. Econ. 2022, 13, 45–71. [Google Scholar] [CrossRef]
- Kern, E.; Wehmeyer, E. The Palgrave Handbook of Positive Education; Springer Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Grah, B.; Penger, S. COVID-19 and the Challenges of Transition to Online Learning. ENTRENOVA-ENTerprise REsearch InNOVAtion 2021, 7, 134–148. [Google Scholar] [CrossRef]
- Coman, C.; Țîru, L.G.; Meseșan-Schmitz, L.; Stanciu, C.; Bularca, M.C. Online Teaching and Learning in Higher Education during the Coronavirus Pandemic: Students’ Perspective. Sustainability 2020, 12, 10367. [Google Scholar] [CrossRef]
- Favale, T.; Soro, F.; Trevisan, M.; Drago, I.; Mellia, M. Campus traffic and e-Learning during COVID-19 pandemic. Comput. Netw. 2020, 176, 107290. [Google Scholar] [CrossRef]
- Dečman, N.; Rep, A. Digitalization in Teaching Economic Disciplines: Past, Current and Future Perspectives. Bus. Syst. Res. Int. J. Soc. Adv. Innov. Res. Econ. 2022, 13, 1–7. [Google Scholar] [CrossRef]
- Vaneva, M.; Bojadjiev, M.I. Doing Business in the ‘New Normal’: COVID-19 School Leaders’ Language Manners. ENTRENOVA-ENTerprise REsearch InNOVAtion 2021, 7, 401–409. [Google Scholar] [CrossRef]
- Leem, B.H. An effect of value co-creation on student benefits in COVID-19 pandemic. Int. J. Eng. Bus. Manag. 2021, 13, 18479790211058320. [Google Scholar] [CrossRef]
- Eurostat Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Government_expenditure_on_education (accessed on 20 January 2023).
- Tadesse, S.; Muluye, W. The impact of COVID-19 pandemic on education system in developing countries: A review. Open J. Soc. Sci. 2020, 8, 159–170. [Google Scholar] [CrossRef]
- Darling-Hammond, L.; Flook, L.; Cook-Harvey, C.; Barron, B.; Osher, D. Implications for educational practice of the science of learning and development. Appl. Dev. Sci. 2019, 24, 97–140. [Google Scholar] [CrossRef] [Green Version]
- UNESCO Institute for Lifelong Learning. Embracing a Culture of Lifelong Learning: Contribution to the Futures of Education Initiative: Report: A Transdisciplinary Expert Consultation; UNESCO Institute for Lifelong Learning: Hamburg, Germany, 2020; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000374112 (accessed on 8 January 2023).
- Barrot, J.S.; Llenares, I.I.; del Rosario, L.S. Students’ online learning challenges during the pandemic and how they cope with them: The case of the Philippines. Educ. Inf. Technol. 2021, 26, 7321–7338. [Google Scholar] [CrossRef]
- Zakota, Z. Analysing Web 2.0 Usage of High School Students in the Partium Region before the COVID-19 Pandemic. ENTRENOVA-ENTerprise REsearch InNOVAtion 2020, 6, 258–264. [Google Scholar]
- Singh, S.; Singh, U.S.; Nermend, M. Decision analysis of e-learning in bridging digital divide for education dissemination. Procedia Comput. Sci. 2022, 207, 1970–1980. [Google Scholar] [CrossRef]
- Pikoos, T.; Buzwell, S.; Sharp, G.; Rossell, S. The ‘Zoom Effect’: Exploring the Impact of Video-Calling on Appearance Dissatisfaction and Interest in Cosmetic Treatment during the COVID-19 Pandemic. Aesthet. Surg. J. 2021, 41, 2066–2075. [Google Scholar] [CrossRef]
