Terminal One Axis Stabilization Properties of a Spinning Satellite Employing Simple Magnetic Attitude Control
Abstract
:1. Introduction
2. Equations of Motion
2.1. Basic Equations of Motion
2.2. Equations in the Semi-Fixed Reference Frame
2.3. Magnetic Attitude Control Algorithms
2.4. Linearized Equations of Motion
3. Spin Axis Motion
3.1. Equations for Phase and Amplitude
3.2. Evolutionary Equations
3.2.1. Wobble Amplitude
- Inertia moments = 0.07 kg∙m2, = 0.05 kg∙m2;
- Orbit altitude 550 km (orbital rate = 10−3 s−1, geomagnetic induction vector approximate strength = 2.35∙10−5 T), inclination i = 57°;
- Satellite rotation rate = 2.1°/s (parameter that represents slow evolution of the geomagnetic field vector components ≈ 30);
- Nutation damping gain = 2∙105 N∙m∙s/T2, positional control gain = 2∙104 N∙m/T2, coefficient , derived small parameter ≈ 0.18;
- The geomagnetic induction vector in the frame is given by the expression (4) and the rotation matrix defined by three rotations (2-3-1 sequence) 30° each.
3.2.2. Offset Angles
- , . Equality is only observed at specific time moments.
- .
- , .
4. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanchares, V.; Iñarrea, M.; Pascual, A.I.; Elipe, A. Stability Conditions for Permanent Rotations of a Heavy Gyrostat with Two Constant Rotors. Mathematics 2022, 10, 1882. [Google Scholar] [CrossRef]
- Sternberg, S.; Schnapf, A. Performance and Evaluation of Satellites Tiros I and Tiros II. ARS J. 1961, 31, 1495–1505. [Google Scholar] [CrossRef]
- Polat, H.C.; Virgili-Llop, J.; Romano, M. Survey, Statistical Analysis and Classification of Launched CubeSat Missions with Emphasis on the Attitude Control Method. J. Small Satell. 2016, 5, 513–530. [Google Scholar]
- Millan, R.M.; von Steiger, R.; Ariel, M.; Bartalev, S.; Borgeaud, M.; Campagnola, S.; Castillo-Rogez, J.C.; Fléron, R.; Gass, V.; Gregorio, A.; et al. Small satellites for space science: A COSPAR scientific roadmap. Adv. Sp. Res. 2019, 64, 1466–1517. [Google Scholar] [CrossRef]
- Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M. High spin rate magnetic controller for nanosatellites. Acta Astronaut. 2014, 95, 218–226. [Google Scholar] [CrossRef]
- Alexandrov, A.Y.; Tikhonov, A.A. Electrodynamic Control with Distributed Delay for AES Stabilization in an Equatorial Orbit. Cosm. Res. 2022, 60, 366–374. [Google Scholar] [CrossRef]
- Kalenova, V.I.; Morozov, V.M. Stabilization of Satellite Relative Equilibrium Using Magnetic and Lorentzian Moments. Cosm. Res. 2021, 59, 343–356. [Google Scholar] [CrossRef]
- Aleksandrov, A.Y.; Andriyanova, N.R.; Tikhonov, A.A. Averaging Method in the Problem of the Lorentz Stabilization of the Indirect Equilibrium Position of a Satellite in the Orbital Coordinate System. Vestn. St. Petersbg. Univ. Math. 2021, 54, 95–105. [Google Scholar] [CrossRef]
- Thomson, W.T. Spin stabilization of attitude against gravity torque. J. Astronaut. Sci. 1962, 9, 31–33. [Google Scholar]
- Kane, T.R.; Shippy, D.J. Attitude stability of a spinning asymmetrical satellite in a circular orbit. J. Astronaut. Sci. 1963, 10, 114–119. [Google Scholar]
- Pringle, R. Bounds on the librations of a symmetrical satellite. AIAA J. 1964, 2, 908–912. [Google Scholar] [CrossRef]
- Likins, P.W. Stability of a symmetrical satellite in attitudes fixed in an orbiting reference frame. J. Astronaut. Sci. 1965, 12, 18–24. [Google Scholar]
- Beletsky, V.V. Motion of an Artificial Satellite about Its Center of Mass; Israel Program for Scientific Translation: Jerusalem, Israel, 1966. [Google Scholar]
- Avanzini, G.; de Angelis, E.L.; Giulietti, F. Spin-axis pointing of a magnetically actuated spacecraft. Acta Astronaut. 2014, 94, 493–501. [Google Scholar] [CrossRef]
- Avanzini, G.; de Angelis, E.L.; Giulietti, F. Acquisition of a Desired Pure-Spin Condition for a Magnetically Actuated Spacecraft. J. Guid. Control Dyn. 2013, 36, 1816–1821. [Google Scholar] [CrossRef]
- de Ruiter, A. A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission. Acta Astronaut. 2011, 68, 160–171. [Google Scholar] [CrossRef]
- Chasset, C.; Berge, S.; Bodin, P.; Jakobson, B. 3-axis magnetic control with multiple attitude profile capabilities in the PRISMA mission. In Proceedings of the 57th International Astronautical Congress, Valencia, Spain, 2–6 October 2006; American Institute of Aeronautics and Astronautics: Valencia, Spain, 2006; p. IAC-06-C1.2.3. [Google Scholar]
