Next Article in Journal
Resonance Analysis of Horizontal Nonlinear Vibrations of Roll Systems for Cold Rolling Mills under Double-Frequency Excitations
Previous Article in Journal
Modeling Extractive Question Answering Using Encoder-Decoder Models with Constrained Decoding and Evaluation-Based Reinforcement Learning
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network

1
School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, China
2
School of Mathematics and Information Technology, Yuncheng University, Yuncheng 044000, China
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(7), 1625; https://doi.org/10.3390/math11071625
Submission received: 20 February 2023 / Revised: 21 March 2023 / Accepted: 24 March 2023 / Published: 28 March 2023
(This article belongs to the Section Mathematical Physics)

Abstract

:
In this work, we study the nonlocality of star-shaped correlation tensors (SSCTs) based on a general multi-star-network M S N ( m , n 1 , , n m ) . Such a network consists of 1 + m + n 1 + + n m nodes and one center-node A that connects to m star-nodes B 1 , B 2 , , B m while each star-node B j has n j + 1 star-nodes A , C 1 j , C 2 j , , C n j j . By introducing star-locality and star-nonlocality into the network, some related properties are obtained. Based on the architecture of such a network, SSCTs including star-shaped probability tensors (SSPTs) are proposed and two types of localities in SSCTs and SSPTs are mathematically formulated, called D-star-locality and C-star-locality. By establishing a series of characterizations, the equivalence of these two localities is verified. Some necessary conditions for a star-shaped CT to be D-star-local are also obtained. It is proven that the set of all star-local SSCTs is a compact and path-connected subset in the Hilbert space of tensors over the index set Δ S and has least two types of star-convex subsets. Lastly, a star-Bell inequality is proved to be valid for all star-local SSCTs. Based on our inequality, two examples of star-nonlocal M S N ( m , n 1 , , n m ) are presented.

1. Introduction

As promising platforms for quantum information processing, quantum networks (QNs) [1] have recently attracted much interest [2,3,4,5,6,7]. It is important to understand the quantum correlations that arise in a QN. Recent developments have shown that the topological structure of a QN leads to novel notions of nonlocality [8,9] and new concepts of entanglement and separability [10,11,12]. These new concepts and definitions are different from the traditional ones [13,14] and thus need to be analysed using new theoretical tools, such as mutual information [10,11], fidelity with pure states [11,12], and covariance matrices built from measurement probabilities [15,16].
According to Bell’s local causality assumption [17,18], the joint probability
P ( o 1 o 2 o n | m 1 m 2 m n ) of obtaining measurement outcomes o 1 , o 2 , , o n of systems A 1 , A 2 , , A n can be obtained in terms of a local hidden variable model (LHVM) with just one “hidden variable”, or “hidden state”, λ . Such a probability distribution is said to be Bell local. Focusing on QNs, completely different approaches to multipartite nonlocality were proposed [19,20,21,22,23]. That means that network nonlocalities are fundamentally different from standard multipartite nonlocalities. Carvacho et al. [24] investigated a quantum network consisting of three spatially separated nodes and experimentally witnessed quantum correlations in the network. Due to the complex topological structure of a network, it is possible to detect the quantum nonlocality in experiments by performing just one fixed measurement [8,25,26,27,28].
Quantum coherence originated from the superposition principle originally pointed out by Schrödinger [29] and is a fundamentally quantum property [30,31]. Quantum nonlocality is a correlation property of subsystems of a multipartite system, exhibited by a set of local measurements. It is also a powerful tool for analyzing correlations in a quantum network [32] and a direct link between the theory of multisubspace coherence [33] and the approach to quantum networks with covariance matrices [15,16].
Patricia et al. [34] found some sufficient conditions for nonlocality in QNs and showed that any network with shared pure entangled states is genuinelu multipartite nonlocal. Šupić et al. [35] proposed a concept of genuine network quantum nonlocality and proved several examples of genuine network nonlocal correlations.
Recently, Tavakoli et al. [36] discussed the main concepts, methods, results, and future challenges of network nonlocality with a list of open problems. More recently, Xiao et al. [37] discussed two types of trilocality in probability tensors (PTs), P = P ( a 1 a 2 a 3 ) and that of correlation tensors (CTs) P = P ( a 1 a 2 a 3 | x 1 x 2 x 3 ) , based on the triangle network [8] and described by continuous (integral) and discrete (sum) trilocal hidden variable models (C-triLHVMs and D-triLHVMs).
Haddadi et al. [38] studied the thermal evolution of the entropic uncertainty bound in the presence of quantum memory for an inhomogeneous, four-qubit, spin-star system and proved that the entropic uncertainty bound can be controlled and suppressed by adjusting the inhomogeneity parameter of the system. Related research on spin-star systems can be found in [39,40] and the references therein. As a generalization of star-networks [22,23], Yang et al. [41] considered the nonlocality of ( 2 n 1 ) -partite tree-tensor networks (referring to Figure 1 for the case where n = 2 ) and derived the Bell-type inequalities.
Extending the scenario in [41], Yang et al. [42] discussed the nonlocality of a type of multi-star-shaped QNs (Figure 2), called 3-layer m-star QNs (3-m-SQNWs), and established related Bell-type inequalities.
In this work, we study the nonlocality of star-shaped CTs and star-shaped PTs based on a more general multi-star network M S N ( m , n 1 , , n m ) depicted in Figure 3.
Such a network consists of 1 + m + n 1 + + n m nodes and one center-node A that connects to m star-nodes B 1 , B 2 , , B m while each star-node B j has n j + 1 star-nodes A , C 1 j , C 2 j , , C n j j .
In Section 2, we will introduce the star-locality and star-nonlocality of the multi-star-network M S N ( m , n 1 , , n m ) and give some related properties. In Section 3, we will first introduce star-shaped CTs (SSCTs), including star-shaped PTs (SSPTs), and discuss two types of localities of SSCTs and SSPTs, called D-star-locality and C-star-locality. Then, we establish a series of characterizations of D-star-localities and C-star-localities, show the equivalence of these two types of localities, and give some necessary conditions for star-shaped CT to be D-star-local. At the end of this section, we will show that the set CT star local ( Δ S ) of all star-local SSCTs over the index set Δ S is a compact and path-connected subset in the Hilbert space T star ( Δ S ) of all tensors over Δ S and contains at least two types of subsets that are star-convex. In Section 4, we shall establish an inequality that holds for all star-local SSCTs, called a star-Bell inequality. Based on our inequality, two examples are given. The first example is a star-nonlocal M S N ( m , n 1 , , n m ) , in which the shared states are all entangled pure states, and the second one gives a star-nonlocal M S N ( m , n 1 , , n m ) in which the shared states are all entangled mixed states. In Section 5, we will give a summary and conclusions.

2. Multi-Star-Network Scenario

2.1. Notations and Concepts

In what follows, we consider the multi-star-network scenario as depicted in Figure 3, denoted by M S N ( m , n 1 , , n m ) . The network involves 1 + m + j = 1 m n j parties
A , B 1 , , B m , C 1 1 , , C n 1 1 , , C 1 m , , C n m m
and m + j = 1 m n j sources
S 1 , , S m , S 1 1 , , S n 1 1 , , S 1 m , , S n m m ,
which are characterized by hidden variables λ j D j and μ k j F j ( k ) ( j [ m ] , k [ n j ] ), where [ n ] : = { 1 , 2 , , n } .
We use ρ A j B 0 j D ( H A j H B 0 j ) to denote the states shared by A and B j for all j [ m ] , and ρ B k j C k j D ( H B k j H C k j ) to denote the states shared by B j and C k j for all j [ m ] and k [ n j ] . We get H A = j = 1 m H A j , H B j = H B 0 j ( k = 1 n j H B k j ) ( j = 1 , 2 , , m ) . Then we define the system state as
Γ = j = 1 m ρ A j B 0 j j = 1 m ( ρ B 1 j C 1 j ρ B 2 j C 2 j ρ B n j j C n j j ) .
Consider the measurement assemblages
M ( A ) = M ( x ) : = { M a | x } a = 1 o ( A ) : x = 1 , 2 , , m ( A ) , N ( B j ) = N j ( y j ) : = { N b j | y j j } b j = 1 o ( B j ) : y j = 1 , 2 , , m ( B j ) , L ( C k j ) = L k j ( z j , k ) : = { L c j , k | z j , k j , k } c j , k = 1 o ( C k j ) : z j , k = 1 , 2 , , m ( C k j )
consisting of positive-operator-valued measures (POVMs), on systems A, B j and C k j , respectively, where j [ m ] and k [ n j ] , consisting of positive operators satisfying the normalization conditions:
a = 1 o ( A ) M a | x = I A , b j = 1 o ( B j ) N b j | y j j = I B j , c j , k = 1 o ( C k j ) L c j , k | z j , k j , k = I C k j .
Then, we can obtain a measurement assemblage (MA)
M : = M ( A ) j = 1 m N ( B j ) j = 1 m ( L ( C 1 j ) L ( C 2 j ) L ( C n j j ) )
of the quantum network with measurement operators
M a b c | x y z : = M a | x j = 1 m N b j | y j j j = 1 m ( L c j , 1 | z j , 1 j , 1 L c j , 2 | z j , 2 j , 2 L c j , n j | z j , n j j , n j ) ,
where x [ m ( A ) ] , y j [ m ( B j ) ] and z k j [ m ( C k j ) ] denote the inputs of parties A, B j and C k j with the corresponding outputs a [ o ( A ) ] , b j [ o ( B j ) ] and c k j [ o ( C k j ) ] , respectively, and
y = ( y 1 , y 2 , , y m ) { y j } j = 1 m , b = ( b 1 , b 2 , , b m ) { b j } j = 1 m ,
z = ( z 1 , 1 , , z 1 , n 1 , z 2 , 1 , , z 2 , n 2 , , z m , 1 , , z m , n m ) { z j , k } j [ m ] , k [ n j ] ,
c = ( c 1 , 1 , , c 1 , n 1 , c 2 , 1 , , c 2 , n 2 , , c m , 1 , , c m , n m ) { c j , k } j [ m ] , k [ n j ] .
Clearly, the measurement operators M a b c | x y z are positive operators acting on the Hilbert space
H MHS : = H A j = 1 m H B j j = 1 m ( H C 1 j H C 2 j H C n j j ) ,
while the system state Γ given by (1) is an operator acting on the Hilbert space
H SHS : = j = 1 m ( H A j H B 0 j ) j = 1 m ( H B 1 j H C 1 j H B n j j H C n j j ) .
Generally, H MHS H SHS due to the non-commutativity of tensor product, and in that case, the product M a b c | x y z Γ does not work well. Therefore, we have to change the system state Γ to a state Γ ˜ acting on the space H MHS in order to make the tensor product M a b c | x y z Γ ˜ reasonable. To do this, we define a swapping operation U : H SHS H MHS by | Ψ U | Ψ , where
U | Ψ = j = 1 m | ψ A j j = 1 m ( | ψ B 0 j | ψ B 1 j | ψ B m j ) j = 1 m ( | ψ C 1 j | ψ C n j j ) H MHS
for all
| Ψ = j = 1 m | ψ A j | ψ B 0 j j = 1 m | ψ B 1 j | ψ C 1 j | ψ B n j j | ψ C n j j H SHS .
Then, we obtain a new state Γ ˜ = U Γ U acting the Hilbert space H MHS so that the operator product M a b c | x y z Γ ˜ works well. Furthermore, it is easy to see that
tr [ M a b c | x y z Γ ˜ ] = tr [ M ˜ a b c | x y z Γ ] ,
where M ˜ a b c | x y z = U M a b c | x y z U , which is an operator acting on the Hilbert space H SHS for every index ( a , b , c , x , y , z ) . Thus, the joint probability distribution P ( a b c | x y z ) of obtaining a , b , c  reads:
P M Γ ( a b c | x y z ) : = tr [ M a b c | x y z Γ ˜ ] = tr [ M ˜ a b c | x y z Γ ] .
With these preparations, we can describe the locality and nonlocality of our quantum network M S N ( m , n 1 , , n m ) as follows.
Definition 1. 
A quantum network M S N ( m , n 1 , , n m ) with the state (1) is said to be star-local for an MA M given by (3) if there exists a probability distribution (PD)
p ( λ , μ 1 , , μ m ) = j = 1 m p ( λ j ) × j = 1 m k = 1 n j p ( μ k j ) ,
where { p j ( λ j ) } λ j and { p j , k ( μ k j ) } μ k j are respectively probability distributions (PDs) of λ j and μ k j such that for all a , b , c , x , y , z , it holds that
P M Γ ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
where
λ = ( λ 1 , , λ m ) D , μ j = ( μ 1 j , , μ n j j ) F j ( j [ m ] ) ( local hidden variables ( LHVs ) ) ;
D = D 1 × × D m , F j = F 1 j × × F n j j ( j [ m ] ) ( finite sets of LHVs ) ,
{ P A ( a | x , λ ) } , { P B j ( b j | y j , λ j , μ j ) } and { P C k j ( c j , k | z j , k , μ k j ) } are PDs of a , b j and c j , k , respectively. Otherwise, M S N ( m , n 1 , , n m ) is said to be star-nonlocal for M .
M S N ( m , n 1 , , n m ) is said to be star-local if it is star-local for any M , and it is said to be star-nonlocal if it is not star-local, i.e., it is star-nonlocal for some M .