- Shin, M.; Hickey, K. Needs a Little TLC: Examining College Students’ Emergency Remote Teaching and Learning Experiences during COVID-19. J. Furth. High. Educ. 2020, 45, 973–986. [Google Scholar] [CrossRef]
- Watermeyer, R.; Crick, T.; Knight, C.; Goodall, J. COVID-19 and Digital Disruption in UK Universities: Afflictions and Affordances of Emergency Online Migration. High. Educ. 2020, 81, 623–641. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Bashir, S.; Rana, K.; Lambert, P.; Vernallis, A. COVID-19 Adaptations; the Shifts Towards Online Learning, Hybrid Course Delivery and the Implications for Biosciences Courses in the Higher Education Setting. Front. Educ. 2021, 6, 711619. [Google Scholar] [CrossRef]
- Cunha, M.N.; Chuchu, T.; Maziriri, E. Threats, Challenges, and Opportunities for Open Universities and Massive Online Open Courses in the Digital Revolution. Int. J. Emerg. Tech. Learn 2020, 15, 191–204. [Google Scholar] [CrossRef]
- Chatterjee, R.; Correia, A.P. Online Students’ Attitudes Toward Collaborative Learning and Sense of Community. Am. J. Distance Educ. 2019, 34, 53–68. [Google Scholar] [CrossRef]
- Czerniewicz, L.; Trotter, H.; Haupt, G. Online teaching in response to student protests and campus shutdowns: Academics’ perspectives. Int. J. Educ. Technol. High. Educ. 2019, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.F.; Stephen, P.; Theriault, J.F.; Wang, R.; Lin, S.X. Novel coronavirus polymerase and nucleotidyl-transferase structures: Potential to target new outbreaks. J. Phys. Chem. Lett. 2020, 11, 4430–4435. [Google Scholar] [CrossRef]
- Ma, Y.; Mishra, S.R.; Han, X.K.; Zhu, D.S. The relationship between time to a high COVID-19 response level and timing of peak daily incidence: An analysis of governments’ Stringency Index from 148 countries. Infect. Dis. Poverty 2021, 10, 96. [Google Scholar] [CrossRef]
- Pejić Bach, M.; Bertoncel, T.; Meško, M.; Suša Vugec, D.; Ivančić, L. Big Data Usage in European Countries: Cluster Analysis Approach. Data 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Bezdek, J.C. Fuzzy Mathematics in Pattern Classification. Ph.D. Thesis, Graduate School, Cornell University, Ithaca, NY, USA, 1973. [Google Scholar]
- Bezdek, J.C.; Coray, C.; Gunderson, R.; Watson, J. Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines. SIAM J. Appl. Math. 1981, 40, 339–357. [Google Scholar] [CrossRef]
- Bezdek, J.C.; Coray, C.; Gunderson, R.; Watson, J. Detection and characterization of cluster substructure II. Fuzzy c-varieties and convex combinations thereof. SIAM J. Appl. Math. 1981, 40, 358–372. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Kumar, S. Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Razavi Hajiagha, S.H.; Hashemi, S.S.; Amoozad Mahdiraji, H. Fuzzy C-means based data envelopment analysis for mitigating the impact of units’ heterogeneity. Kybernetes 2016, 45, 536–551. [Google Scholar] [CrossRef]
- Anggoro, F.; Caraka, R.E.; Prasetyo, F.A.; Ramadhani, M.; Gio, P.U.; Chen, R.-C.; Pardamean, B. Revisiting Cluster Vulnerabilities towards Information and Communication Technologies in the Eastern Island of Indonesia Using Fuzzy C Means. Sustainability 2022, 14, 3428. [Google Scholar] [CrossRef]
