Nonassociative Algebras, Rings and Modules over Them
Abstract
:1. Introduction
2. Principles of General Nonassociative Algebras and Rings
- (i)
- There exists an (associative) trace form defined on A;
- (ii)
- for each idempotent e in A;
- (iii)
- if is nilpotent, where , .
- (iv)
- , where is a simple algebra for each ;
- (v)
- G is flexible;
- (vi)
- is a semisimple Jordan algebra;
- (vii)
- is a simple (Jordan) algebra for each .
3. Akivis Algebras
4. Nonassocative Algebras of Sabinin, Malcev, and Bol Types
5. Radicals in Nonassociative Rings
6. Nonassociative Algebras Related to Skew Polynomials
7. Commutative Nonassociative Algebras and Their Modules
8. Nonassociative Cyclic Algebras
9. Rings Obtained as Nonassociative Cyclic Extensions
10. Nonassociative Ore Extensions of Hom-Associative Algebras and Modules over Them
11. Von Neumann Finiteness for Nonassociative Algebras
12. Nonassociative Algebras, Rings and Modules over Them Related with Harmonic Analysis on Nonlocally Compact Groups
13. Nonassociative Algebras with Conjugation
14. Representations and Closures of Nonassociative Algebras
15. Nonassociative Algebras and Modules over Them with Metagroup Relations
16. Near to Associative Nonassociative Algebras and Modules over Them
17. Applications of Nonassociative Algebras and Modules over Them in Cryptography and Coding
18. Applications of Modules over Nonassociative Algebras in Geometry and Physics
19. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamilton, W.R. Elements of Guaternions; Chelsea Pub. Co: New York, NY, USA, 1969. [Google Scholar]
- Graves, J.T. On a Connection between the general theory of normal couples and the theory of complete quadratic functions of two variables. Phil. Mag. 1845, 26, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Cayley, A. On Jacobi’s elliptic functions, in reply to the Rev.; and on quaternions. Phil. Mag. 1845, 26, 208–211. [Google Scholar]
- Hamilton, W.R. Note, by Sir W. R. Hamilton, respecting the researches of John T. Graves, Esq. Trans. Royal Irish Acad. 1848, 21, 338–341. [Google Scholar]
- Schafer, R.D. An Introduction to Nonassociative Algebras; Dover Publishing Inc.: New York, NY, USA, 1995. [Google Scholar]
- Plotkin, B. Varieties of algebras and algebraic varieties. Israel J. Math. 1996, 96, 511–522. [Google Scholar]
- Berzins, A.; Plotkin, B.; Plotkin, E. Algebraic geometry in variaties of algebras with the given algebra of constants. J. Math. Sci. N. Y. 2000, 102, 4039–4070. [Google Scholar] [CrossRef]
- Malcev, A.I. Algebraic Systems; Nauka: Moscow, Russia, 1970. [Google Scholar]
- Movsisyan, Y.M. Hyperidentities and related concepts. Armen. J. Math. 2017, 9, 146–222. [Google Scholar] [CrossRef]
- Movsisyan, Y.M. Hyperidentities in algebras and varieties. Russ. Math. Surv. 1998, 53, 57–108. [Google Scholar] [CrossRef]
- Movsisyan, Y.M. Hyperidentities and Hypervarieties in Algebras; University in Yerevan: Yerevan, Armenia, 1990. [Google Scholar]
- Artamonov, V.A.; Pilz, G.F. The Concise Handbook of Algebra; Springer Science+Business Media: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Plotkin, B. Universal Algebra, Algebraic Logic, and Databases; Kluwer Academic: New York, NY, USA, 1994. [Google Scholar]
- Cohn, P.M. Universal Algebra; Harper and Row Publishers: New York, NY, USA, 1965. [Google Scholar]
- Ludkowski, S.V. Skew continuous morphisms of ordered lattice ringoids. Mathematics 2016, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Akivis, M.A. The local algebras of a multidimensional three-web. Sib. Math. J. 1976, 17, 3–8. [Google Scholar] [CrossRef]
- Shestakov, I.P. Linear representability of Akivis algebras. Dokl. Akad. Nauk. 1999, 368, 21–23. [Google Scholar]