2.2. Properties

Similar to the reference [42], we can obtain the following results:
Proposition 1. 
If a network M S N ( m , n 1 , , n m ) with the state (1) is star-local for M given by Equation (3), then the Γ ˜ as a state of system A B 1 B m C 1 1 C n 1 1 C 1 m C n m m is Bell-local for M .
Proposition 2. 
The reduced states of Γ ˜ on subsystems A j B 0 j and B k j C k j are Γ ˜ A j B 0 j = ρ A j B 0 j and Γ ˜ B k j C k j = ρ B k j C k j , respectively, for all j [ m ] and k [ n j ] .
Proposition 3. 
If the network M S N ( m , n 1 , , n m ) with the state (1) is star-local, then the bipartite states ρ B t j C t j and ρ A j B 0 j are Bell-local for all s [ m ] and t [ n j ] . Furthermore, the m-partite reduced state ( Γ ˜ ) B 1 B 2 B m is Bell-local.
Consequently, if one of bipartite states ρ B t j C t j and ρ A j B 0 j is Bell-nonlocal, then the network M S N ( m , n 1 , , n m ) must be star-nonlocal. Especially, if one of the shared states is a pure entangled state, then the network M S N ( m , n 1 , , n m ) is star-nonlocal. See Examples 1 and 2 in Section 4.
Proposition 4. 
Every separable (i.e., all of the shared states are separable) M S N ( m , n 1 , , n m ) is star-local.
Proof. 
Since the shared states ρ A j B 0 j and ρ B k j C k j are separable, they can be written as
ρ A j B 0 j = λ j = 1 d j p j ( λ j ) | s λ j s λ j | | s λ j s λ j | ,
ρ B k j C k j = μ k j = 1 d k j p j , k ( μ k j ) | t μ k j t μ k j | | t μ k j t μ k j | ,
where p j ( λ j ) and p j , k ( μ k j ) are PDs of λ j and μ k j . Put
λ = ( λ 1 , λ 2 , , λ m ) , μ j = ( μ 1 j , μ 2 j , , μ n j j ) ,
D = [ d 1 ] × × [ d m ] , F j = [ d 1 j ] × × [ d n j j ] ( j [ m ] ) ,
then
Γ = j = 1 m ρ A j B 0 j j = 1 m ( ρ B 1 j C 1 j ρ B 2 j C 2 j ρ B n j j C n j j ) = λ D μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) j = 1 m | s λ j s λ j | | s λ j s λ j | j = 1 m k = 1 n j | t μ k j t μ k j | | t μ k j t μ k j | ,
which induces the measurement state
Γ ˜ = U Γ U = λ D μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × Γ ( λ , μ 1 , , μ m ) ,
where
Γ ( λ , μ 1 , , μ m ) = j = 1 m | s λ j s λ j | j = 1 m | s λ j s λ j | k = 1 n j | t μ k j t μ k j | j = 1 m k = 1 n j | t μ k j t μ k j | .
Thus, for any MA M given by (3), we compute that
P M Γ ( a b c | x y z ) = tr [ ( M a x N b y L c z ) Γ ˜ ] = λ D μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × tr [ ( M a x N b y L c z ) Γ ( λ , μ 1 , , μ m ) ] = λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
where
P A ( a | x , λ ) = tr [ M a | x j = 1 m | s λ j s λ j | ] ;
P B j ( b j | y j , λ j , μ j ) = tr [ N b j | y j ( | s λ j s λ j | k = 1 n j | t μ k j t μ k j | ) ] ;
P C k j ( c j , k | z j , k , μ k j ) = tr [ L c k j | z k j | t μ k j t μ k j | ) ] .
This shows that Equation (8) holds and then the network is star-local. The proof is completed. □

3. Star-Locality of Star-Shaped Cts

When a multi-star network given by Figure 3 for the case that m = 3 is measured by parties
A , B 1 , , B m , C 1 1 , , C n 1 1 , , C 1 m , , C n m m ,
the conditional probabilities P ( a b c | x y z ) of obtaining result ( a , b , c ) conditioned on the measurement choice ( x , y , z ) form a correlation tensor (CT) [44] P = P ( a b c | x y z ) over the index set
Δ S = [ o ( A ) ] × j = 1 m [ o ( B j ) ] × j = 1 m k = 1 n j [ o ( C k j ) ] × [ m A ] × j = 1 m [ m ( B j ) ] × j = 1 m k = 1 n j [ m ( C k j ) ] ,
which is a non-negative function defined on Δ S satisfying the following completeness condition:
a , b , c P ( a b c | x y z ) = 1 , x , y , z .
We call such a P a star-shaped CT over Δ S . Let CT star ( Δ S ) be the set of all star-shaped CTs over Δ S .
To discuss the algebraic and topological properties of the CT star ( Δ S ) , we have to make it live in a Hilbert space. To accomplish this, we let T star ( Δ S ) be the set of all real tensors P = P ( a b c | x y z ) over Δ S . That is, P T star ( Δ S ) if and only if it is a real-valued function defined on Δ S with the value P ( a b c | x y z ) and a point ( a , b , c , x , y , z ) in Δ S . Clearly, T star ( Δ S ) becomes a finite-dimensional Hilbert space over R with respect to the following operation and inner product:
s P 1 + t P 2 = s P 1 ( a b c | x y z ) + t P 2 ( a b c | x y z ) ,
P 1 , P 2 = a , b , c , x , y , z P 1 ( a b c | x y z ) P 2 ( a b c | x y z ) .
The norm induced by the inner product reads
P : = P , P = a , b , c , x , y , z ( P ( a b c | x y z ) ) 2 1 2 .
Especially, when m ( A ) = m ( B j ) = m ( C k j ) = 1 for all k , j , we denote P = P ( a b c | x y z ) by P = P ( a b c ) and call it a star-shaped probability tensor (PT) over
Ω S = [ o ( A ) ] × j = 1 m [ o ( B j ) ] × j = 1 m k = 1 n j [ o ( C k j ) ] .
Let PT star ( Ω S ) be the set of all star-shaped PTs over Ω S and let T star ( Ω S ) be the set of all real tensors P = P ( a b c ) over Ω S , which is a finite-dimensional Hilbert space over R with respect to the following operation and inner product:
s P 1 + t P 2 = s P 1 ( a b c ) + t P 2 ( a b c ) ,
P 1 , P 2 = a , b , c P 1 ( a b c ) P 2 ( a b c ) .
The norm induced by the inner product reads
P : = P , P = a , b , c ( P ( a b c ) ) 2 1 2 .

3.1. Concepts

Definition 2. 
A star-shaped CT P = P ( a b c | x y z ) over Δ S is said to be C-star-local if it admits a “C-star-shaped LHVM":
P ( a b c | x y z ) = D × F 1 × × F m p ( λ , μ 1 , , μ m ) P A ( a | x , λ ) j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) d γ ( λ ) d τ 1 ( μ 1 ) d τ m ( μ m )
for all a , b , c , x , y , z , where
(i) ( Λ , Ω , μ ) D × j = 1 m F j , σ × j = 1 m δ j , γ × j = 1 m τ j is a product measure space with
λ = ( λ 1 , , λ m ) D , μ j = ( μ 1 j , , μ n j j ) F j ( j [ m ] ) ( LHVs ) ;
D = D 1 × × D m , F j = F 1 j × × F n j j ( j [ m ] ) ( spaces of LHVs ) ;
σ = j = 1 m σ j , δ j = k = 1 n j δ k j ( j [ m ] ) ( product σ - algebras ) ;
γ = j = 1 m γ j , τ j = k = 1 n j τ k j ( j [ m ] ) ( product measures ) ;
(ii) All of the local hidden variables (LHVs) λ 1 , , λ m , μ 1 j , , μ n j j ( j [ m ] ) are independent, i.e.,
p ( λ , μ 1 , , μ m ) = j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) ,
where p j ( λ j ) and p j , k ( μ k j ) are density functions (DFs) of λ j and μ k j , respectively, i.e., they are non-negative and satisfy
D j p j ( λ j ) d γ j ( λ j ) = 1 , F k j p j , k ( μ k j ) d τ k j ( μ k j ) = 1 ;
(iii) P A ( a | x , λ ) , P B j ( b j | y j , λ j , μ j ) and P C k j ( c j , k | z j , k , μ k j ) are PDs of a , b j and c j , k , respectively, and are measurable with respect to λ , ( λ j , μ j ) and μ k j , respectively.
A star-shaped CT P = P ( a b c | x y z ) over Δ S is said to be C-star-nonlocal if it is not C-star-local.
We use CT C star local ( Δ S ) and CT C star nonlocal ( Δ S ) to denote the sets of all C-star-local CTs and all C-star-nonlocal CTs over Δ S , respectively.
Specifically, when D 1 , , D m , F 1 j , , F n j j ( j [ m ] ) are finite sets with the counting measures, a C-star-shaped-LHVM (12) becomes a “D-star-shaped-LHVM”:
P ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
where { P A ( a | x , λ ) } , { P B j ( b j | y j , λ j , μ j ) } , and { P C k j ( c j , k | z j , k , μ k j ) } are PDs of a , b j and c j , k , respectively, and the joint PD p ( λ , μ 1 , , μ m ) is given by (13). In this case, we say that P is D-star-local. If P has no D-star-shaped LHVMs of the form (14), then we say that it is D-star-nonlocal.
We use CT D star local ( Δ S ) and CT D star nonlocal ( Δ S ) to denote the sets of all D-star-local CTs and all D-star-nonlocal CTs over Δ S , respectively. Clearly,
CT D star local ( Δ S ) CT C star local ( Δ S ) .
Definition 3. 
A star-shaped PT P = P ( a b c ) over Ω S is said to be C-star-local if it admits a ”C-star-shaped LHVM”:
P ( a b c ) = D × F 1 × × F m p ( λ , μ 1 , , μ m ) P A ( a | λ ) j = 1 m P B j ( b j | λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | μ k j ) d γ ( λ ) d τ 1 ( μ 1 ) d τ m ( μ m )
for all a , b , c , where p ( λ , μ 1 , , μ m ) is a DF of the form (13). It is said to be C-star-nonlocal if it is not C-star-local.
Definition 4. 
A star-shaped PT P = P ( a b c ) over Ω S is said to be D-star-local if it admits a ”D-star-shaped LHVM":
P ( a b c ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A ( a | λ ) × j = 1 m P B j ( b j | λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | μ k j )
for all a , b , c , where p ( λ , μ 1 , , μ m ) is a PD of the form (13). It is said to be D-star-nonlocal if it is not D-star-local.
Definition 5. 
A star-shaped PT P = P ( a b c ) over Ω S is said to be star-local if it is either C-star-local or D-star-local. It is said to be star-nonlocal if is neither C-star-local nor D-star-local.
We use PT C star local ( Ω S ) (resp., PT D star local ( Ω S ) ) to denote the set of all C-star-local (resp., D-star-local) star-shaped PTs over Ω S .
Clearly,
PT D star local ( Ω S ) PT C star local ( Ω S ) .