- Ziemba, P.; Becker, J. Analysis of the Digital Divide Using Fuzzy Forecasting. Symmetry 2019, 11, 166. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, L.; Liu, Z.; Qiao, W.; Liu, F. Application of Fuzzy Clustering in Higher Education General Management Based on Internet Environment. Math. Probl. Eng. 2022, 2022, 3438666. [Google Scholar] [CrossRef]
- Xu, Z. College Students’ Mental Health Support Based on Fuzzy Clustering Algorithm. Mol. Imaging 2022, 2022, 5374111. [Google Scholar] [CrossRef]
- Parvathavarthini, S.; Sharvanthika, K.S.; Jagadeesh, M.; Kishore, B. Analysis of Student Performance in E-learning Environment using Crow search based Fuzzy clustering. In Proceedings of the 2nd International Conference on Smart Electronics and Communication (ICOSEC), Thottiyam, India, 7 October 2021. [Google Scholar] [CrossRef]
- Pejić Bach, M.; Kamenjarska, T.; Žmuk, B. Targets of phishing attacks: The bigger fish to fry. Procedia Comput. Sci. 2022, 204, 448–455. [Google Scholar] [CrossRef]
- Williams, L.J.; Abdi, H. Fisher’s least significant difference (LSD) test. Encycl. Res. Des. 2010, 218, 840–853. [Google Scholar]
- Nainggolan, R.; Perangin-angin, R.; Simarmata, E.; Tarigan, A.F. Improved the performance of the K-means cluster using the sum of squared error (SSE) optimized by using the Elbow method. J. Phys. Conf. Ser. 2019, 1361, 012015. [Google Scholar] [CrossRef]
- Kang, B.; García García, D.; Lijffijt, J.; Santos-Rodríguez, R.; De Bie, T. Conditional t-SNE: More informative t-SNE embeddings. Mach. Learn. 2020, 110, 2905–2940. [Google Scholar] [CrossRef]
- Jun, S.H.; Lee, S.J. Empirical Comparisons of Clustering Algorithms using Silhouette Information. Int. J. Fuzzy Log. Intell. Syst. 2010, 10, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Mingrui, Z.; Wei, Z.; Sicotte, H.; Yang, P. A new validity measure for a correlation-based fuzzy c-means clustering algorithm. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3 September 2009. [Google Scholar] [CrossRef] [Green Version]
- Łukasik, S.; Kowalski, P.A.; Charytanowicz, M.; Kulczycki, P. Clustering using flower pollination algorithm and Calinski-Harabasz index. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2724–2728. [Google Scholar]
- Bezdek, J.C.; Pal, N.R. Cluster validation with generalized Dunn’s indices. In Proceedings of the 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, Dunedin, New Zealand, 20–23 November 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 190–193. [Google Scholar]
- Celeux, G.; Soromenho, G. An entropy criterion for assessing the number of clusters in a mixture model. J. Classif. 1996, 13, 195–212. [Google Scholar] [CrossRef] [Green Version]
Variable Code | Measurement; Year | Description |
---|---|---|
E-learning indicators | ||
ONLINE_C_2017 | % of individuals; 2017 | Doing an online course (any subject) |
ONLINE_C_2020 | % of individuals; 2020 | |
ONLINE_M_2017 | % of individuals; 2017 | Using online learning materials |
ONLINE_M_2020 | % of individuals; 2020 | |
ONLINE_COM_2017 | % of individuals; 2017 | Communicating with instructors or students using educational websites/portals |