- Shestakov, I.P. Every Akivis algebra is linear. Geom. Dedicata 1999, 77, 215–223. [Google Scholar] [CrossRef]
- Bremner, M.R.; Hentzel, I.R.; Peresi, L.A. Dimension formulas for free Akivis algebras and primitive elements in free nonassociative algebras. Comm. Algebra 2005, 33, 4063–4081. [Google Scholar] [CrossRef]
- Artamonov, V.A.; Klimakov, A.V.; Mikhalev, A.A.; Mikhalev, A.V. Primitive and almost primitive elements of Schreier varieties. J. Math. Sci. N. Y. 2019, 237, 157–179. [Google Scholar] [CrossRef]
- Shestakov, I.P.; Umirbaev, U.U. Free Akivis algebras, primitive elements, and hyperalgebras. J. Algebra 2002, 250, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Perez-Izquierdo, J.M. Algebras, hyperalgebras, nonassociative bialgebras and loops. Adv. Math. 2007, 208, 834–876. [Google Scholar] [CrossRef]
- Goto, M.; Grosshans, F.D. Semisimple Lie Algebras; Marcel Dekker, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Pérez-Izquierdo, J.M. An envelope for Bol algebras. J. Algebra 2005, 284, 480–493. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, J.M.; Shestakov, I.P. An envelope for Malcev algebras. J. Algebra 2004, 272, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Shestakov, I.P.; Zhukavets, N.M. The free Malcev superalgerbra on one odd generator and related superalgebras. J. Math. Sci. N. Y. 2007, 140, 243–249. [Google Scholar] [CrossRef]
- Sabinin, L.V.; Miheev, P.O. On local analytic loops and their corresponding hyperalgebras. In Proceedings of 9th Conference of Young Researchers; VINITI Press: Moscow, Russia, 1986; pp. 34–54. [Google Scholar]
- Sabinin, L.V.; Miheev, P.O. Infinitesimal theory of local analytic loops. Soviet Math. Dokl. 1988, 36, 545–548. [Google Scholar]
- Kurosh, A. Radicals in rings and algebras. Math. Sb. 1953, 33, 13–26. [Google Scholar]
- Hoffman, A.E.; Leavitt, W.G. Properties inherited by the lower radical. Port. Math. 1968, 27, 63–66. [Google Scholar]
- Belov, A.; Bokut, L.; Rowen, L.; Yu, J.-T. The Jacobian conjecture, together with Specht and Burnside-type problems. Math. Stat. 2014, 79, 249–285. [Google Scholar]
- Huynh, D.V. (Ed.) Advances in Ring Theory; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar]
- Tuganbaev, A.A. Semidistributive Modules and Rings; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Amitsur, S.A. Radicals in rings and bicategories. Am. J. Math. 1954, 76, 100–125. [Google Scholar] [CrossRef]
- Tangeman, R.; Kreiling, D. Lower radicals in nonassociative rings. J. Aust. Math. Soc. 1972, 14, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Ore, O. Theory of noncommutative polynomials. Ann. Math. 1933, 34, 480–508. [Google Scholar] [CrossRef]
- Pumplün, S. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f,σ,δ)-codes. Adv. Math. Comm. 2017, 11, 615–634. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Pumplün, S. How a nonassociative algebra reflects the properties of a skew polynomial. Glasg. Math. J. 2021, 63, 6–26. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.-C. Sur les quasi-corps distributifes à base momogène. C. R. Acad. Sci. Paris Sér. A 1968, 266, 402–404. [Google Scholar]
- Pumplün, S. Nonassociative differential extensions of characteristic p. Results Math. 2017, 72, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.Y.; Leroy, A. Algebraic conjugacy classes and skew-polynomial rings. In Perspectives in Ring Theory; Springer: Antwerp, Belgium, 1988; pp. 153–203. [Google Scholar]
- Lam, T.Y.; Leung, K.H.; Leroy, A.; Matczuk, J. Invariant and semi-invariant polynomials in skew polynomial rings. In Proceedings of the Ring Theory 1989, Ramat Gan and Jerusalem, 1988/1989; Weizmann Science Press of Israel: Jerusalem, Israel, 1989; pp. 247–261. [Google Scholar]
- Jacobson, N. Pseudo-linear transformations. Ann. Math. 1937, 38, 484–507. [Google Scholar] [CrossRef] [Green Version]