3.2. Characterizations

To show every C-star-local CT (especially every PT) is D-star-local, we need the following lemma [37,43]. Recall that an m × n function matrix B ( λ ) = [ b i j ( λ ) ] on Λ is said to be row-statistic (RS) if, for each λ Λ , b i j ( λ ) 0 for all i , j and j = 1 n b i j ( λ ) = 1 .
Lemma 1. 
Let ( Λ , Ω ) be a measurable space and let B ( λ ) = [ b i j ( λ ) ] be an m × n RS function matrix whose entries b i j are Ω-measurable on Λ. Then, B ( λ ) can be written as:
B ( λ ) = k = 1 n m α k ( λ ) [ δ j , J k ( i ) ] , λ Λ ,
where α k ( k = 1 , 2 , , n m ) are all non-negative and Ω-measurable functions on Λ with k = 1 n m α k ( λ ) = 1 for all λ Λ , and { J k } k = 1 n m denotes the set of all maps from [ m ] into [ n ] .
Put
N ( A ) = o ( A ) m ( A ) , N ( B j ) = o ( B j ) m ( B j ) , N ( C k j ) = o ( C k j ) m ( C k j )
and let { J i } i = 1 N ( A ) be the set of all maps from [ m ( A ) ] into [ o ( A ) ] , { K s j j } s j = 1 N ( B j ) the set of all maps from [ m ( B j ) ] into [ o ( B j ) ] , and let { L t j k j , k } t j k = 1 N ( C k j ) be the set of all maps from [ m ( C k j ) ] into [ o ( C k j ) ] .
Let P = P ( a b c | x y z ) be a C-star-local CT over Δ S . Then, it has a C-star-shaped LHVM (12). Since function matrices
M ( λ ) : = [ P A ( a x , λ ) ] x , a , M ( λ j , μ j ) : = [ P B j ( b j | y j , λ j , μ j ) ] y j , b j , M ( μ k j ) : = [ P C k j ( c j , k | z j , k , μ k j ) ] z j , k , c j , k
are RS for each parameters λ , ( λ j , μ j ) , μ k j and their entries are measurable with respect to the related parameters, respectively, it follows from Lemma 1 that they have the following decompositions:
M ( λ ) = i = 1 N ( A ) α ( i | λ ) [ δ a , J i ( x ) ] ,
M ( λ j , μ j ) = s j = 1 N ( B j ) β j ( s j | λ j , μ j ) [ δ b j , K s j j ( y j ) ] ,
M ( μ k j ) = t j k = 1 N ( C k j ) f j , k ( t j k | μ k j ) [ δ c j , k , L t j k j , k ( z j , k ) ] ;
equivalently,
P A ( a x , λ ) = i = 1 N ( A ) α ( i | λ ) δ a , J i ( x ) ,
P B j ( b j | y j , λ j , μ j ) = s j = 1 N ( B j ) β j ( s j | λ j , μ j ) δ b j , K s j j ( y j ) ,
P C k j ( c j , k | z j , k , μ k j ) = t j k = 1 N ( C k j ) f j , k ( t j k | μ k j ) δ c j , k , L t j k j , k ( z j , k ) ,
where α i ( λ ) , β s j j ( λ j , μ j ) and f t j k j , k ( μ k j ) are PDs of i , s j and t j k , respectively, and are measurable with respect to λ , ( λ j , μ j ) and μ k j , respectively. It follows from Equations (12) and (18)–(20) that
P ( a b c | x y z ) = i , s j , t j k π ( i , s , t ) δ a , J i ( x ) j = 1 m δ b j , K s j j ( y j ) × j = 1 m k = 1 n j δ c j , k , L t j k j , k ( z j , k )
for all a , b , c , x , y , z , where s = ( s 1 , s 2 , , s m ) { s j } j = 1 m ,
t = ( t 11 , t 12 , , t 1 n 1 , t 21 , t 22 , , t 2 n 2 , , t m 1 , t m 2 , , t m n m ) { t j k } j [ m ] , k [ n j ] ,
and
π ( i , s , t ) = D × F 1 × × F m p ( λ , μ 1 , , μ m ) α ( i | λ ) j = 1 m β j ( s j | λ j , μ j ) × j = 1 m k = 1 n j f j , k ( t j k | μ k j ) d γ ( λ ) d τ 1 ( μ 1 ) d τ m ( μ m ) ,
with p ( λ , μ 1 , , μ m ) given by (13). Clearly, p = π ( i , s , t ) is a C-star-local PT over
Γ S = [ N ( A ) ] × j = 1 m [ N ( B j ) ] × j = 1 m k = 1 n i [ N ( C k j ) ] ,
which generates P in terms of Equation (21).
Conversely, if (21) holds for some completely independent PD (13) and a C-star-local PT p = π ( i , s , t ) with a C-star-shaped LHVM (22), then (12) holds for P A , P B j and P C k j given by Equations (18)–(20). Thus, P is C-star-local.
This shows that (12) ⇔ (21) and leads to the following.
Theorem 1. 
A star-shaped CT P over Δ S is C-star-local if and only if it has the following decomposition:
P = i , s , t π ( i , s , t ) D i , s , t ,
where p = π ( i , s , t ) is a C-star-local PT over Γ S given by (22) and D i , s , t = D i , s , t ( a b c | x y z ) is given by
D i , s , t ( a b c | x y z ) = δ a , J i ( x ) j = 1 m δ b j , K s j j ( y j ) × j = 1 m k = 1 n j δ c j , k , L t j k j , k ( z j , k ) .
As an application of Theorem 1, we obtain the following relationship between C-star-local CTs and C-star-local PTs:
CT C star local ( Δ S ) = i , s , t π ( i , s , t ) D i , s , t : p = π ( i , s , t ) PT C star local ( Γ S )
Again, we let P be a C-star-local CT over Δ S . We aim to prove that P is D-star-local. First, it has a C-star-shaped LHVM (12). Since
p ( λ , μ 1 , , μ m ) = j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) ,
we obtain from (12) and (20) that
P ( a b c | x y z ) = t j k [ N ( C n j j ) ] ( j [ m ] ) D j = 1 m p j ( λ j ) × P A ( a | x , λ ) d γ ( λ ) × F 1 × × F m j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) f t j k j , k ( μ k j ) d τ 1 ( μ 1 ) d τ m ( μ m ) × j = 1 m k = 1 n j δ c j , k , L t j k j , k ( z j , k ) .
Put
q j , k ( t j k ) = F k j f t j k j , k ( μ k j ) p j , k ( μ k j ) d τ k j ( μ k j ) ,
which are PDs of t j k and satisfy
k = 1 n j q j , k ( t j k ) = F j k = 1 n j ( f t j k j , k ( μ k j ) p j , k ( μ k j ) ) d τ j ( μ j ) ,
and define
P B j ( b j y j , λ j , t j 1 , , t j n j ) = 1 k = 1 n j q j , k ( t j k ) F j P B j ( b j | y j , λ j , μ j ) × k = 1 n j f t j k j , k ( μ k j ) p j , k ( μ k j ) d τ j ( μ j )
if k = 1 n j q j , k ( t j k ) > 0 ; and
P B j ( b j y j , λ j , t j 1 , , t j n j ) = 1 o ( B j ) ,
otherwise. Clearly, P B j ( b j y j , λ j , t j 1 , , t j n j ) is a PD of b j for each ( y j , λ j , t j 1 , , t j n j ) , and when k = 1 n j q j , k ( t j k ) > 0 , we have
k = 1 n j q j , k ( t j k ) × P B j ( b j y j , λ j , t j 1 , , t j n j ) = F j P B j ( b j | y j , λ j , μ j ) k = 1 n j f t j k j , k ( μ k j ) p j , k ( μ k j ) d τ j ( μ j ) .
Note that the right-hand side of above equation is less than equal to k = 1 n j q j , k ( t j k ) and is equal to zero when k = 1 n j q j , k ( t j k ) = 0 . Thus, Equation (26) is valid in any case. Using Equation (26) yields that
j = 1 m k = 1 n j q j , k ( t j k ) × j = 1 m P B j ( b j y j , λ j , t j 1 , , t j n j ) = j = 1 m F j P B j ( b j | y j , λ j , μ j ) × k = 1 n j f t j k j , k ( μ k j ) p j , k ( μ k j ) d τ j ( μ j ) = F 1 × × F m j = 1 m P B j ( b j | y j , λ j , μ j ) j = 1 m k = 1 n j f t j k j , k ( μ k j ) p j , k ( μ k j ) d τ 1 ( μ 1 ) d τ m ( μ m ) .
Combining Equation (25) yields that
P ( a b c | x y z ) = t j k [ N ( C n j j ) ] ( j [ m ] , j [ m ] ) j = 1 m k = 1 n j q j , k ( t j k ) × D j = 1 m p j ( λ j ) × j = 1 m P B j ( b j y j , λ j , t j 1 , , t j n j ) × P A ( a | x , λ ) d γ ( λ ) × j = 1 m k = 1 n j δ c j , k , L t j k j , k ( z j , k ) .
Using Lemma 1 for the RS function matrix [ P B j ( b j y j , λ j , t j 1 , , t j n j ) ] with ( y j t j 1 t j n j , b j ) -entry P B j ( b j y j , λ j , t j 1 , , t j n j ) , we get that
P B j ( b j y j , λ j , t j 1 , , t j n j ) = r j = 1 N * ( B j ) g r j j ( λ j ) δ b j , E r j j ( y j , t j 1 , , t j n j ) ,
where
N * ( B j ) = o ( B j ) m ( B j ) N ( C 1 j ) N ( C n j j ) ,
g r j j ( λ j ) is a PD of r j and is measurable with respect to λ j , and { E r j j } r j [ N * ( B j ) ] denotes the set of all maps from [ m ( B j ) N ( C 1 j ) N ( C n j j ) ] into [ o ( B j ) ] . Thus, we see from Equation (28) that
j = 1 m P B j ( b j y j , λ j , t j 1 , , t j n j ) = j = 1 m r j = 1 N * ( B j ) g r j j ( λ j ) δ b j , E r j j ( y j , t j 1 , , t j n j ) = r 1 = 1 N * ( B 1 ) r m = 1 N * ( B m ) j = 1 m g r j j ( λ j ) × j = 1 m δ b j , E r j j ( y j , t j 1 , , t j n j ) .
It follows from Equations (27) and (29) that
P ( a b c | x y z ) = r 1 = 1 N * ( B 1 ) r m = 1 N * ( B m ) t j k [ N ( C n j j ) ] ( j [ m ] , j [ m ] ) j = 1 m k = 1 n j q j , k ( t j k ) × D j = 1 m p j ( λ j ) × j = 1 m g r j j ( λ j ) × P A ( a | x , λ ) d γ ( λ ) × j = 1 m δ b j , E r j j ( y j , t j 1 , , t j n j ) × j = 1 m k = 1 n j δ c j , k , L t j k j , k ( z j , k ) .
Put
h j ( r j ) = D j p j ( λ j ) g r j j ( λ j ) d τ j ( λ j ) ,
then we obtain a PD h j ( r j ) of r j for every j. Define r = ( r 1 , r 2 , , r m ) and put
P A ( a | x , r ) = 1 j = 1 m h j ( r j ) D j = 1 m p j ( λ j ) × j = 1 m g r j j ( λ j ) × P A ( a | x , λ ) d γ ( λ )
if j = 1 m h j ( r j ) > 0 ; otherwise, define P A ( a | x , r ) = 1 o A for all a , x , then P A ( a | x , r ) is a PD of a and
D j = 1 m p j ( λ j ) × j = 1 m g r j j ( λ j ) × P A ( a | x , λ ) d γ ( λ ) = j = 1 m h j ( r j ) × P A ( a | x , r ) .