ONLINE_COM_2020 | % of individuals; 2020 | |
ONLINE_ANY_2017 | % of individuals; 2017 | Doing any of the e-learning activities |
ONLINE_ANY_2020 | % of individuals; 2020 | |
ONLINE_C_M_2017 | % of individuals; 2017 | Doing an online course (any subject) or using online learning materials |
ONLINE_C_M_2020 | % of individuals; 2020 | |
Economic indicators | ||
GDP_PC_2017 | Absolute value; 2017 | GDP per capita in EUR |
GDP_PC_2020 | Absolute value; 2020 | |
COVID-19 indicators | ||
Avg_string_index | Measure 0–100, with 100 being the strictest response; 2020 | The Average Stringency Index is a composite measure based on 9 response indicators (school closures, workplace closures, public event cancellations, meeting restrictions, public transportation closures, requests to stay home, restrictions on internal movement, international travel restrictions, and public information campaigns) |
SI_reopen | Measure 0–100 with 100 being completely open; 2020 | Stringency index at the reopening of a country; shows days of reopening. The values of the SI_reopening index range from 0 to 100 and measure the days when there were no reported COVID-19 cases. |
Step 1 | Step 2 | Step 3 | |
---|---|---|---|
Research Question | RQ1 | RQ2 | RQ3 |
Presumption | COVID-19 had a significant impact on the e-learning indicators | The European countries can be divided into homogeneous groups based on the e-learning indicators in the periods before and during the pandemic | COVID-19 influenced the digitization of countries that had lower economic development in the period before COVID-19 and thus had a significant impact on e-learning |
Observed variables | e-learning indicators in 2017 and 2020 | e-learning indicators in 2017 and 2020 | Cluster membership; economic and COVID-19 indicators in the period before and during COVID-19 across clusters |
Data sources | Eurostat | Eurostat | Results of Step 2; Oxford COVID-19 Government Response Tracker |
Statistical methods | Descriptive statistics; box plot; paired t-test | Fuzzy C-means clustering, ANOVA | Descriptive statistics (economic and COVID-19 indicators); ANOVA; post hoc LSD test |
Expected results of the analysis | Significant differences between e-learning in 2020 and 2017 | Significant differences between clusters in e-learning indicators in 2020 and 2017 | Significant differences between GDP per capita and COVID-19 indicators between clusters |
Expected conclusion | European countries have responded appropriately by increasing e-learning | The level of e-learning in European countries is not uniform, with different implementation levels of e-learning in the periods before and during the pandemic | Both in the period before COVID-19 and the period during COVID-19, the more developed countries used e-learning to a greater extent |
Valid | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|
ONLINE_C_2017 | 34 | 7.235 | 4.626 | 2.000 | 20.000 |
ONLINE_M_2017 | 34 | 16.441 | 11.789 | 3.000 | 71.000 |
ONLINE_COM_2017 | 34 | 9.529 | 5.316 | 2.000 | 24.000 |
ONLINE_ANY_2017 | 34 | 21.471 | 12.776 | 4.000 | 74.000 |