- Tkachev, V.G. The universality of one half in commutative nonassociative algebras with identities. J. Algebra 2021, 569, 466–510. [Google Scholar] [CrossRef]
- Koecher, M. On commutative nonassociative algebras. J. Algebra 1980, 62, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.L. Algebraic structure of genetic inheritance. Bull. Am. Math. Soc. 1997, 34, 107–130. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.C.G. Principal and plenary train algebras. Commun. Algebra 2000, 28, 653–667. [Google Scholar] [CrossRef]
- Lyubich, Y.I. Mathematical Structures in Population Genetics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Meyberg, K.; Osborn, J.M. Pseudo-composition algebras. Math. Z. 1993, 214, 67–77. [Google Scholar] [CrossRef]
- Nourigat, M.; Varro, R. Etude des ω-PI algèbres commutatives de degré 4, III: Algèbres barycentriques invariantes par gamétisation. Commun. Algebra 2013, 41, 2825–2851. [Google Scholar] [CrossRef]
- Bordemann, M. Nondegenerate invariant bilinear forms on nonassociative algebras. Acta Math. Univ. Comen. 1997, 66, 151–201. [Google Scholar]
- Koecher, M. The Minnesota Notes on Jordan Algebras and Their Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Norton, S. The Monster algebra: Some new formulae. Contemp. Math. Am. Math. Soc. 1996, 193, 297–306. [Google Scholar]
- Ivanov, A.A. Majorana representation of the Monster group. Contemp. Math. Am. Math. Soc. 2017, 694, 11–17. [Google Scholar]
- Medts, D.T.; Couwenberghe, V.M. Modules over axial algebras. Algebras Represent. Theory 2020, 23, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Sandler, R. Autotopism groups of some finite nonassociative algebras. Am. J. Math. 1962, 84, 239–264. [Google Scholar] [CrossRef]
- Astier, V.; Pumplün, S. Nonassociative quaternion algebras over rings. Isr. J. Math. 2006, 155, 125–147. [Google Scholar]
- Waterhouse, W.C. Nonassociative quaternion algebras. Algebra Groups Geom. 1987, 4, 365–378. [Google Scholar]
- Pumplün, S.; Steele, A. Fast-decodable MIDO codes from nonassociative algebras. Int. J. Inf. Coding Theory 2015, 3, 15–38. [Google Scholar]
- Pumplün, S. Tensor products of nonassociative cyclic algebras. J. Algebra 2016, 451, 145–165. [Google Scholar] [CrossRef]
- Brown, C.; Pumplün, S. Nonassociative cyclic extensions of fields and central simple algebras. J. Pure Appl. Algebra 2019, 223, 2401–2412. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.-C. Sur certains quasi-corps généralisant un type d’anneau-quotient. Séminaire Dubriel Algèbre et Théorie des Nombres 1967, 20, 1–18. [Google Scholar]
- Hartwig, J.T.; Larsson, D.; Silvestrov, S.D. Deformations of Lie algebras using σ-derivations. J. Algebra 2006, 295, 314–361. [Google Scholar] [CrossRef] [Green Version]
- Makhlouf, A.; Silvestrov, S. Hom-algebras and Hom-coalgebras. J. Algebra Appl. 2010, 9, 553–589. [Google Scholar] [CrossRef] [Green Version]
- Makhlouf, A.; Silvestrov, S. Hom-Lie admissible hom-coalgebras and hom-Hopf algebras. In Generalized Lie Theory in Mathematics, Physics and Beyond; Silvestrov, S., Paal, E., Abramov, V., Stolin, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Nystedt, P.; Öinert, J.; Richter, J. Nonassociative Ore extensions. Isr. J. Math. 2018, 224, 263–292. [Google Scholar] [CrossRef] [Green Version]
- Bäck, P.; Richter, J.; Silvestrov, S. Hom-associative Ore extensions and weak unitalizations. Int. Electron. J. Algebra 2018, 24, 174–194. [Google Scholar] [CrossRef] [Green Version]
- Bäck, P.; Richter, J. Hilbert’s basis theorem for non-associative and hom-associative Ore extensions. Algebras Represent. Theory 2022. [Google Scholar] [CrossRef]
- Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P. The Book of Involutions; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Dickson, L.E. The Collected Mathematical Papers; Chelsea Publishing Co.: New York, NY, USA, 1975. [Google Scholar]
- Zhevlakov, K.A.; Slin’ko, A.M.; Shestakov, I.P.; Shirshov, A.I. Rings That Are Nearly Associative; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Albert, A.A. Quadratic forms permitting composition. Ann. Math. 1942, 43, 161–177. [Google Scholar] [CrossRef]
- Lam, T.Y. Introduction to Quadratic Forms over Real Fields; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Darpö, E.; Nystedt, P. Von-Neumann finiteness and reversibility in some classes of non-associative algebras. Algebras Represent. Theory 2021, 24, 1245–1258. [Google Scholar] [CrossRef]
- Fell, J.M.G.; Doran, R.S. Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
- Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis; Springer: Berlin/Heidelberg, Germany, 1994; Volume 2. [Google Scholar]
- Naimark, M.A. Normed Rings; Nauka: Moscow, Russia, 1968. [Google Scholar]
- Ghahramani, F.; Runde, V.; Willis, G. Derivations on group algebras. Proc. Lond. Math. Soc. 2000, 80, 360–390. [Google Scholar] [CrossRef]
- Johnson, B.E. The derivation problem for group algebras of connected locally compact groups. J. Lond. Math. Soc. 2001, 63, 441–452. [Google Scholar] [CrossRef]
- Losert, V. The derivation problem for group algebras. Ann. Math. 2008, 168, 221–246. [Google Scholar] [CrossRef] [Green Version]
- Belopolskaya, Y.I.; Dalecky, Y.L. Stochastic Equations and Differential Geometry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Dalecky, Y.L.; Fomin, S.V. Measures and Differential Equations in Infinite-Dimensional Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Dalecky, Y.L.; Shnaiderman, Y.L. Diffusion and quasi-invariant measures on infinite-dimensional Lie groups. Funct. Anal. Its Appl. 1969, 3, 156–158. [Google Scholar]
- Ludkovsky, S.V. Topological transformation groups of manifolds over non-Archimedean fields, representations and quasi-invariant measures, I. J. Math. Sci. N. Y. 2008, 147, 6703–6846. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Topological transformation groups of manifolds over non-Archimedean fields, representations and quasi-invariant measures, II. J. Math. Sci. N. Y. 2008, 150, 2123–2223. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. II. Ann. Math. B. Pascal. 2000, 7, 55–80. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Stochastic processes on geometric loop groups, diffeomorphism groups of connected manifolds, associated unitary representations. J. Math. Sci. N. Y. 2007, 141, 1331–1384. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations. Rend. dell’Istituto di Matem. dell’Università di Trieste. Nuova Serie. 1999, 30, 101–134. [Google Scholar]
- Ludkovsky, S.V. Semidirect products of loops and groups of diffeomorphisms of real, complex and quaternion manifolds, and their representations. In Focus on Groups Theory Research; Ying, L.M., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2006; pp. 59–136. [Google Scholar]
- Ludkovsky, S.V. Operators on a non locally compact group algebra. Bull. Sci. Math. 2013, 137, 557–573. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Meta-centralizers of non-locally compact group algebras. Glasg. Math. J. 2015, 57, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Ludkovsky, S.V. Properties of quasi-invariant measures on topological groups and associated algebras. Ann. Math. B. Pascal. 1999, 6, 33–45. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Integral operators for nonlocally compact group modules. Quaest. Math. 2022, 45, 1125–1144. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Spectra and structures of non locally compact group algebras. Southeast Asian Bull. Math. 2020, 44, 377–415. [Google Scholar]