Thus, from Equations (30) and (32), we get that
P ( a b c | x y z ) = r R , t 1 T 1 , , t m T m j = 1 m h j ( r j ) × j = 1 m k = 1 n j q j , k ( t j k ) × P A ( a | x , r ) × j = 1 m δ b j , K r j j ( y j , t j 1 , , t j n j ) × j = 1 m k = 1 n j δ c j , k , L t j k j , k ( z j , k ) ,
where t j = ( t j 1 , , t j n j ) , and
R = j = 1 m [ N * ( B j ) ] , T j = [ N ( C 1 j ) ] × × [ N ( C n j j ) ] ( j = 1 , 2 , , m ) .
Put
P B j ( b j | y j , r j , t j ) = δ b j , K r j j ( y j , t j 1 , , t j n j ) , P C k i ( c j , k | z j , k , t j k ) = δ c j , k , L t j k j , k ( z j , k ) ,
which are of PDs of b j and c j , k , respectively. Then Equation (33) becomes
P ( a b c | x y z ) = r R , t 1 T 1 , , t m T m j = 1 m h j ( r j ) × j = 1 m k = 1 n j q j , k ( t j k ) × P A ( a | x , r ) × j = 1 m P B j ( b j | y j , r j , t j ) × j = 1 m k = 1 n j P C k i ( c j , k | z j , k , t j k ) .
This shows that P is D-star-local.
From this discussion, we have the following conclusion.
Theorem 2. 
A star-shaped CT P over Δ S is C-star-local if and only if it is D-star-local, that is,
CT C star local ( Δ S ) = CT D star local ( Δ S ) CT star local ( Δ S ) .
Due to this conclusion, we say that a star-shaped CT P over Δ S is star-local if it is C-star-local, equivalently, if it is D-star-local.
As a special case of m = n 1 = n 2 = 2 , Theorem 2 implies the following result, which is an equivalent characterization of the six-locality discussed in [41].
Corollary 1. 
The correlations P ( a , b 1 , b 2 , c 1 , c 2 , c 3 , c 4 | x , y 1 , y 2 , z 1 , z 2 , z 3 , z 4 ) discussed in [41] are six-local if and only if the following decomposition is valid:
P ( a , b 1 , b 2 , c 1 , c 2 , c 3 , c 4 | x , y 1 , y 2 , z 1 , z 2 , z 3 , z 4 ) = λ k [ n k ] ( k ) k = 1 6 p k ( λ k ) × P 1 ( a | x , λ 1 λ 2 ) P 2 ( b 1 | y 1 , λ 1 λ 3 λ 4 ) P 3 ( b 2 | y 2 , λ 2 λ 5 λ 6 ) × P 4 ( c 1 | z 1 , λ 3 ) P 5 ( c 2 | z 2 , λ 4 ) P 6 ( c 3 | z 3 , λ 5 ) P 7 ( c 4 | z 4 , λ 6 ) ,
for all possible a , b 1 , b 2 , c 1 , c 2 , c 3 , c 4 , x , y 1 , y 2 , z 1 , z 2 , z 3 , z 4 , where p k ( λ k ) ’s are PDs of λ k , and P 1 , P 2 , , P 7 are PDs of a , b 1 , b 2 , c 1 , c 2 , c 3 , c 4 , respectively.
Theorem 3. 
A star-shaped CT P = P ( a b c | x y z ) over Δ S is star-local if and only if it is “separable star-quantum", i.e., it can be generated by an MA (3) together with some separable states ρ A j B 0 j D ( H A j H B 0 j ) and ρ B k j C k j D ( H B k j H C k j ) , in such a way that
P ( a b c | x y z ) = tr [ ( M a x N b y L c z ) Γ ˜ ] , x , a , y , b , z , c ,
where the network state Γ is given by Equation (1).
Proof. 
To show the necessity, we let P = P ( a b c | x y z ) be star-local. Then, it can be written as (14), that is,
P ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
where { P A ( a | x , λ ) } , { P B j ( b j | y j , λ j , μ j ) } and { P C k j ( c j , k | z j , k , μ k j ) } are PDs of a , b j and c j , k , respectively, and
p ( λ , μ 1 , , μ m ) = j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) ,
in which p j ( λ j ) and p j , k ( μ k j ) are PDs of λ j and μ k j , respectively. Choose Hilbert spaces
H A j = H B 0 j = C | D j | , H B k j = H C k j = C | F k j | , j , k ,
where | S | denotes the cardinality of a finite set S; take their orthonormal bases { | s λ j } λ j = 1 | D j | and { | t μ k j } μ k j = 1 | F k j | ( j , k ) , respectively; and put
H A = j = 1 m H A j , H B j = H B 0 j k = 1 n j H B k j .
Choose separable states
ρ A j B 0 j = λ j = 1 | D j | p j ( λ j ) | s λ j s λ j | | s λ j s λ j | , ρ B k j C k j = μ k j = 1 | F k j | p j , k ( μ k j ) | t μ k j t μ k j | | t μ k j t μ k j | .
Then, we can obtain a network state
Γ = j = 1 m ρ A j B 0 j j = 1 m ( ρ B 1 j C 1 j ρ B 2 j C 2 j ρ B n j j C n j j ) ,
which induces the measurement state
Γ ˜ = λ D μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × Γ ( λ , μ 1 , , , μ m ) ,
where
Γ ( λ , μ 1 , , , μ m ) = j = 1 m | s λ j s λ j | j = 1 m [ | s λ j s λ j | k = 1 n j | t μ k j t μ k j | ] j = 1 m k = 1 n j | t μ k j t μ k j | .
To define an MA (3), we put
M a | x = λ D P A ( a | x , λ ) j = 1 m | s λ j s λ j | ,
N b j | y j = μ j F j P B j ( b j | y j , λ j , μ j ) | s λ j s λ j | k = 1 n j | t μ k j t μ k j | ,
L c j , k | c j , k = μ k j F k j P C k j ( c j , k | z j , k , μ k j ) | t μ k j t μ k j | .
It can be checked that
P ( a b c | x y z ) = tr [ ( M a x N b y L c z ) Γ ˜ ]
for all possible variables a , b , c , x , y , and z . This proves that P is separable star-quantum.
Conversely, we suppose that P can be written as the form of (36). Then, from the proof of Proposition 4, we see that P has a D-star-shaped LHVM (9) and then is star-local. The proof is completed. □
Theorem 4. 
Let a star-shaped CT P = P ( a b c | x y z ) over Δ S be star-local. Then, for each 1 j 0 m and ( j 0 , k 0 ) [ m ] × [ n j 0 ] , the following conclusions are valid.
(a) The marginal P A B j 0 C k 0 j 0 = P A B j 0 C k 0 j 0 ( a b j 0 c j 0 , k 0 | x y j 0 z j 0 , k 0 ) of P on subsystem A B j 0 C k 0 j 0 is bilocal.
(b) The marginal P A C k 0 j 0 = P A C k 0 j 0 ( a c j 0 , k 0 | x z j 0 , k 0 ) of P on subsystem A C k 0 j 0 is product: P A C k 0 j 0 = P A P C k 0 j 0 , i.e.,
P A C k 0 j 0 ( a c j 0 , k 0 | x z j 0 , k 0 ) = P A ( a | x ) P C k 0 j 0 ( c j 0 , k 0 | z j 0 , k 0 ) .
(c) The ( n 0 + 1 ) -partite CT
P C 1 j 0 C n j 0 j 0 B j 0 = P C 1 j 0 C n j 0 j 0 B j 0 ( c j 0 , 1 c j 0 , n 0 b j 0 | z j 0 , 1 z j 0 , n 0 y j 0 ) : = P A B j 0 C k 0 j 0 ( b j 0 c j 0 , 1 c j 0 , n 0 | y j 0 z j 0 , 1 z j 0 , n 0 )
is n 0 -local.
Proof. 
Since P is star-local, it has a D-star-shaped LHVM (14):
P ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
where
p ( λ , μ 1 , , μ m ) = j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) ,
in which p j ( λ j ) and p j , k ( μ k j ) are PDs of λ j and μ k j , respectively.
(a) Using (40) implies that
P A B j 0 C k 0 j 0 ( a b j 0 c j 0 , k 0 | x y j 0 z j 0 , k 0 ) = b j , c j , k ( j j 0 , k k 0 ) P ( a b c | x y z ) = λ j 0 μ 1 j 0 μ n j 0 j 0 p j 0 ( λ j 0 ) p j 0 , 1 ( μ 1 j 0 ) p j 0 , n j 0 ( μ n j 0 j 0 ) P A ( a | x , λ j 0 ) × P B j 0 ( b j 0 | y j 0 , λ j 0 , μ 1 j 0 μ n j 0 j 0 ) P C k 0 j 0 ( c j 0 , k 0 | z j 0 , k 0 , μ k 0 j 0 ) = λ j 0 μ k 0 j 0 p j 0 ( λ j 0 ) p j 0 , k 0 ( μ k 0 j 0 ) P A ( a | x , λ j 0 ) P B j 0 ( b j 0 | y j 0 , λ j 0 , μ k 0 j 0 ) P C k 0 j 0 ( c j 0 , k 0 | z j 0 , k 0 , μ k 0 j 0 ) ,
where
P A ( a | x , λ j 0 ) = λ j F j ( j j 0 ) p j ( λ j ) P A ( a | x , λ ) ,
P B j 0 ( b j 0 | y j 0 , λ j 0 , μ k 0 j 0 ) = μ k j 0 ( k k 0 ) μ k j 0 ( k k 0 ) p j 0 , k ( μ k j 0 ) × P B j 0 ( b j 0 | y j 0 , λ j 0 , μ 1 j 0 μ 2 j 0 μ n j 0 j 0 ) .
This shows that P A B j 0 C k 0 j 0 is bilocal [43]
(b) Using Equation (42) implies that
P A C k 0 j 0 ( a c j 0 , k 0 | x z j 0 , k 0 ) = b j 0 P A B j 0 C k 0 j 0 ( a b j 0 c j 0 , k 0 | x y j 0 z j 0 , k 0 ) = λ j 0 , μ k 0 j 0 p j 0 ( λ j 0 ) p j 0 , k 0 ( μ k 0 j 0 ) P A ( a | x , λ j 0 ) P C k 0 j 0 ( c j 0 , k 0 | z j 0 , k 0 , μ k 0 j 0 ) = P A ( a | x ) P C k 0 j 0 ( c j 0 , k 0 | z j 0 , k 0 ) ,
implying Equation (39).
(c) Using the definition of P C 1 j 0 C n j 0 j 0 B j 0 and (14), we have
P C 1 j 0 C n j 0 j 0 B j 0 ( c j 0 , 1 c j 0 , n 0 b j 0 | z j 0 , 1 z j 0 , n 0 y j 0 ) = P A B j 0 C k 0 j 0 ( b j 0 c j 0 , 1 c j 0 , n 0 | y j 0 z j 0 , 1 z j 0 , n 0 ) = a b j ( j j 0 ) c j , k ( k [ n j ] , j j 0 ) P ( a b c | x y z ) = λ j 0 μ 1 j 0 μ 2 j 0 μ n j 0 j 0 p j 0 ( λ j 0 ) p j 0 , 1 ( μ 1 j 0 ) p j 0 , n j 0 ( μ n j 0 j 0 ) × k = 1 n j 0 P C k j 0 ( c j 0 , k | z j 0 , k , μ k j 0 ) × P B j 0 ( b j 0 | y j 0 , λ j 0 , μ 1 j 0 μ n j 0 j 0 )
for all possible c j 0 , 1 , , c j 0 , n 0 , b j 0 , z j 0 , 1 , , z j 0 , n 0 , y j 0 . This shows that the ( n 0 + 1 ) -partite CP P C 1 j 0 C n j 0 j 0 B j 0 is n 0 -local [43]. The proof is completed. □
For a star-shaped CT P over Δ S , the conclusion (a) of Theorem 4 ensures that if there exists an index ( j 0 , k 0 ) [ m ] × [ n 0 ] such that the marginal P A B j 0 C k 0 j 0 is not bilocal, and conclusion (b) implies that if some of the marginal P A C k 0 j 0 is not a product, then P must be star-nonlocal. Using conclusion (c) shows that when some marginal P C 1 j 0 C 2 j 0 C n j 0 j 0 B j 0 is not n 0 -local [43], P must be star-nonlocal.