- Shigehara, M. Geomagnetic attitude control of an axisymmetric spinning satellite. J. Spacecr. Rockets 1972, 9, 391–398. [Google Scholar] [CrossRef]
- Cubas, J.; de Ruiter, A. Magnetic control without attitude determination for spinning spacecraft. Acta Astronaut. 2020, 169, 108–123. [Google Scholar] [CrossRef]
- Crocker, M.C.; Vrablik, E.A. Experiment in solar orientation of spin stabilized satellite. AIAA J. 1965, 3, 1350–1351. [Google Scholar] [CrossRef]
- Roldugin, D.S.; Tkachev, S.S.; Ovchinnikov, M.Y. Satellite Angular Motion under the Action of SDOT Magnetic One Axis Sun Acquisition Algorithm. Cosm. Res. 2021, 59, 529–536. [Google Scholar] [CrossRef]
- Roldugin, D.S. Stability of a Magnetically Actuated Satellite towards the Sun on a Sun-Synchronous Orbit. Cosm. Res. 2023, 61, 134–142. [Google Scholar] [CrossRef]
- Janssens, F.L.; van der Ha, J.C. Flat-spin recovery of spinning satellites by an equatorial torque. Acta Astronaut. 2015, 116, 355–367. [Google Scholar] [CrossRef]
- Morozov, V.M.; Kalenova, V.I.; Rak, M.G. On the Stabilization of the Regular Precessions of Satellites by Means of Magnetic Moments. Mech. Solids 2021, 56, 1486–1499. [Google Scholar] [CrossRef]
- Ignatov, A.I.; Sazonov, V.V. Investigation of Steady-State Motion of an Artificial Earth Satellite in the Uniaxial Magnetic Orientation Mode. Cosm. Res. 2021, 59, 112–125. [Google Scholar] [CrossRef]
- Aleksandrov, A.Y.; Aleksandrova, E.B.; Tikhonov, A.A. Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system. Adv. Sp. Res. 2018, 62, 142–151. [Google Scholar] [CrossRef]
- Cubas, J.; Farrahi, A.; Pindalo, S. Magnetic Attitude Control for Satellites in Polar or Sun-Synchronous Orbits. J. Guid. Control Dyn. 2015, 38, 1947–1958. [Google Scholar] [CrossRef] [Green Version]
- Cheon, Y.; Lee, S.; Kim, J. Fully Magnetic Devices-Based Control for Gyroless Target Pointing of a Spinning Spacecraft. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1484–1491. [Google Scholar] [CrossRef]
- Ovchinnikov, M.Y.; Penkov, V.I.; Roldugin, D.S. Study of a bunch of three algorithms for magnetic control of attitude and spin rate of a spin-stabilized satellite. Cosm. Res. 2012, 50, 304–312. [Google Scholar] [CrossRef]
- Arnold, V.I.; Kozlov, V.V.; Neishtadt, A.I. Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Aleksandrov, A.Y.; Tikhonov, A.A. Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite. Aerosp. Sci. Technol. 2020, 104, 105963. [Google Scholar] [CrossRef]
- Bogoliubov, Y.A.; Mitropolsky, N.N. Asymptotic Methods in the Theory of Nonlinear Oscillations; Gordon and Breach: Philadelphia, PA, USA, 1961; ISBN 067720051X. [Google Scholar]
- Wertz, J.R. Spacecraft Attitude Determination and Control; Academic Press: Dordrecht, The Netherland; Boston, MA, USA; London, UK, 1990. [Google Scholar]
- Ovchinnikov, M.Y.; Penkov, V.I.; Roldugin, D.S.; Pichuzhkina, A.V. Geomagnetic field models for satellite angular motion studies. Acta Astronaut. 2018, 144, 171–180. [Google Scholar] [CrossRef]
- Antipov, K.A.; Tikhonov, A.A. Multipole models of the geomagnetic field: Construction of the Nth approximation. Geomagn. Aeron. 2013, 53, 257–267. [Google Scholar] [CrossRef]
- Stickler, A.C.; Alfriend, K.T. Elementary Magnetic Attitude Control System. J. Spacecr. Rockets 1976, 13, 282–287. [Google Scholar] [CrossRef]
- Malkin, I.G. Theory of Stability of Motion; U.S. Atomic Energy Commission, Technical Information Service: Oak Ridge, TN, USA, 1952. [Google Scholar]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roldugin, D.; Ovchinnikov, M. Terminal One Axis Stabilization Properties of a Spinning Satellite Employing Simple Magnetic Attitude Control. Mathematics 2023, 11, 1530. https://doi.org/10.3390/math11061530
Roldugin D, Ovchinnikov M. Terminal One Axis Stabilization Properties of a Spinning Satellite Employing Simple Magnetic Attitude Control. Mathematics. 2023; 11(6):1530. https://doi.org/10.3390/math11061530
Chicago/Turabian StyleRoldugin, Dmitry, and Mikhail Ovchinnikov. 2023. "Terminal One Axis Stabilization Properties of a Spinning Satellite Employing Simple Magnetic Attitude Control" Mathematics 11, no. 6: 1530. https://doi.org/10.3390/math11061530
APA StyleRoldugin, D., & Ovchinnikov, M. (2023). Terminal One Axis Stabilization Properties of a Spinning Satellite Employing Simple Magnetic Attitude Control. Mathematics, 11(6), 1530. https://doi.org/10.3390/math11061530