- Hilbert, D. The Theory of Algebraic Number Fields; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Lorenz, F. Ein Scholion zum Satz 90 von Hilbert. Abh. Math. Semin. Univ. Hamb. 1998, 68, 347–362. [Google Scholar] [CrossRef]
- Lang, S. Algebra; Addison-Wesley: Boston, MA, USA, 1993. [Google Scholar]
- Lundström, P. Hilbert 90 for algebras with conjugation. Algebras Represent. Theory 2012, 15, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Zaicev, M.V. Integrality of exponents of growth of identities of finite-dimensional Lie algebras. Izv. Math. 2002, 66, 463–487. [Google Scholar]
- Gordienko, A.S. Codimensions of polynomial identities of representations of Lie algebras. Proc. Am. Math. Soc. 2013, 141, 3369–3382. [Google Scholar] [CrossRef] [Green Version]
- Giambruno, A.; Zelmanov, E. On growth of codimensions of Jordan algebras. Contemp. Math. 2011, 537, 205–210. [Google Scholar]
- Belov-Kanel, A.; Giambruno, A.; Rowen, L.H.; Vishne, U. Zariski closed algebras in varieties of universal algebra. Algebras Represent. Theory 2014, 17, 1771–1783. [Google Scholar] [CrossRef]
- Belov, A.; Rowen, L.H.; Vishne, U. Structure of Zariski closed algebras. Trans. Am. Math. Soc. 2010, 362, 4695–4734. [Google Scholar] [CrossRef] [Green Version]
- Zaicev, M.V.; Mishchenko, S.P. Codimension sequences and their asymptotic behavior. J. Math. Sci. N. Y. 2021, 257, 825–833. [Google Scholar] [CrossRef]
- Nichita, F.F. Yang-Baxter systems, algebra factorizations and braided categories. Axioms 2013, 2, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Bokut, L.A.; Chen, Y.; Li, Y. Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras. J. Math. Sci. N. Y. 2010, 166, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Tuganbaev, A. On rings of weak global dimension at most one. Mathematics 2021, 9, 2643. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y. Gröbner-Shirshov bases theory for trialgebras. Mathematics 2021, 9, 1207. [Google Scholar] [CrossRef]
- Allcock, D. Reflection groups and octave hyperbolic plane. J. Algebra 1998, 213, 467–498. [Google Scholar] [CrossRef] [Green Version]
- Baez, J.C. The octonions. Bull. Am. Math. Soc. 2002, 39, 145–205. [Google Scholar] [CrossRef] [Green Version]
- Kantor, I.L.; Solodovnikov, A.S. Hypercomplex Numbers; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Ludkowski, S.V. Automorphisms and derivations of nonassociative C* algebras. Linear Multil. Algebra 2019, 67, 1531–1538. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Cohomology theory of nonassociative algebras with metagroup relations. Axioms 2019, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Ludkowski, S.V. Homotopism of homological complexes over nonassociative algebras with metagroup relations. Mathematics 2021, 9, 734. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Torsion for homological complexes of nonassociative algebras with metagroup relations. Axioms 2021, 10, 319. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Splitting extensions of nonassociative algebras and modules with metagroup relations. Axioms 2022, 11, 131. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Satellites of functors for nonassociative algebras with metagroup relations. Mathematic 2022, 10, 1169. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Smashed and twisted wreath products of metagroups. Axioms 2019, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Ludkowski, S.V. Separability of nonassociative algebras with metagroup relations. Axioms 2019, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Mikhalev, A.V. Alternative rings with single-valued addition. J. Math. Sci. N. Y. 1994, 69, 1092–1097. [Google Scholar] [CrossRef]