3.3. Global Properties

As the end of this section, let us give some properties of the set CT star local ( Δ S ) . First, since all elements of CT star local ( Δ S ) admit their D-star-shaped LHVMs (34) with the unified form r R , t 1 T 1 , , t m T m of summation, in which the index sets R , T 1 , , T m are independent of P , the following conclusion can be checked easily.
Theorem 5. 
CT star local ( Δ S ) is a compact subset of the Hilbert space T star ( Δ S ) .
This conclusion ensures that the set CT star nonlocal ( Δ S ) forms a relative open set in the Hilbert space T star ( Δ S ) . That means that any star-shaped CTs near a star-nonlocal CT are all star-nonlocal.
Theorem 6. 
CT star local ( Δ S ) is a path-connected set in the Hilbert space T star ( Δ S ) .
Proof. 
Put
I ( a b c | x y z ) o ( A ) j = 1 m o ( B j ) k = 1 n j o ( C k j ) 1 ,
then I : = I ( a b c | x y z ) is an element of CT star local ( Δ S ) . Let P = P ( a b c | x y z ) and Q = Q ( a b c | x y z ) be any two elements of CT star local ( Δ S ) . Then, P and Q admit D-star-shaped-LHVMs:
P ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
where
p ( λ , μ 1 , , μ m ) = j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) ,
in which p j ( λ j ) and p j , k ( μ k j ) are PDs of λ j and μ k j , respectively, and
Q ( a b c | x y z ) = η D , ξ 1 F 1 , , ξ m F m q ( η , ξ 1 , , ξ m ) Q A ( a | x , η ) × j = 1 m Q B j ( b j | y j , η j , ξ j ) × j = 1 m k = 1 n j Q C k j ( c j , k | z j , k , ξ k j ) ,
where η = ( η 1 , , η m ) , ξ j = ( ξ 1 j , ξ n j j ) , and
q ( η , ξ 1 , , ξ m ) = j = 1 m q j ( η j ) × j = 1 m k = 1 n j q j , k ( ξ k j ) ,
in which q j ( η j ) and q j , k ( ξ k j ) are PDs of η j and ξ k j , respectively.
For every t [ 0 , 1 / 2 ] , set
P A t ( a | x , λ ) = ( 1 2 t ) P A ( a | x , λ ) + 2 t 1 o ( A ) ,
P B j t ( b j | y j , λ j ) = ( 1 2 t ) P B j ( b j | y j , λ j ) + 2 t 1 o ( B j ) ( j [ m ] ) ,
P C k j t ( c j , k | z j , k , μ k j ) = ( 1 2 t ) P C k j ( c j , k | z j , k , μ k j ) + 2 t 1 o ( C k j ) ( j [ m ] , k [ n j ] ) ,
which are clearly PDs of a, b j , and c j , k , respectively. Put
P t ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) P A t ( a | x , λ ) × j = 1 m P B j t ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j t ( c j , k | z j , k , μ k j ) ,
then f ( t ) : = P t ( a b c | x y z ) is a star-local CT over Δ S for all t [ 0 , 1 / 2 ] with f ( 0 ) = P and f ( 1 / 2 ) = I . Obviously, the map t f ( t ) from [ 0 , 1 / 2 ] into CT star local ( Δ S ) is continuous. Similarly, for every t [ 1 / 2 , 1 ] , set
Q A t ( a | x , η ) = ( 2 t 1 ) Q A ( a | x , η ) + 2 ( 1 t ) 1 o ( A ) ,
Q B j t ( b j | y j , η j ) = ( 2 t 1 ) Q B j ( b j | y j , η j ) + 2 ( 1 t ) 1 o ( B j ) ( j [ m ] ) ,
Q C k j t ( c j , k | z j , k , ξ k j ) = ( 2 t 1 ) Q C k j ( c j , k | z j , k , ξ k j ) + 2 ( 1 t ) 1 o ( C k j ) ( j [ m ] , k [ n j ] ) ,
which are clearly PDs of a, b j , and c k j , respectively. Put
Q t ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m q ( λ , μ 1 , , μ m ) Q A t ( a | x , λ ) × j = 1 m Q B j t ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j Q C k j t ( c j , k | z j , k , μ k j ) ,
then g ( t ) : = Q t ( a b c | x y z ) is a star-local CT over Δ S for all t [ 1 / 2 , 1 ] with g ( 1 / 2 ) = I and g ( 1 ) = Q . Obviously, the map t g ( t ) from [ 1 / 2 , 1 ] into CT star local ( Δ S ) is continuous. Thus, the function p : [ 0 , 1 ] CT star local ( Δ S ) defined by
p ( t ) = f ( t ) , t [ 0 , 1 / 2 ] ; g ( t ) , t ( 1 / 2 , 1 ] ,
is continuous everywhere and then induces a path p in CT star local ( Δ S ) with p ( 0 ) = P and p ( 1 ) = Q . This shows that CT star local ( Δ S ) is path-connected. The proof is completed. □
Next, we discuss the “quasi-convexity” of the set CT star local ( Δ S ) by finding two classes of subsets of CT star local ( Δ S ) that are star-convex.
For any fixed 1 u m and 1 v n u , by taking a star-shaped CT E = E ( a b c | x y z ) such that the marginal E C v u B u ^ is completely product:
E C v u B u ^ ( a b u c ^ v u | x y u z ^ v u ) = E A ( a | x ) × j u E B j ( b j | y j ) × ( j , k ) ( u , v ) E C k j ( c j , k | z j , k ) ,
where
b u = { b j } j u , c ^ v u = { c j , k } ( j , k ) ( u , v ) , y u = { y i } i u , z ^ v u = { z j , k } ( j , k ) ( u , v ) ,
we define a star-shaped CT S u , v = S u , v ( a b c | x y z ) by
S u , v ( a b c | x y z ) = E C v u B u ^ ( a b u c ^ v u | x y u z ^ v u ) × 1 o ( C v u ) × 1 o ( B u ) .
Put
CT E C v u B u ^ star local ( Δ S ) = P CT star local ( Δ S ) : P C v u B u ^ = E C v u B u ^ ,
which is just the set of all star-local CTs over Δ S with a fixed marginal distribution E C v u B u ^ on the subsystem C v u B u ^ = A j u B j ( j , k ) ( u , v ) C v u . Clearly, ( S u , v ) C v u B u ^ = E C v u B u ^ and S u , v CT E C v u B u ^ star local ( Δ S ) .
Using these notations, we obtain the following.
Theorem 7. 
The set CT E C v u B u ^ star local ( Δ S ) is star-convex with a sun S u , v , i.e., for all t [ 0 , 1 ] , it holds that
( 1 t ) S u , v + t CT E C v u B u ^ star local ( Δ S ) CT E C v u B u ^ star local ( Δ S ) .
Proof. 
Let t [ 0 , 1 ] and P CT E C v u B u ^ star local ( Δ S ) . Then, P CT star local ( Δ S ) and P C v u B u ^ = E C v u B u ^ . Since P has a D-star-shaped-LHVM:
P ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × P A ( a | x , λ ) j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
we get that
P C v u B u ^ ( a b u c ^ v u | x y u z ^ v u ) = c u , v , b u P ( a b c | x y z ) = λ , μ k j ( ( j , k ) ( u , v ) ) j = 1 m p j ( λ j ) × ( j , k ) ( u , v ) p j , k ( μ k j ) × P A ( a | x , λ ) j u P B j ( b j | y j , λ j , μ j ) × ( j , k ) ( u , v ) P C k j ( c j , k | z j , k , μ k j ) .
For every t [ 0 , 1 ] , put
μ u ( s ) = ( μ 1 u , , μ v 1 u , ( μ v u , s ) , μ v + 1 u , , μ n u u ) ,
and define
f u , v t ( μ v u , s ) = p u , v ( μ v u ) ( 1 t ) , s = 0 ; p u , v ( μ v u ) t , s = 1 ,
P B u ( b u | y u , λ u , μ u ( s ) ) = 1 o ( B u ) , s = 0 ; P B u ( b u | y u , λ u , μ u ) , s = 1 ,
P C v u ( c u , v | z u , v , ( μ v u , s ) ) = 1 o ( C v u ) , s = 0 ; P C v u ( c u , v | z u , v , μ v u ) , s = 1 ,
which are PDs of ( μ v u , s ) , b u and c u , v , respectively. Put
Q t ( a b c | x y z ) = s = 0 , 1 λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × ( j , k ) ( u , v ) p j , k ( μ k j ) × f u , v t ( μ v u , s ) × P A ( a | x , λ ) j u P B j ( b j | y j , λ j , μ j ) × P B u ( b u | y u , λ u , μ u ( s ) ) × ( j , k ) ( u , v ) P C k j ( c j , k | z j , k , μ k j ) × P C v u ( c u , v | z u , v , ( μ v u , s ) ) ,
then Q t = Q t ( a b c | x y z ) CT star local ( Δ S ) .
On the other hand, for all a , b , c , x , y , z , we compute that
Q t ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × ( j , k ) ( u , v ) p j , k ( μ k j ) × f u , v t ( μ v u , 0 ) × P A ( a | x , λ ) j u P B j ( b j | y j , λ j , μ j ) × P B u ( b u | y u , λ u , μ u ( 0 ) ) × ( j , k ) ( u , v ) P C k j ( c j , k | z j , k , μ k j ) × P C v u ( c u , v | z u , v , ( μ v u , 0 ) ) + λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × ( j , k ) ( u , v ) p j , k ( μ k j ) × f u , v t ( μ v u , 1 ) × P A ( a | x , λ ) j u P B j ( b j | y j , λ j , μ j ) × P B u ( b u | y u , λ u , μ u ( 1 ) ) × ( j , k ) ( u , v ) P C k j ( c j , k | z j , k , μ k j ) × P C v u ( c u , v | z u , v , ( μ v u , 1 ) ) .
Using Equations (47)–(49), we obtain that
Q t ( a b c | x y z ) = ( 1 t ) λ , μ k j ( ( j , k ) ( u , v ) ) j = 1 m p j ( λ j ) × ( j , k ) ( u , v ) p j , k ( μ k j ) × P A ( a | x , λ ) j u P B j ( b j | y j , λ j , μ j ) × 1 o ( B u ) × ( j , k ) ( u , v ) P C k j ( c j , k | z j , k , μ k j ) × 1 o ( C v u ) + t λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × ( j , k ) p j , k ( μ k j ) × P A ( a | x , λ ) j = 1 m P B j ( b j | y j , λ j , μ j ) × ( j , k ) P C k j ( c j , k | z j , k , μ k j ) = ( 1 t ) S u , v ( a b c | x y z ) + t P ( a b c | x y z ) .
This shows that
( 1 t ) S u , v + t P = Q t CT star local ( Δ S ) , t [ 0 , 1 ] .
Since ( S u , v ) C v u B u ^ = P C v u B u ^ = E C v u B u ^ , we have Q C v u B u ^ t = ( 1 t ) ( S u , v ) C v u B u ^ + t P C v u B u ^ = E C v u B u ^ . This shows that Q t CT E C v u B u ^ star local ( Δ S ) . The proof is completed. □
Next, let us find another star-convex subset of CT star local ( Δ S ) . Fixed 1 u m and taken a star-shaped CT F = F ( a b c | x y z ) such that
F A B u ^ ( b u c | y u z ) : = a , b u F ( a b c | x y z ) = j u F B j ( b j | y j ) × j , k F C k j ( c j , k | z j , k ) ,
where b u = { b j } j u , y u = { y j } j u , we define a star-shaped CT S u = S u ( a b c | x y z ) by
S u ( a b c | x y z ) = 1 o ( A ) × F A B u ^ ( b u c | y u z ) × 1 o ( B u ) × j , k F C k j ( c j , k | z j , k ) .
Put
CT F A B u ^ star local ( Δ S ) = P CT star local ( Δ S ) : P A B u ^ = F A B u ^ ,
which is just the set of all star-local CTs over Δ S with fixed marginal distribution F A B u ^ on the subsystem A B u ^ = ( j u B j ) C . Clearly, ( S u ) A B u ^ = F A B u ^ = F A B u ^ ( b u c | y u z ) and then S u CT F A B u ^ star local ( Δ S ) .
With these notations, we have the following.
Theorem 8. 
The set CT F A B n ^ star local ( Δ S ) is star-convex with a sun S u , i.e., for all t [ 0 , 1 ] , it holds that
( 1 t ) S u , v + t CT F A B u ^ star local ( Δ S ) CT F A B u ^ star local ( Δ S ) .
Proof. 
Let P CT F A B u ^ star local ( Δ S ) . Then, P CT star local ( Δ S ) and P A B u ^ = F A B u ^ . Since P has a D-star-shaped LHVM
P ( a b c | x y z ) = λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × P A ( a | x , λ ) j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) ,
we get that
P A B u ^ ( b u c | y u z ) = λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × × j u P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) .
For every t [ 0 , 1 ] , put
g u t ( λ u , s ) = p u ( λ u ) ( 1 t ) , s = 0 ; p n ( λ u ) t , s = 1 ,
λ = ( λ 1 , λ 2 , λ u 1 , ( λ u , s ) , λ u + 1 , , λ m ) ,
P ( a | x , λ ) = 1 o ( A ) , s = 0 ; P ( a | x , λ ) , s = 1 ,
P B u ( b u | y u , ( λ u , s ) , μ u ) = 1 o ( B n ) , s = 0 ; P B n ( b u | y u , λ u , μ u ) , s = 1 ,
and define
Q t ( a b c | x y z ) = s = 0 , 1 λ D , μ 1 F 1 , , μ m F m j u p j ( λ j ) × g u t ( λ u , s ) × j = 1 m k = 1 n j p j , k ( μ k j ) × × P A ( a | x , λ ) × j u P B j ( b j | y j , λ j , μ j ) × P B u ( b u | y u , ( λ u , s ) , μ u ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) .
Clearly, Q t : = Q t ( a b c | x y z ) CT star local ( Δ S ) .
On the other hand, for all a , b , c , x , y , z , we compute that
Q t ( a b c | x y z ) = ( 1 t ) λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × × 1 o ( A ) × j u P B j ( b j | y j , λ j , μ j ) × 1 o ( B u ) × j , k P C k j ( c j , k | z j , k , μ k j ) + t λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × × P A ( a | x , λ ) × j = 1 m P B j ( b j | y j , λ j , μ j ) × j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) = ( 1 t ) S u ( a b c | x y z ) + t P ( a b c | x y z ) .
This shows that
( 1 t ) S u + t P = Q t CT star local ( Δ S ) , t [ 0 , 1 ] .
Clearly, Q A B u ^ t = F A B u ^ . Hence, ( 1 t ) S u + t P = Q t CT F A B u ^ star local ( Δ S ) . The proof is completed. □