ONLINE_C_M_2017 | 34 | 18.853 | 12.263 | 3.000 | 73.000 |
ONLINE_C_2020 | 34 | 14.882 | 6.650 | 3.000 | 32.000 |
ONLINE_M_2020 | 34 | 21.824 | 11.761 | 6.000 | 72.000 |
ONLINE_COM_2020 | 34 | 16.088 | 6.995 | 3.000 | 30.000 |
ONLINE_ANY_2020 | 34 | 29.324 | 12.829 | 10.000 | 76.000 |
ONLINE_C_M_2020 | 34 | 26.059 | 12.170 | 8.000 | 75.000 |
2017 vs. 2020 | t | df | p | Mean Difference | SE Difference | Cohen’s d |
---|---|---|---|---|---|---|
ONLINE_C | 11.412 | 33 | <0.001 *** | 7.647 | 0.670 | 1.957 |
ONLINE_M | 5.035 | 33 | <0.001 *** | 5.382 | 1.069 | 0.864 |
ONLINE_COM | 8.410 | 33 | <0.001 *** | 6.559 | 0.780 | 1.442 |
ONLINE_ANY | 8.472 | 33 | <0.001 *** | 3.265 | 0.385 | 1.453 |
ONLINE_C_M | 6.969 | 33 | <0.001 *** | 7.206 | 1.034 | 1.195 |
Year | Clusters | N | R² | AIC | BIC | Silhouette |
---|---|---|---|---|---|---|
2017 | 3 | 34 | 0.570 | 97.510 | 120.410 | 0.260 |
2020 | 3 | 34 | 0.466 | 94.460 | 117.360 | 0.320 |
Metrics | 2017 | 2020 |
---|---|---|
Pearson’s γ | 0.393 | 0.388 |
Calinski–Harabasz index | 22.383 | 24.173 |
Dunn index | 0.030 | 0.051 |
Entropy | 1.003 | 1.058 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
2017 | ||||||
ONLINE_C_2017 | Between Groups | 477.940 | 2 | 238.970 | 32.466 | <0.001 *** |
Within Groups | 228.178 | 31 | 7.361 | |||
Total | 706.118 | 33 | ||||
ONLINE_M_2017 | Between Groups | 2045.171 | 2 | 1022.586 | 12.474 | <0.001 *** |
Within Groups | 2541.211 | 31 | 81.975 | |||
Total | 4586.382 | 33 | ||||
ONLINE_COM_2017 | Between Groups | 681.626 | 2 | 340.813 | 42.119 | <0.001 *** |
Within Groups | 250.844 | 31 | 8092 | |||
Total | 932.470 | 33 | ||||
ONLINE_ANY_2017 | Between Groups | 3110.426 | 2 | 1555.213 | 21.182 | <0.001 *** |
Within Groups | 2276.044 | 31 | 73.421 | |||
Total | 5386.470 | 33 | ||||
ONLINE_C_M_2017 | Between Groups | 2595.320 | 2 | 1297.660 | 16.996 | <0.001 *** |
Within Groups | 2366.944 | 31 | 76.353 | |||
Total | 4962.264 | 33 | ||||
Sum of Squares | df | Mean Square | F | Sig. | ||
2020 | ||||||
ONLINE_C_2020 | Between Groups | 940.101 | 2 | 470.050 | 28.053 | <0.001 *** |
Within Groups | 519.429 | 31 | 16.756 | |||
Total | 1459.529 | 33 | ||||
ONLINE_M_2020 | Between Groups | 1890.062 | 2 | 945.031 | 10.952 | <0.001 *** |
Within Groups | 2674.879 | 31 | 86.286 | |||
Total | 4564.941 | 33 | ||||
ONLINE_COM_2020 | Between Groups | 1254.444 | 2 | 627.222 | 53.967 | <0.001 *** |
Within Groups | 360.291 | 31 | 11.622 | |||
Total | 1614.735 | 33 | ||||
ONLINE_ANY_2020 | Between Groups | 3597.507 | 2 | 1798.754 | 30.405 | <0.001 *** |
Within Groups | 1833.934 | 31 | 59.159 | |||
Total | 5431.441 | 33 | ||||
ONLINE_C_M_2020 | Between Groups | 2684.185 | 2 | 1342.092 | 18.880 | <0.001 *** |
Within Groups | 2203.698 | 31 | 71.087 | |||
Total | 4887.882 | 33 |
2017 | 2020 | |||||
---|---|---|---|---|---|---|
Cluster | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 1 | Cluster 2 | Cluster 3 |
Size | 10 | 18 | 6 | 14 | 13 | 7 |
Explained proportion within-cluster heterogeneity | 0.783 | 0.196 | 0.021 | 0.126 | 0.809 | 0.065 |
Within-sum of squares | 52.877 | 13.248 | 1.385 | 8.131 | 52.164 | 4.170 |
Cluster | Descriptives | ONLINE_C | ONLINE_M | ONLINE_COM | ONLINE_ANY | ONLINE_C_M |
---|---|---|---|---|---|---|
2017 | ||||||
Cluster 1 | Mean | 12.90 | 27.70 | 16.10 | 35.20 | 31.50 |
N = 10 | Std. Dev. | 4.254 | 15.791 | 3.446 | 14.382 | 15.255 |
Var. Coeff. | 0.33 | 0.57 | 0.21 | 0.41 | 0.48 | |
Cluster 2 | Mean | 5.44 | 13.61 | 7.77 | 18.22 | 15.72 |
N = 18 | Std. Dev. | 1.822 | 3.928 | 2.819 | 4.735 | 3.770 |
Var. Coeff. | 0.33 | 0.28 | 0.36 | 0.26 | 0.24 | |
Cluster 3 | Mean | 3.16 | 6.16 | 3.83 | 8.33 | 7.16 |
N = 6 | Std. Dev. | 1.329 | 2.639 | 1.329 | 2.582 | 2.483 |
Var. Coeff. | 0.42 | 0.43 | 0.35 | 0.31 | 0.35 | |
Total | Mean | 7.23 | 16.44 | 9.52 | 21.47 | 18.85 |
N = 34 | Std. Dev. | 4.626 | 11.789 | 5.316 | 12.776 | 12.263 |
Var. Coeff. | 0.64 | 0.71 | 0.55 | 0.59 | 0.65 | |
2020 | ||||||
Cluster 1 | Mean | 21.00 | 30.23 | 23.38 | 41.38 | 36.31 |
N = 13 | Std. Dev. | 5.339 | 14.388 | 3.906 | 11.362 | 12.822 |
Var. Coeff. | 0.25 | 0.47 | 0.17 | 0.27 | 0.35 | |
Cluster 2 | Mean | 13.00 | 19.71 | 13.36 | 25.43 | 23.07 |
N = 14 | Std. Dev. | 3.038 | 3.099 | 2.872 | 3.936 | 3.540 |
Var. Coeff. | 0.23 | 0.15 | 0.21 | 0.15 | 0.15 | |
Cluster 3 | Mean | 7.29 | 10.43 | 8.00 | 14.71 | 13.00 |
N = 7 | Std. Dev. | 3.094 | 3.309 | 3.416 | 3.729 | 3.367 |
Var. Coeff. | 0.42 | 0.32 | 0.43 | 0.25 | 0.26 | |
Total | Mean | 14.88 | 21.82 | 16.09 | 29.32 | 26.06 |
N = 34 | Std. Dev. | 6.650 | 11.761 | 6.995 | 12.829 | 12.170 |
Var. Coeff. | 0.45 | 0.54 | 0.44 | 0.44 | 0.47 |
2017 | 2020 | ||
---|---|---|---|
Cluster | Countries | Cluster | Countries |
Cluster 1 (n = 10) | Estonia, Finland, Iceland, Luxembourg, Malta, Netherlands, Norway, Spain, Sweden, the United Kingdom | Cluster 1 (n = 14) | Belgium, Denmark, Estonia, Finland, Iceland, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland |
Cluster 2 (n = 18) | Austria, Belgium, Cyprus, Czechia, Denmark, France, Germany, Ireland, Italy, Latvia, Lithuania, Montenegro, Portugal, Romania, Serbia, Slovakia, Slovenia, Switzerland | Cluster 2 (n = 13) | Austria, Croatia, Cyprus, France, Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Montenegro, Slovakia, Slovenia, the United Kingdom |
Cluster 3 (n = 6) | Bulgaria, Croatia, Greece, Hungary, Poland, Turkey | Cluster 3 (n = 7) | Bulgaria, Czechia, Greece, Poland, Romania, Serbia, Turkey |
GDP_PC_2017 | GDP_PC_2020 | |||||
---|---|---|---|---|---|---|
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 1 | Cluster 2 | Cluster 3 | |
Valid | 18 | 10 | 6 | 14 | 13 | 7 |
Mean | 33,360.000 | 24,964.000 | 15,793.333 | 29,102.214 | 30,586.154 | 19,812.857 |
Std. Dev. | 12,506.964 | 14,989.428 | 10,669.414 | 13,037.195 | 18,187.007 | 11,314.240 |
Shapiro-Wilk | 0.952 ** | 0.933 ** | 0.781 ** | 0.877 ** | 0.928 ** | 0.863 ** |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
GDP_PC_2017 | Between Groups | 1,501,831,014.902 | 2 | 750,915,507.451 | 4.434 | 0.020 ** |
Within Groups | 5,250,538,973.333 | 31 | 169,372,224.946 | |||
Total | 6,752,369,988.235 | 33 | ||||
GDP_PC_2020 | Between Groups | 571,153,709.829 | 2 | 285,576,854.914 | 1.274 | 0.294 |
Within Groups | 6,946,868,602.907 | 31 | 224,092,535.578 | |||
Total | 7,518,022,312.735 | 33 |
Avg_Stringency_Index_2020 | SI_Days_Reopen | |||||
---|---|---|---|---|---|---|
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 1 | Cluster 2 | Cluster 3 | |
Valid | 13 | 13 | 7 | 13 | 12 | 7 |
Missing | 0 | 1 * | 0 | 1 * | 1 * | 0 |
Mean | 51.869 | 58.194 | 57.139 | 85.470 | 73.072 | 83.996 |
Std. Dev. | 7.273 | 6.492 | 5.236 | 8.623 | 12.965 | 8.413 |
Shapiro-Wilk | 0.976 | 0.923 | 0.956 | 0.923 | 0.870 | 0.923 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
GDP_PC_2017 | Between Groups | 1,501,831,014.902 | 2 | 750,915,507.451 | 4.434 | 0.020 ** |
Within Groups | 5,250,538,973.333 | 31 | 169,372,224.946 | |||
Total | 6,752,369,988.235 | 33 | ||||
GDP_PC_2020 | Between Groups | 571,153,709.829 | 2 | 285,576,854.914 | 1.274 | 0.294 |
Within Groups | 6,946,868,602.907 | 31 | 224,092,535.578 | |||
Total | 7,518,022,312.735 | 33 | ||||
Avg_stringency_indeks_2020 | Between Groups | 284.521 | 2 | 142.261 | 3.271 | 0.052 * |
Within Groups | 1304.882 | 30 | 43.496 | |||
Total | 1589.403 | 32 | ||||
SI_reopen | Between Groups | 1068.813 | 2 | 534.407 | 4.895 | 0.015 ** |
Within Groups | 3166.126 | 29 | 109.177 | |||
Total | 4234.939 | 31 |
Dependent Variable | Cluster Group | Mean Difference (I-J) | Std. Error | Sig. | |
---|---|---|---|---|---|
GDP_PC_2017 | Cluster 1 | Cluster 2 | −8396.000 | 5132.912 | 0.112 |
Cluster 3 | 9170.667 | 6720.560 | 0.182 | ||
Cluster 2 | Cluster 1 | 8396.000 | 5132.912 | 0.112 | |
Cluster 3 | 17,566.667 | 6135.004 | 0.007 *** | ||
Cluster 3 | Cluster 1 | −9170.667 | 6720.560 | 0.182 | |
Cluster 2 | −17,566.667 | 6135.004 | 0.007 *** | ||
Avg_stringency_indeks_2020 | Cluster 1 | Cluster 2 | 6.324 | 2.586 | 0.021 ** |
Cluster 3 | 1.055 | 3.091 | 0.735 | ||
Cluster 2 | Cluster 1 | −6.324 | 2.586 | 0.021 ** | |
Cluster 3 | −5.269 | 3.091 | 0.099 | ||
Cluster 3 | Cluster 1 | −1.055 | 3.091 | 0.735 | |
Cluster 2 | 5.269 | 3.091 | 0.099 | ||
SI_reopen | Cluster 1 | Cluster 2 | 12.398 | 4.182 | 0.006 *** |
Cluster 3 | 1.474 | 4.898 | 0.766 | ||
Cluster 2 | Cluster 1 | −12.398 | 4.182 | 0.006 *** | |
Cluster 3 | −10.924 | 4.969 | 0.036 ** | ||
Cluster 3 | Cluster 1 | −1.474 | 4.898 | 0.766 | |
Cluster 2 | 10.924 | 4.969 | 0.036 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pejić Bach, M.; Jaković, B.; Jajić, I.; Meško, M. Investigating the Impact of COVID-19 on E-Learning: Country Development and COVID-19 Response. Mathematics 2023, 11, 1520. https://doi.org/10.3390/math11061520
Pejić Bach M, Jaković B, Jajić I, Meško M. Investigating the Impact of COVID-19 on E-Learning: Country Development and COVID-19 Response. Mathematics. 2023; 11(6):1520. https://doi.org/10.3390/math11061520
Chicago/Turabian StylePejić Bach, Mirjana, Božidar Jaković, Ivan Jajić, and Maja Meško. 2023. "Investigating the Impact of COVID-19 on E-Learning: Country Development and COVID-19 Response" Mathematics 11, no. 6: 1520. https://doi.org/10.3390/math11061520
APA StylePejić Bach, M., Jaković, B., Jajić, I., & Meško, M. (2023). Investigating the Impact of COVID-19 on E-Learning: Country Development and COVID-19 Response. Mathematics, 11(6), 1520. https://doi.org/10.3390/math11061520