- Makhlouf, A. Hom-alternative algebras and hom-Jordan algebras. Int. Electron. J. Algebra 2010, 8, 177–190. [Google Scholar]
- Sun, Q. On hom-prealternative bialgebras. Algebras Represent. Theory 2016, 19, 657–677. [Google Scholar] [CrossRef]
- Golubkov, A.Y. Construction of special radicals of algebras. J. Math. Sci., N. Y. 2017, 223, 530–580. [Google Scholar] [CrossRef]
- Dzhumadil’daev, A.M. Zinbiel algberas under q-commutators. J. Math. Sci. N. Y. 2007, 144, 3909–3925. [Google Scholar] [CrossRef]
- Brown, R.B. On generalized Cayley-Dickson algebras. Pacific J. Math. 1967, 20, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Culbert, C. Cayley-Dickson algebras and loops. J. Gener. Lie Theory Appl. 2007, 1, 1–17. [Google Scholar] [CrossRef]
- Elduque, A.; Myung, H.C. Colour algebras and Cayley-Dickson algebras. Proc. R. Soc. Edinb. 1995, 125A, 1287–1303. [Google Scholar] [CrossRef]
- Pengelley, D.J.; Williams, F. The global structure of odd-primary Dickson algebras as algebras over the Steenrod algebra. Math. Proc. Camb. Phil. Soc. 2004, 136, 67–73. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Octonion orthocomplemantable modules. Adv. Appl. Clifford Algebra 2017, 27, 1551–1566. [Google Scholar] [CrossRef]
- Schafer, R.D. Inner derivations of nonassociative algebras. Bull. Am. Math. Soc. 1949, 55, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, N. Abstract derivation and Lie algebras. Trans. Am. Math. Soc. 1937, 42, 206–224. [Google Scholar] [CrossRef]
- Akemann, C.A.; Pedersen, G.K. Central sequences and inner derivations of separable C*-algebras. Am. J. Math. 1979, 101, 1047–1061. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Completions and homomorphisms of infinite dimensional Cayley-Dickson algebras. Linear Multil. Algebra 2021, 69, 2040–2049. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Differentiable functions of Cayley-Dickson numbers and line integration. J. Math. Sci. N. Y. 2007, 141, 1231–1298. [Google Scholar] [CrossRef]
- Ludkowski, S.V. On a class of right linearly differentiable functions of Cayley-Dickson variables. Adv. Appl. Clifford Algebra 2014, 24, 781–803. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Functions of several Cayley-Dickson variables and manifolds over them. J. Math. Sci. N. Y. 2007, 141, 1299–1330. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Normal families of functions and groups of pseudoconformal diffeomorphisms of quaternion and octonion variables. J. Math. Sci. N. Y. 2008, 150, 2224–2287. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Studies of Diophantine equations with the help of Cayley-Dickson algebras. J. Algebra Number Theory Acad. 2011, 2, 63–79. [Google Scholar]
- Ludkovsky, S.V.J. Noncommutative quasi-conformal integral transforms over quaternions and octonions. J. Math. Sci. N. Y. 2009, 157, 199–251. [Google Scholar] [CrossRef]
- Kac, V.G. Infinite-Dimensional Lie Algebras; Cambridge Univ. Press: Cambridge, UK, 1990. [Google Scholar]
- Ludkovsky, S.V. Affine and wrap algebras over octonions. J. Math. Sci. N. Y. 2010, 167, 767–809. [Google Scholar] [CrossRef] [Green Version]
- Ludkovsky, S.V. Wrap groups of connected fiber bundles: Their structure and cohomologies. Int. J. Math., Game Theory, Algebra. 2009, 19, 53–128. [Google Scholar]
- Ludkovsky, S.V.; Sprössig, W. Ordered representations of normal and super-differential operators in quaternion and octonion Hilbert spaces. Adv. Appl. Clifford Algebra 2010, 20, 321–342. [Google Scholar]
- Ludkovsky, S.V.; Sprössig, W. Spectral theory of super-differential operators of quaternion and octonion variables. Adv. Appl. Clifford Algebra 2011, 21, 165–191. [Google Scholar]
- Ludkowski, S.V. Quasi-permutable normal operators in octonion Hilbert spaces and spectra. Adv. Appl. Clifford Algebra 2014, 24, 163–178. [Google Scholar] [CrossRef]