4. A Star-Bell Inequality

In this section, we derive an inequality (56) that holds for all star-local star-shaped CTs, called a star-Bell inequality. Consider a star-shaped CT
P = P ( a b c | x y z ) = P ( a , b 1 b m , c | x , y 1 y m , z )
with inputs x , y j , z j , k { 0 , 1 } and outcomes a , b j , c j , k , { 0 , 1 } , where j [ m ] , k [ n j ] . Put N = j = 1 m n j . For all α 0 , α j , z j , k { 0 , 1 } , we define the following two quantities
I α 0 α 1 α m ( P ) = 1 2 N z j , k = 0 , 1 a , b j , c j , k = 0 , 1 ( 1 ) a + j b j + j , k c j , k × P ( a , b 1 b m , c | α 0 , α 1 α m , z ) ,
J β 0 β 1 β m ( P ) = 1 2 N z j , k = 0 , 1 ( 1 ) j , k z j , k a , b j , c j , k = 0 , 1 ( 1 ) a + j b j + j , k c j , k × P ( a , b 1 b m , c | β 0 , β 1 β m , z ) .
Theorem 9. 
If a star-shaped CT  Pgiven by Equation (53) is star-local, then
| I α 0 α 1 α m ( P ) | 1 N + | J β 0 β 1 β m ( P ) | 1 N 1 , α j , β j { 0 , 1 } .
Proof. 
Since P is star-local, it has a D-star-shaped LHVM (14). Thus,
a , b j , c j , k = 0 , 1 ( 1 ) a + j b j + j , k c j , k P ( a , b 1 b m , c | α 0 , α 1 α m , z ) = a , b j , c j , k = 0 , 1 ( 1 ) a + j b j + j , k c j , k λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) × P A ( a | α 0 , λ ) × j = 1 m P B j ( b j | α j , λ j , μ j ) j = 1 m k = 1 n j P C k j ( c j , k | z j , k , μ k j ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) a = 0 , 1 ( 1 ) a P A ( a | α 0 , λ ) × j = 1 m b j = 0 , 1 ( 1 ) b j P B j ( b j | α j , λ j , μ j ) × j = 1 m k = 1 n j c j , k = 0 , 1 ( 1 ) c j , k P C k j ( c j , k | z j , k , μ k j ) = λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) A α 0 λ j = 1 m B α j j λ j , μ j × j = 1 m k = 1 n j C z j , k j μ k j ,
where
A α 0 λ = a = 0 , 1 ( 1 ) a P A ( a | α 0 , λ ) , B α j j λ j , μ j = b j = 0 , 1 ( 1 ) b j P B j ( b j | α j , λ j , μ j ) , C z j , k j μ k j = c j , k = 0 , 1 ( 1 ) c j , k P C k j ( c j , k | z j , k , μ k j ) .
Hence,
| I α 0 α 1 α m ( P ) | 1 2 N z j , k = 0 , 1 j = 1 , m , k = 1 , , n j λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) × A α 0 λ j = 1 m B α j j λ j , μ j × j = 1 m k = 1 n j C z j , k j μ k j = 1 2 N z j , k = 0 , 1 j = 1 , m , k = 1 , , n j λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) × A α 0 λ × j = 1 m B α j j λ j , μ j × j = 1 m k = 1 n j C z j , k j μ k j .
Note that | A α 0 λ | 1 , | B α j j λ j , μ j | 1 , we have
| I α 0 α 1 α m ( P ) | λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) f ( μ 1 , , μ m ) ,
where
f ( μ 1 , , μ m ) = j = 1 m k = 1 n j 1 2 z j , k = 0 , 1 C z j , k j μ k j .
Analogously, we can get
| J β 0 β 1 β m ( P ) | λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) g ( μ 1 , , μ m ) ,
where
g ( μ 1 , , μ m ) = j = 1 m k = 1 n j 1 2 z j , k = 0 , 1 ( 1 ) z j , k C z j , k j μ k j .
Since
p ( λ , μ 1 , , μ m ) = j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) ,
where { p j ( λ j ) } λ j and { p j , k ( μ k j ) } μ k j are probability distributions, we have from Equation (57) that
| I α 0 α 1 α m ( P ) | λ D , μ 1 F 1 , , μ m F m p ( λ , μ 1 , , μ m ) f ( μ 1 , , μ m ) = λ D , μ 1 F 1 , , μ m F m j = 1 m p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) × j = 1 m k = 1 n j 1 2 z j , k = 0 , 1 C z j , k j μ k j = μ 1 F 1 , , μ m F m j = 1 m λ j p j ( λ j ) × j = 1 m k = 1 n j p j , k ( μ k j ) 1 2 z j , k = 0 , 1 C z j , k j μ k j .
Note that λ j p j ( λ j ) = 1 for all j = 1 , 2 , , m , we obtain that
| I α 0 α 1 α m ( P ) | j = 1 m k = 1 n j μ k j p j , k ( μ k j ) 1 2 z j , k = 0 , 1 C z j , k j μ k j .
Similarly, using inequality (59) implies that
| J β 0 β 1 β m ( P ) | j = 1 m k = 1 n j μ k j p j , k ( μ k j ) 1 2 z j , k = 0 , 1 ( 1 ) z j , k C z j , k j μ k j .
Using the following inequality [22] Lemma 1:
k = 1 m i = 1 n x i k 1 n i = 1 n ( x i 1 + x i 2 + + x i m ) 1 n , x i k 0 ,
we have
( | I α 0 α 1 α m ( P ) | ) 1 N + ( | J β 0 β 1 β m ( P ) | ) 1 N j = 1 m k = 1 n j μ k j p j , k ( μ k j ) 1 2 z j , k = 0 , 1 C z j , k j μ k j 1 N + j = 1 m k = 1 n j μ k j p j , k ( μ k j ) 1 2 z j , k = 0 , 1 ( 1 ) z j , k C z j , k j μ k j 1 N j = 1 m k = 1 n j μ k j p j , k ( μ k j ) 1 2 z j , k = 0 , 1 C z j , k j μ k j + 1 2 z j , k = 0 , 1 ( 1 ) z j , k C z j , k j μ k j 1 N = j = 1 m k = 1 n j μ k j p j , k ( μ k j ) C 0 j μ k j + C 1 j μ k j 2 + C 0 j μ k j C 1 j μ k j 2 1 N 1 .
This shows that inequality (56) is valid and completes the proof. □
The validity of the inequality (56) is a necessary condition for a star-shaped CT P to be star-local. So, we call it a star-Bell inequality (SBI). Thus, a violation of SBI for some parameters α 0 , α 1 , , α m and β 0 , β 1 , , β m shows that P is star-nonlocal.
Let us return to the network situation. Let A x , B y j j and C z j , k j , k be { + 1 , 1 } -valued observables of H A , H B j , and H C k j . Then, we have the following spectrum decompositions:
A x = M 0 | x M 1 | x = a = 0 , 1 ( 1 ) a M a | x , B y j j = N 0 | y j j N 1 | y j j = b j = 0 , 1 ( 1 ) b j N b j | y j j , C z j , k j , k = L 0 | z j , k j , k L 1 | z j , k j , k = z j , k = 0 , 1 ( 1 ) c j , k L c j , k | z j , k j , k .
Put
M ( x ) = { M 0 | x , M 1 | x } , N j ( y j ) = N 0 | y j j , N 1 | y j j , L j , k ( z j , k ) = L 0 | z j , k j , k , L 1 | z j , k j , k ,
which are clearly POVMs of H A , H B j , and H C k j , respectively. Then, we can get a measurement assemblage
M = M ( x ) j = 1 m N j ( y j ) j = 1 m k = 1 n j L j , k ( z j , k ) : x , y j , z j , k = 0 , 1
of the quantum network with measurement operators
M a b c | x y z : = M a | x j = 1 m N b j | y j j j = 1 m ( L c j , 1 | z j , 1 j , 1 L c j , 2 | z j , 2 j , 2 L c j , n j | z j , n j j , n j ) ,
where
a { 0 , 1 } , b = ( b 1 , , b m ) { 0 , 1 } m , c = { c j , k } k [ n j ] , j [ m ] ( c j , k = 0 , 1 ) ,
x { 0 , 1 } , y = ( y 1 , , y m ) { 0 , 1 } m , z = { z j , k } k [ n j ] , j [ m ] ( z j , k = 0 , 1 ) .
For all α j { 0 , 1 } , it is computed that
I α 0 α 1 α m ( P M Γ ) = 1 2 N z j , k a , b j , c j , k ( 1 ) a + j b j + j , k c j , k P ( a , b 1 b m , c | α 0 , α 1 α m , z ) = 1 2 N z j , k a , b j , c j , k ( 1 ) a + j b j + j , k c j , k × tr M a | α 0 j = 1 m N b j | α j j j = 1 m k = 1 n j L c j , k | z j , k j , k Γ ˜ = 1 2 N z j , k A α 0 j = 1 m B α j j j = 1 m k = 1 n j C z j , k j , k Γ ˜ .
Similarly, for all β j { 0 , 1 } , we have
J β 0 β 1 β m ( P M Γ ) = 1 2 N z j , k ( 1 ) j , k z j , k a , b j , c j , k ( 1 ) a + j b j + j , k c j , k × P ( a , b 1 b m , c | β 0 , β 1 β m , z ) = 1 2 N z j , k ( 1 ) j , k z j , k A β 0 j = 1 m B β j j j = 1 m k = 1 n j C z j , k j , k Γ ˜ .
This shows that the SBI (56) becomes
| I α 0 α 1 α m ( ( P M Γ ) ) | 1 N + | J β 0 β 1 β m ( ( P M Γ ) ) | 1 N 1 , α j , β j { 0 , 1 } .
It is valid whenever the network with state Γ is star-local for the given MA M . Hence, to explore the star-nonlocality of the M S N ( m , n 1 , , n m ) , it suffices to choose some specific states distributed in the network and to choose specific measurements for each party such that the corresponding SBI (56) is violated for some α 0 , α 1 , , α m and β 0 , β 1 , , β m .
Example 1. 
Let us consider the situation that the states distributed in the network are pure entangled states. Denote
| ψ A j B 0 j = p 1 j | 00 + p 2 j | 11 ( j [ m ] ) , | ψ B k j C k j = q 1 j , k | 00 + q 2 j , k | 11 ( j [ m ] , k [ n j ] ) ,
the normalized pure states shared by A and B j and by B j and C k j , respectively, with real and positive coefficients p 1 j , p 2 j and q 1 j , k , q 1 j , k with ( p 1 j ) 2 + ( p 2 j ) 2 = 1 and ( q 1 j , k ) 2 + ( q 2 j , k ) 2 = 1 . Thus,
Λ : = j = 1 m ( 2 p 1 j p 2 j ) × j = 1 m k = 1 n j ( 2 q 1 j , k q 2 j , k ) > 0 .
Then, we can get
ρ A j B 0 j = | ψ A j B 0 j ψ | , ρ B k j C k j = | ψ B k j C k j ψ | ,
Consider the { + 1 , 1 } -valued observables of H A = ( C 2 ) m , H B j = ( C 2 ) ( 1 + n j ) , and H C k j = C 2 :
X 0 = σ 1 m ; X 1 = σ 3 m , Y 0 j = σ 1 ( 1 + n j ) ; Y 1 j = σ 3 ( 1 + n j ) , Z 0 j , k = ( cos η j , k , 0 , sin η j , k ) · σ ; Z 1 j , k = ( cos θ j , k , 0 , sin θ j , k ) · σ ,
where j [ m ] , k [ n j ] , σ = ( σ 1 , σ 2 , σ 3 ) is the vector composed of Pauli operators and η j , k , θ j , k [ π , π ] . The spectral projections form an MA M given by (62) for the network.
Using Equations (67), (68) and (63) and taking α j = 0 ( j = 0 , 1 , , m ) , we can get
I 00 0 ( P M Γ ) = 1 2 N z j , k = 0 , 1 X 0 j = 1 m Y 0 j j = 1 m k = 1 n j Z z j , k j , k Γ ˜ = 1 2 N z j , k = 0 , 1 σ 1 m j = 1 m σ 1 ( 1 + n j ) j = 1 m k = 1 n j C z j , k j , k Γ ˜ = 1 2 N z j , k = 0 , 1 j = 1 m ( σ 1 σ 1 ) j = 1 m k = 1 n j ( σ 1 C z j , k j , k ) Γ = 1 2 N j = 1 m σ 1 σ 1 ρ A j B 0 j × j = 1 m k = 1 n j σ 1 z j , k = 0 , 1 C z j , k j , k ρ B k j C k j = 1 2 N j = 1 m ( 2 p 1 j p 2 j ) × j = 1 m k = 1 n j 2 ( cos η j , k + cos θ j , k ) q 1 j , k q 2 j , k = Λ 2 N j = 1 m k = 1 n j ( cos η j , k + cos θ j , k ) .
Analogously, taking β j = 1 ( j = 0 , 1 , , m ) , we have
J 11 1 ( P M Γ ) = 1 2 N j = 1 m σ 3 σ 3 ρ A j B 0 j j = 1 m k = 1 n j σ 3 z j , k = 0 , 1 ( 1 ) z j , k C z j , k j , k ρ B k j C k j = 1 2 N j = 1 m k = 1 n j ( sin η j , k sin θ j , k ) .
Putting
η = ( η 1 , 1 , , η 1 , n 1 , , η m , 1 , , η m , n m ) , θ = ( θ 1 , 1 , , θ 1 , n 1 , , θ m , 1 , , θ m , n m )
implies that
f ( η , θ ) : = | I 00 0 ( P M Γ ) | 1 N + | J 11 1 ( P M Γ ) | 1 N = 1 2 N Λ j = 1 m k = 1 n j ( cos η j , k + cos θ j , k ) 1 N + 1 2 N j = 1 m k = 1 n j ( sin η j , k sin θ j , k ) 1 N = 1 2 Λ N j = 1 m k = 1 n j ( cos η j , k + cos θ j , k ) 1 N + 1 2 j = 1 m k = 1 n j ( sin η j , k sin θ j , k ) 1 N .
Taking θ = η , i.e., θ j , k = η j , k for all j , k yields that
f ( η , η ) = Λ N j = 1 m k = 1 n j cos η j , k 1 N + j = 1 m k = 1 n j sin η j , k 1 N .
By taking η j , k [ 0 , π / 2 ] such that
sin η j , k = 1 1 + Λ 2 N , cos η j , k = Λ 1 N 1 + Λ 2 N
for each j , k , we get that
| I 00 0 ( P M Γ ) | 1 N + | J 11 1 ( P M Γ ) | 1 N = f ( η , η ) = 1 + Λ 2 N > 1
since Λ > 0 . This shows that SBI (65) is violated for ( α j , β j ) = ( 0 , 1 ) ( j = 0 , 1 , , m ) and then the network with the shared states given by (66) is star-nonlocal.
The following example is about a situation in which the states distributed in the network are Werner states with noise parameters v j and v k j .
Example 2. 
Let us consider the Werner states distributed in the network:
ρ A j B 0 j = v j | ϕ + ϕ + | + ( 1 v j ) I 4 , ρ B k j C k j = v k j | ϕ + ϕ + | + ( 1 v k j ) I 4 ,
where v j ( 0 , 1 ] , v k j ( 0 , 1 ] , j [ m ] , k [ n j ] and | ϕ + = 1 2 ( | 00 + | 11 ) .
Consider the { + 1 , 1 } -valued observables of H A = ( C 2 ) m , H B j = ( C 2 ) ( 1 + n j ) and H C k j = C 2 :
X 0 = σ 1 m ; X 1 = σ 3 m , Y 0 j = σ 1 ( 1 + n j ) ; Y 1 j = σ 3 ( 1 + n j ) , Z 0 j , k = 1 2 ( σ 1 + σ 3 ) ; Z 1 j , k = 1 2 ( σ 1 σ 3 ) ,
where j [ m ] , k [ n j ] and σ 1 , σ 3 are Pauli operators. The spectral projections form an MA M given by (62) for the network. Using Equation (70), Equation (71), and Equation (63) and taking α j = 0 ( j = 0 , 1 , , m ) , we compute that
I 00 0 ( P M Γ ) = 1 2 N z j , k = 0 , 1 X 0 ( j = 1 m Y 0 j ) ( j = 1 m k = 1 n j Z z j , k j , k ) Γ ˜ = 1 2 N z j , k = 0 , 1 σ 1 m ( j = 1 m σ 1 ( 1 + n j ) ) ( j = 1 m k = 1 n j C z j , k j , k ) Γ ˜ = 1 2 N z j , k = 0 , 1 j = 1 m ( σ 1 σ 1 ) j = 1 m k = 1 n j ( σ 1 C z j , k j , k ) Γ = 1 2 N j = 1 m σ 1 σ 1 ρ A j B 0 j j = 1 m k = 1 n j σ 1 z j , k = 0 , 1 C z j , k j , k ρ B k j C k j = V 2 N ,
where V = j = 1 m v j j = 1 m k = 1 n j v k j .
Analogously, taking β j = 1 ( j = 0 , 1 , , m ) , we have J 11 1 ( P M Γ ) = V 2 N . Hence,
| I 00 0 ( P M Γ ) | 1 N + | J 11 1 ( P M Γ ) | 1 N = 2 V 1 N .
Thus, | I 00 0 ( P M Γ ) | 1 N + | J 11 1 ( P M Γ ) | 1 N > 1 if and only if V > 1 2 N . Therefore, when the coefficients of the shared state (70) satisfy the condition 1 > V > 1 2 N , Equation (65) is violated, and then the network M S N ( m , n 1 , , n m ) is star-nonlocal.

5. Summary and Conclusions

In this work, a more general multi-star-network M S N ( m , n 1 , , n m ) was introduced. Such a network consists of 1 + m + n 1 + + n m nodes and one center-node A that connects to m star-nodes B 1 , B 2 , , B m while each star-node B j has n j + 1 star-nodes A , C 1 j , C 2 j , , C n j j . When m = 1 , n 1 = n 1 , it reduces to M S N ( 1 , n 1 ) , which is just an n-local scenario [22,43], and when m = n 1 = 1 , it becomes M S N ( 1 , 1 ) , reducing to the bi-local scenario [20,43].
First, we have introduced the nonlocality of the star-locality and star-nonlocality of such a network and deduced some related properties. Based on the architecture of such a network, we have proposed the concepts of star-shaped correlation tensors (SSCTs) and star-shaped probability tensors (SSPTs) and mathematically formulated two types of localities of SSCTs and SSPTs, named “D-star-locality” and “C-star-locality”. By definition, an SSCT/SSPT is said to be C-star-local (resp., D-star-local) if it admits an integral star-shaped LHVM (resp., a finite-sum star-shaped LHVM). By establishing a series of characterizations, we have proven the equivalence of these localities is verified and then called them “star-locality". We have also found some necessary conditions for a star-shaped CT to be star-local. For the global properties of star-local SSCTs, we have proved that the set of all star-local SSCTs forms a path-connected compact set in the Hilbert space of tensors over the index set Δ S and has least two types of star-convex subsets. Lastly, we have established a star-Bell inequality, which is proven to be valid for all star-local SSCTs. Based on this inequality, we have given two examples of star-nonlocal multi-star-network M S N ( m , n 1 , , n m ) with the shared pure and mixed entangled states, respectively.