- Ludkovsky, S.V.; Sprössig, W. Spectral representations of operators in Hilbert spaces over quaternions and octonions. Complex Var. Elliptic Equat. 2012, 57, 1301–1324. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Algebras of operators in Banach spaces over the quaternion skew field and the octonion algebra. J. Math. Sci. N. Y. 2007, 144, 4301–4366. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. C*-algebras of meta-invariant operators in modules over Cayley-Dickson algebras. Southeast Asian Bull. Math. 2015, 39, 625–684. [Google Scholar]
- Bourbaki, N. Algèbre; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Pierce, R.S. Associative Algebras; Springer: New York, NY, USA, 1982. [Google Scholar]
- Markov, V.N.; Mikhalev, A.V.; Nechaev, A.A. Nonassociative algebraic tsructures in cryptography and coding. J. Math. Sci. N. Y. 2020, 245, 178–196. [Google Scholar] [CrossRef]
- Markov, V.T.; Mikhalev, A.V.; Gribov, A.V.; Zolotykh, P.A.; Skazhenik, S.S. Quasigroups and rings in the coding and construction of cryptocircuits. Prikl. Diskr. Mat. 2012, 4, 31–52. [Google Scholar]
- Gribov, A.V. Some homomorphic cryptosystems based on nonassociative structures. J. Math. Sci. N. Y. 2017, 223, 581–586. [Google Scholar] [CrossRef]
- Gribov, A.V. The prime radical of alternative rings and loops. J. Math. Sci. N. Y. 2017, 223, 587–601. [Google Scholar] [CrossRef]
- Arakelov, G.G.; Gribov, A.V.; Mikhalev, A.V. Applied homomorphic cryptography: Examples. J. Math. Sci. 2019, 237, 353–361. [Google Scholar] [CrossRef]
- Gonzalez, S.; Kouselo, E.; Markov, V.; Nechaev, A. Group codes and their nonassociative generalizations. Diskret. Mat. 2004, 14, 146–156. [Google Scholar]
- Blahut, R.E. Algebraic Codes for Data Transmission; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Mikhalev, A.V.; Shirshova, E.E. Interpolation pseudo-ordered rings. Fundam. Prikl. Mat. 2022, 24, 177–191. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Guo, X. Shen-Larsson’s modules for simple generalized Witt algebras. Algebras Represent. Theory 2022, 1–23. [Google Scholar] [CrossRef]
- Barnes, G.E.; Schenkel, A.; Szabo, R.J. Nonassociative geometry in quasi-Hopf representation categories I: Bimodules and their internal homomorphisms. J. Geom. Phys. 2015, 89, 111–152. [Google Scholar] [CrossRef]
- Dzhunushaliev, V. Non-associative slave-boson decomposition. J. Gener. Lie Theory Appl. 2007, 1, 129–134. [Google Scholar] [CrossRef]
- Dzhunushaliev, V. Toy models of a nonassociative quantum mechanics. Adv. High Energy Phys. 2007, 12387, 1–10. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Die Prinzipen der Quantenmechanik; Hirzel: Leipzig, Germany, 1930. [Google Scholar]
- Frenod, E.; Ludkowski, S.V. Integral operator approach over octonions to solution of nonlinear PDE. Far East J. Math. Sci. 2018, 103, 831–876. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Integration of vector hydrodynamical partial differential equations over octonions. Complex Var. Elliptic Equat. 2013, 58, 579–609. [Google Scholar] [CrossRef] [Green Version]
- Ludkovsky, S.V. Integration of vector Sobolev type PDE over octonions. Complex Var. Elliptic Equat. 2016, 61, 1014–1035. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Decompositions of PDE over Cayley-Dickson algebras. Rendic. dell’Ist. di Math. dell’Università di Trieste. Nuova Serie. 2014, 46, 1–23. [Google Scholar]
- Ludkovsky, S.V. Line integration of Dirac operators over octonions and Cayley-Dickson algebras. Computat. Meth. Funct. Theory 2012, 12, 279–306. [Google Scholar] [CrossRef]
- Ludkovsky, S.V. Multidimensional Laplace transforms over quaternions; octonions and Cayley-Dickson algebras; their applications to PDE. Adv. Pure Math. 2012, 2, 63–103. [Google Scholar] [CrossRef] [Green Version]
- Gürsey, F.; Tze, C.-H. On the Role of Division, Jordan and Related Algebras in Particle Physics; World Scientific Publishing Co.: Singapore, 1996. [Google Scholar]
- Nichita, F.F. Unification theories: New results and examples. Axioms 2021, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Iantovics, L.B.; Nichita, F.F. On the colored and the set-theoretical Yang-Baxter equations. Axioms 2021, 10, 146. [Google Scholar] [CrossRef]
- Majid, S. Gauge theory on nonassociative spaces. J. Math. Phys. 2005, 46, 103519. [Google Scholar] [CrossRef] [Green Version]
- Bruck, R.H. A Survey of Binary Systems; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Pickert, G. Projektive Ebenen; Springer: Berlin/Heidelberg, Germany, 1955. [Google Scholar]
- Pickert, G. Doppelebenen und loops. J. Geom. 1991, 41, 133–144. [Google Scholar] [CrossRef]
- Markl, M.; Shnider, S.; Stasheff, J. Operads in Algebra, Topology and Physics; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Hasiewicz, Z.; Defever, F.; Troost, W. Nonassociative superconformal algebras. J. Math. Phys. 1991, 32, 2285. [Google Scholar] [CrossRef]
- Mylonas, D.; Schupp, P.; Szabo, R.J. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics. J. Math. Phys. 2014, 55, 122301. [Google Scholar] [CrossRef] [Green Version]
- Kerner, E.H. Nonassociative structure of quantum mechanics in curved space-time. J. Math. Phys. 1999, 40, 4664. [Google Scholar] [CrossRef]
- Castro, C. On the noncommutative and nonassociative geometry of octonionic space time, modified dispersion relations and grand unification. J. Math. Phys. 2007, 48, 073517. [Google Scholar] [CrossRef] [Green Version]
- Pommaret, J.F. Systems of Partial Differential Equations and Lie Pseudogroups; Gordon and Breach Science Publishers: New York, NY, USA, 1978. [Google Scholar]
- Shang, Y. Lie algebraic discussion for affinity based information diffusion in social networks. Open Phys. 2017, 15, 705–711. [Google Scholar] [CrossRef]
- Cartan, H.; Eilenberg, S. Homological Algebra; Princeton University Press: Princeton, NJ, USA, 1956. [Google Scholar]
- Bourbaki, N. Algèbre Homologique. In Algèbre; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bredon, G.E. Sheaf Theory; McGarw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Hochschild, G. On the cohomology theory for associative algebras. Ann. Math. 1946, 47, 568–579. [Google Scholar] [CrossRef]
- Georgantas, G.T. Derivations in central separable algebras. Glasgow Math. J. 1978, 19, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-W. On the digital cohomology modules. Mathematics 2020, 8, 1451. [Google Scholar] [CrossRef]
- Van Oystaeyen, F. Separable algebras. In Handbook of Algebra; Hazewinkel, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 2, pp. 463–505. [Google Scholar]
- Rumynin, D.A. Cohomomorphisms of separable algebras. Algebra Log. 1994, 33, 233–237. [Google Scholar] [CrossRef]
- Sproston, J.P. Derivations on some (possibly non-separable) C*-algebras. Glasgow Math. J. 1981, 22, 43–56. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludkowski, S.V. Nonassociative Algebras, Rings and Modules over Them. Mathematics 2023, 11, 1714. https://doi.org/10.3390/math11071714
Ludkowski SV. Nonassociative Algebras, Rings and Modules over Them. Mathematics. 2023; 11(7):1714. https://doi.org/10.3390/math11071714
Chicago/Turabian StyleLudkowski, Sergey Victor. 2023. "Nonassociative Algebras, Rings and Modules over Them" Mathematics 11, no. 7: 1714. https://doi.org/10.3390/math11071714
APA StyleLudkowski, S. V. (2023). Nonassociative Algebras, Rings and Modules over Them. Mathematics, 11(7), 1714. https://doi.org/10.3390/math11071714