Author Contributions

Conceptualization and investigation, H.C. and Z.G.; methodology and analysis, H.C., S.X. and K.H.; writing—original draft preparation, Z.G. and Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11871318, 11771009, 12271325, 12001480), the Special Plan for Young Top-notch Talent of Shaanxi Province (1503070117), and the Applied Basic Research Program of Shanxi Province (No. 20210302123082).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the reviewers for their kind comments and valuable suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cirac, J.I.; Zoller, P.; Kimble, H.J.; Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 1997, 78, 3221. [Google Scholar] [CrossRef] [Green Version]
  2. Kimble, H.J. The quantum internet. Nature 2008, 453, 1023. [Google Scholar] [CrossRef] [PubMed]
  3. Sangouard, N.; Simon, C.; De Riedmatten, H.; Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011, 83, 33. [Google Scholar] [CrossRef] [Green Version]
  4. Simon, C. Towards a global quantum network. Nat. Phot. 2017, 11, 678. [Google Scholar] [CrossRef] [Green Version]
  5. Wehner, S.; Elkouss, D.; Hanson, R. Quantum internet: A vision for the road ahead. Science 2018, 362, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Cirac, J.I.; van Enk, S.J.; Zoller, P.; Kimble, H.J.; Mabuchi, H. Quantum communication in a quantum network. Phys. Scr. 1998, T76, 223. [Google Scholar] [CrossRef]
  7. Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef] [Green Version]
  8. Renou, M.O.; Bäumer, E.; Boreiri, S.; Brunner, N.; Gisin, N.; Beigi, S. Genuine quantum nonlocality in the triangle network. Phys. Rev. Lett. 2019, 123, 140401. [Google Scholar] [CrossRef] [Green Version]
  9. Gisin, N.; Bancal, J.D.; Cai, Y.; Remy, P.; Tavakoli, A.; Cruzeiro, E.Z.; Popescu, S.; Brunner, N. Constraints on nonlocality in networks from no-signaling and independence. Nat. Commun. 2020, 11, 2378. [Google Scholar] [CrossRef]
  10. Navascués, M.; Wolfe, E.; Rosset, D.; Pozas-Kerstjens, A. Genuine network multipartite entanglement. Phys. Rev. Lett. 2020, 125, 240505. [Google Scholar] [CrossRef]
  11. Kraft, T.; Designolle, S.; Ritz, C.; Brunner, N.; Gühne, O.; Huber, M. Quantum entanglement in the triangle network. Phys. Rev. A 2021, 103, L060401. [Google Scholar] [CrossRef]
  12. Luo, M.X. New genuinely multipartite entanglement. Adv. Quantum Technol. 2021, 4, 2000123. [Google Scholar] [CrossRef]
  13. Acín, D.; Bruß, A.; Lewenstein, M.; Sanpera, A. Classification of mixed three-qubit states. Phys. Rev. Lett. 2001, 87, 040401. [Google Scholar] [CrossRef] [Green Version]
  14. Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1. [Google Scholar] [CrossRef] [Green Version]
  15. Kela, A.; Von Prillwitz, K.; Åberg, J.; Chaves, R.; Gross, D. Semidefinite tests for latent causal structures. IEEE Trans. Inf. Theory 2020, 66, 339. [Google Scholar] [CrossRef] [Green Version]
  16. Åberg, J.; Nery, R.; Duarte, C.; Chaves, R. Semidefinite tests for quantum network topologies. Phys. Rev. Lett. 2020, 125, 110505. [Google Scholar] [CrossRef]
  17. Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
  18. Bell, J.S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
  19. Branciard, C.; Gisin, N.; Pironio, S. Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 2010, 104, 170401. [Google Scholar] [CrossRef]
  20. Branciard, C.; Rosset, D.; Gisin, N.; Pironio, S. Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 2012, 85, 032119. [Google Scholar] [CrossRef] [Green Version]
  21. Fritz, T. Beyond Bell’s theorem: Correlation scenarios. New J. Phys. 2012, 14, 103001. [Google Scholar] [CrossRef]
  22. Tavakoli, A.; Skrzypczyk, P.; Cavalcanti, D.; Acín, A. Nonlocal correlations in the star-network configuration. Phys. Rev. A 2014, 90, 062109. [Google Scholar] [CrossRef] [Green Version]
  23. Mukherjee, K.; Paul, B.; Roy, A. Characterizing quantum correlations in a fixed-input n-local network scenario. Phys. Rev. A 2020, 101, 032328. [Google Scholar] [CrossRef] [Green Version]
  24. Carvacho, G.; Andreoli, F.; Santodonato, L.; Bentivegna, M.; Chaves, R.; Sciarrino, F. Experimental violation of local causality in a quantum network. Nat. Commun. 2017, 8, 14775. [Google Scholar] [CrossRef] [Green Version]
  25. Fraser, T.C.; Wolfe, E. Causal compatibility inequalities admitting quantum violations in the triangle structure. Phys. Rev. A 2018, 98, 022113. [Google Scholar] [CrossRef] [Green Version]
  26. Wolfe, E.; Spekkens, R.W.; Fritz, T. The inflation technique for causal inference with latent variables. J. Causal Infer. 2019, 7, 20170020. [Google Scholar] [CrossRef] [Green Version]
  27. Gisin, N. Entanglement 25 years after quantum teleportation: Testing joint measurements in quantum networks. Entropy 2019, 21, 325. [Google Scholar] [CrossRef] [Green Version]
  28. Renou, M.O.; Wang, Y.; Boreiri, S.; Beigi, S.; Gisin, N.; Brunner, N. Limits on correlations in networks for quantum and no-signaling resources. Phys. Rev. Lett. 2019, 123, 070403. [Google Scholar] [CrossRef] [Green Version]
  29. Schröedinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807. [Google Scholar] [CrossRef]
  30. Gour, G.; Spekkens, R.W. The resource theory of quantum reference frames: Manipulations and monotones. New J. Phys. 2008, 10, 033023. [Google Scholar] [CrossRef]
  31. Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [Green Version]
  32. Kraft, T.; Spee, C.; Yu, X.D.; Gühne, O. Characterizing quantum networks: Insights from coherence theory. Phys. Rev. A 2021, 103, 052405. [Google Scholar] [CrossRef]
  33. Kraft, T.; Piani, M. Monogamy relations of quantum coherence between multiple subspaces. arXiv 2019, arXiv:1911.10026. [Google Scholar]
  34. Contreras-Tejada, P.; Palazuelos, C.; de Vicente, J.I. Genuine multipartite nonlocality is intrinsic to quantum networks. Phys. Rev. Lett. 2021, 126, 040501. [Google Scholar] [CrossRef]
  35. S˘upic´, I.; Bancal, J.D.; Cai, Y.; Brunner, N. Genuine network quantum nonlocality and self-testing. Phys. Rev. A 2022, 105, 022206. [Google Scholar] [CrossRef]
  36. Tavakoli, A.; Pozas-Kerstjens, A.; Luo, M.X.; Renou, M.O. Bell nonlocality in networks. Rep. Prog. Phys. 2022, 85, 056001. [Google Scholar] [CrossRef] [PubMed]
  37. Xiao, S.; Cao, H.; Guo, Z.; Han, K. Two types of trilocality of probability and correlation tensors. Entropy 2023, 25, 273. [Google Scholar] [CrossRef]
  38. Haddadi, S.; Ghominejad, M.; Akhound, A.; Pourkarimi, M.R. Suppressing measurement uncertainty in an inhomogeneous spin star system. Sci. Rep. 2021, 11, 22691. [Google Scholar] [CrossRef]
  39. Militello, B.; Messina, A. Genuine tripartite entanglement in a spin-star network at thermal equilibrium. Phys. Rev. A 2011, 83, 042305. [Google Scholar] [CrossRef] [Green Version]
  40. Haddadi, S.; Pourkarimi, M.R.; Akhound, A.; Ghominejad, M. Thermal quantum correlations in a two-dimensional spin star model. Mod. Phys. Lett. A 2019, 34, 1950175. [Google Scholar] [CrossRef]
  41. Yang, L.H.; Qi, X.F.; Hou, J.C. Nonlocal correlations in the tree-tensor-network configuration. Phys. Rev. A 2021, 104, 042405. [Google Scholar] [CrossRef]
  42. Yang, Y.; Xiao, S.; Cao, H.X. Nonlocality of a type of multi-star-shaped quantum networks. J. Phys. A: Math. Theor. 2022, 55, 025303. [Google Scholar] [CrossRef]
  43. Xiao, S.; Cao, H.X.; Guo, Z.H.; Han, K.Y. Characterizations of Bilocality and n-Locality of Correlation Tensors. arXiv 2022, arXiv:2210.04207. [Google Scholar] [CrossRef]
  44. Bai, L.H.; Xiao, S.; Guo, Z.H.; Cao, H.X. Decompositions of n-partite nonsignaling correlation-type tensors with applications. Front. Phys. 2022, 10, 864452. [Google Scholar] [CrossRef]
Figure 1. The six-local tree-tensor networks consisting of seven parties and six independent sources S 1 , S 2 , , S 6 characterized by hidden variables λ 1 , λ 2 , , λ 6 , respectively [41].
Figure 1. The six-local tree-tensor networks consisting of seven parties and six independent sources S 1 , S 2 , , S 6 characterized by hidden variables λ 1 , λ 2 , , λ 6 , respectively [41].
Mathematics 11 01625 g001
Figure 2. A 3-layer m-star quantum network (3-m-SQNW) for m = 3 consisting of a node A, m star-nodes B 1 , B 2 , , B m , and m 2 star-nodes C 1 j , C 2 j , , C m j ( j = 1 , 2 , , m ) [42].
Figure 2. A 3-layer m-star quantum network (3-m-SQNW) for m = 3 consisting of a node A, m star-nodes B 1 , B 2 , , B m , and m 2 star-nodes C 1 j , C 2 j , , C m j ( j = 1 , 2 , , m ) [42].
Mathematics 11 01625 g002
Figure 3. The multi-star-network scenario, denoted by M S N ( m , n 1 , , n m ) . When m = 1 , n 1 = n 1 , it reduces to M S N ( 1 , n 1 ) , which is just an n-local scenario [22,43]; when m = n 1 = 1 , it becomes M S N ( 1 , 1 ) , reducing to the bi-local scenario [20,43].
Figure 3. The multi-star-network scenario, denoted by M S N ( m , n 1 , , n m ) . When m = 1 , n 1 = n 1 , it reduces to M S N ( 1 , n 1 ) , which is just an n-local scenario [22,43]; when m = n 1 = 1 , it becomes M S N ( 1 , 1 ) , reducing to the bi-local scenario [20,43].
Mathematics 11 01625 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xiao, S.; Guo, Z.; Cao, H.; Han, K.; Yang, Y. Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network. Mathematics 2023, 11, 1625. https://doi.org/10.3390/math11071625

AMA Style

Xiao S, Guo Z, Cao H, Han K, Yang Y. Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network. Mathematics. 2023; 11(7):1625. https://doi.org/10.3390/math11071625

Chicago/Turabian Style

Xiao, Shu, Zhihua Guo, Huaixin Cao, Kanyuan Han, and Ying Yang. 2023. "Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network" Mathematics 11, no. 7: 1625. https://doi.org/10.3390/math11071625

APA Style

Xiao, S., Guo, Z., Cao, H., Han, K., & Yang, Y. (2023). Nonlocality of Star-Shaped Correlation Tensors Based on the Architecture of a General Multi-Star-Network. Mathematics, 11(7), 1625. https://doi.org/10.3390/math11071625

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop