Microphone-Based Context Awareness and Coverage Planner for a Service Robot Using Deep Learning Techniques
Abstract
:1. Introduction
- Navigate in a known environment using a 2D or 3D map;
- Detect the hazardous situation during the operations.
- Degradation in performance due to different lighting conditions;
- False prediction or detection when the features are changed;
- Impotence when there are fewer or no proper visual features.
- Development of a DCNN-based hazardous scene avoidance framework using acoustic sensors;
- Cleaning robot system development and the integration of the developed framework;
- Evaluation of the proposed system wherein the robot detects escalator sound and avoids it in two distinct scenarios.
2. Related Works
2.1. Floor Cleaning Robots
2.2. Obstacle Avoidance Frameworks for Robots
2.3. Sound-Based Event Detection and Localization
3. Sound-Based Scene Avoidance Framework
3.1. Cleaning Robot System
3.2. Data Acquisition and Feature Extraction
3.3. Trajectory Generator
4. Sound Event Detection and Localization
4.1. Feature Selection
4.2. Network Architecture
5. Experimental Setup and Data Training
5.1. Model Training
5.2. Evaluation Metrics
5.3. Coverage Path Evaluation
6. Results
6.1. Results from Scenario 1 Facing Descending Escalator
6.2. Results from Scenario 1 Facing Ascending Escalator
6.3. Results from Scenario 2 Facing Descending Escalator
6.4. Results from Scenario 2 Facing Ascending Escalator
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Data Bridge Market Research. Cleaning Robot Market Expected to Reach $38,142.05 Million by 2029 with Product Type, Components, End-User, Top Players and Global Industry Analysis. 2022. Available online: https://www.databridgemarketresearch.com/press-release/global-cleaning-robot-market (accessed on 5 February 2023).
- Bozhinoski, D.; Di Ruscio, D.; Malavolta, I.; Pelliccione, P.; Crnkovic, I. Safety for mobile robotic systems: A systematic mapping study from a software engineering perspective. J. Syst. Softw. 2019, 151, 150–179. [Google Scholar] [CrossRef]
- Kolhatkar, C.; Wagle, K. Review of SLAM algorithms for indoor mobile robot with LIDAR and RGB-D camera technology. Innov. Electr. Electron. Eng. 2021, 661, 397–409. [Google Scholar]
- Sun, S.; Cioffi, G.; De Visser, C.; Scaramuzza, D. Autonomous quadrotor flight despite rotor failure with onboard vision sensors: Frames vs. events. IEEE Robot. Autom. Lett. 2021, 6, 580–587. [Google Scholar] [CrossRef]
- Chen, X.; Huang, J. Odor source localization algorithms on mobile robots: A review and future outlook. Robot. Auton. Syst. 2019, 112, 123–136. [Google Scholar] [CrossRef]
- Xia, X.; Togneri, R.; Sohel, F.; Zhao, Y.; Huang, D. A survey: Neural network-based deep learning for acoustic event detection. Circuits Syst. Signal Process. 2019, 38, 3433–3453. [Google Scholar] [CrossRef]
- Adavanne, S.; Politis, A.; Nikunen, J.; Virtanen, T. Sound event localization and detection of overlapping sources using convolutional recurrent neural networks. IEEE J. Sel. Top. Signal Process. 2018, 13, 34–48. [Google Scholar] [CrossRef]
- Oh, Y.J.; Watanabe, Y. Development of small robot for home floor cleaning. In Proceedings of the 41st SICE Annual Conference, SICE 2002, Osaka, Japan, 5–7 August 2002; Volume 5, pp. 3222–3223. [Google Scholar]
- Jain, M.; Rawat, P.S.; Morbale, J. Automatic floor cleaner. Int. Res. J. Eng. Technol. (IRJET) 2017, 4, 2395-0056. [Google Scholar]
- Anıl, E.; Doğan, H. Design and implementation of a cost effective vacuum cleaner robot. Turk. J. Eng. 2022, 6, 166–177. [Google Scholar]
- Hong, Y.; Sun, R.; Lin, R.; Yu, S.; Sun, L. Mopping module design and experiments of a multifunction floor cleaning robot. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 5097–5102. [Google Scholar]
- Ramalingam, B.; Yin, J.; Rajesh Elara, M.; Tamilselvam, Y.K.; Mohan Rayguru, M.; Muthugala, M.V.J.; Félix Gómez, B. A human support robot for the cleaning and maintenance of door handles using a deep-learning framework. Sensors 2020, 20, 3543. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, V.; Elara, M.R.; Pathmakumar, T.; Nansai, S. Floor cleaning robot with reconfigurable mechanism. Autom. Constr. 2018, 91, 155–165. [Google Scholar] [CrossRef]
- Milde, M.B.; Blum, H.; Dietmüller, A.; Sumislawska, D.; Conradt, J.; Indiveri, G.; Sandamirskaya, Y. Obstacle avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic processing system. Front. Neurorobotics 2017, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Enriquez, G.; Miwa, T.; Hashimoto, S. Adaptive path planning for cleaning robots considering dust distribution. J. Robot. Mechatronics 2018, 30, 5–14. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Peter, C.C.; Wu, X. A novel navigation system for indoor cleaning robot. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 2159–2164. [Google Scholar]
- Dubey, S.; Chinnaaiah, M.; Kiran, C.S.; Priyanka, B.S.; Rao, P.P. An FPGA based service Robot for floor cleaning with autonomous navigation. In Proceedings of the 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS), Bangalore, India, 6–7 May 2016; pp. 1–6. [Google Scholar]
- Park, D.H.; Hoffmann, H.; Pastor, P.; Schaal, S. Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In Proceedings of the Humanoids 2008—8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, Republic of Korea, 1–3 December 2008; pp. 91–98. [Google Scholar]
- Clavel, C.; Ehrette, T.; Richard, G. Events detection for an audio-based surveillance system. In Proceedings of the 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 6 July 2005; pp. 1306–1309. [Google Scholar]
- Pfeiffer, S.; Fischer, S.; Effelsberg, W. Automatic audio content analysis. In Proceedings of the Fourth ACM International Conference on Multimedia, Boston, MA, USA, 18–22 November 1997; pp. 21–30. [Google Scholar]
- Desai, D.; Mehendale, N. A review on sound source localization systems. Arch. Comput. Methods Eng. 2022, 29, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; McLoughlin, I.; Song, Y. Robust sound event recognition using convolutional neural networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 559–563. [Google Scholar]
- Van Der Maaten, L.; Postma, E.; Van den Herik, J. Dimensionality reduction: A comparative. J. Mach. Learn. Res. 2009, 10, 13. [Google Scholar]
- Adavanne, S.; Politis, A.; Virtanen, T. A multi-room reverberant dataset for sound event localization and detection. arXiv 2019, arXiv:1905.08546. [Google Scholar]
- Gerzon, M.A. Ambisonics in multichannel broadcasting and video. J. Audio Eng. Soc. 1985, 33, 859–871. [Google Scholar]
- Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech, Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef]
- Adavanne, S.; Pertilä, P.; Virtanen, T. Sound event detection using spatial features and convolutional recurrent neural network. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 771–775. [Google Scholar]
- Adavanne, S.; Politis, A.; Virtanen, T. Direction of arrival estimation for multiple sound sources using convolutional recurrent neural network. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1462–1466. [Google Scholar]
- Fonseca, E.; Favory, X.; Pons, J.; Font, F.; Serra, X. Fsd50k: An open dataset of human-labeled sound events. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 30, 829–852. [Google Scholar] [CrossRef]
Function | Details |
---|---|
Directionality | Omni-directional |
Sensitivity | −44 dB ± 2 dB |
Impedance | 2.2 kohms ± 30% at 1 kHz |
Frequency range | 20 Hz–20 kHz |
Signal-to-Noise ratio | >60 dB |
Maximum sound pressure level | 125 dB SPL |
Self-noise | 26 dB(A) |
Methods | Metrics | Mic-Array | FOA | ||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | ||
Baseline | ER | 0.340 | 0.376 | 0.432 | 0.350 | 0.374 | 0.476 |
FR | 0.756 | 0.744 | 0.727 | 0.751 | 0.748 | 0.739 | |
DOA error | 30.01 | 31.25 | 31.97 | 29.22 | 29.73 | 30.85 | |
Frame Recall | 83.46 | 83.21 | 82.30 | 84.22 | 83.29 | 80.31 | |
SELDNet | ER | 0.285 | 0.314 | 0.369 | 0.301 | 0.359 | 0.448 |
FR | 0.842 | 0.824 | 0.796 | 0.722 | 0.707 | 0.683 | |
DOA error | 28.21 | 28.75 | 29.37 | 28.15 | 29.53 | 29.71 | |
Frame Recall | 84.19 | 83.73 | 83.70 | 85.17 | 84.66 | 83.33 | |
DOAnet | DOA error | 26.43 | 27.33 | 27.89 | 26.21 | 27.95 | 28.42 |
Frame Recall | 85.58 | 84.13 | 82.93 | 86.27 | 85.30 | 83.00 | |
Used-Method (two stage) | ER | 0.126 | 0.254 | 0.265 | 0.164 | 0.195 | 0.212 |
FR | 0.928 | 0.916 | 0.908 | 0.897 | 0.863 | 0.821 | |
DOA error | 8.94 | 15.36 | 18.32 | 10.23 | 11.36 | 12.20 | |
Frame Recall | 95.43 | 94.23 | 92.38 | 96.37 | 96.10 | 93.71 |
Methods | Metrics | Mic-Array | FOA | ||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | ||
Baseline | ER | 0.392 | 0.362 | 0.473 | 0.322 | 0.386 | 0.428 |
FR | 0.709 | 0.690 | 0.687 | 0.728 | 0.711 | 0.744 | |
DOA error | 30.92 | 31.09 | 31.88 | 29.10 | 29.62 | 30.90 | |
Frame Recall | 84.22 | 83.97 | 82.77 | 85.83 | 84.89 | 82.87 | |
SELDNet | ER | 0.292 | 0.381 | 0.398 | 0.298 | 0.334 | 0.407 |
FR | 0.877 | 0.841 | 0.829 | 0.780 | 0.765 | 0.692 | |
DOA error | 28.99 | 28.97 | 29.90 | 29.15 | 30.17 | 32.54 | |
Frame Recall | 84.93 | 83.13 | 83.01 | 85.70 | 85.36 | 85.00 | |
DOAnet | DOA error | 24.33 | 26.03 | 26.95 | 24.11 | 26.55 | 27.97 |
Frame Recall | 86.18 | 85.03 | 83.83 | 87.97 | 86.38 | 84.41 | |
Used-Method (two stage) | ER | 0.136 | 0.212 | 0.237 | 0.171 | 0.187 | 0.242 |
FR | 0.938 | 0.926 | 0.908 | 0.901 | 0.892 | 0.887 | |
DOA error | 9.43 | 12.86 | 15.02 | 11.43 | 12.74 | 13.29 | |
Frame Recall | 94.32 | 93.60 | 92.48 | 95.98 | 95.16 | 94.18 |
Methods | Metrics | Mic-Array | FOA | ||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | ||
Baseline | ER | 0.303 | 0.312 | 0.383 | 0.310 | 0.371 | 0.390 |
FR | 0.809 | 0.791 | 0.737 | 0.828 | 0.811 | 0.844 | |
DOA error | 25.92 | 25.09 | 26.88 | 28.10 | 28.62 | 29.90 | |
Frame Recall | 88.22 | 87.97 | 86.77 | 86.43 | 85.19 | 84.07 | |
SELDNet | ER | 0.242 | 0.281 | 0.298 | 0.238 | 0.244 | 0.307 |
FR | 0.897 | 0.861 | 0.859 | 0.880 | 0.865 | 0.792 | |
DOA error | 20.99 | 21.97 | 22.90 | 22.15 | 23.17 | 24.54 | |
Frame Recall | 88.13 | 87.23 | 86.10 | 88.10 | 86.36 | 86.00 | |
DOAnet | DOA error | 19.22 | 20.03 | 21.95 | 18.20 | 19.55 | 22.97 |
Frame Recall | 90.18 | 89.03 | 88.83 | 90.97 | 89.18 | 88.91 | |
Used-Method (two stage) | ER | 0.101 | 0.187 | 0.197 | 0.132 | 0.152 | 0.202 |
FR | 0.982 | 0.976 | 0.958 | 0.971 | 0.922 | 0.907 | |
DOA error | 5.43 | 8.82 | 10.29 | 7.43 | 9.04 | 9.93 | |
Frame Recall | 98.12 | 97.62 | 96.18 | 97.08 | 96.86 | 96.08 |
Methods | Metrics | Mic-Array | FOA | ||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | ||
Baseline | ER | 0.323 | 0.341 | 0.351 | 0.325 | 0.352 | 0.393 |
FR | 0.839 | 0.795 | 0.745 | 0.821 | 0.819 | 0.874 | |
DOA error | 24.32 | 24.19 | 25.28 | 25.11 | 26.60 | 27.35 | |
Frame Recall | 88.97 | 87.12 | 86.75 | 86.12 | 84.84 | 83.94 | |
SELDNet | ER | 0.251 | 0.265 | 0.274 | 0.242 | 0.260 | 0.279 |
FR | 0.892 | 0.872 | 0.864 | 0.894 | 0.881 | 0.872 | |
DOA error | 19.37 | 20.57 | 21.30 | 20.55 | 21.47 | 22.96 | |
Frame Recall | 89.96 | 88.63 | 87.40 | 88.37 | 86.67 | 86.33 | |
DOAnet | DOA error | 18.26 | 19.53 | 20.05 | 19.01 | 18.75 | 18.27 |
Frame Recall | 92.58 | 92.33 | 91.73 | 91.27 | 90.58 | 89.25 | |
Used-Method (two stage) | ER | 0.111 | 0.153 | 0.172 | 0.123 | 0.148 | 0.178 |
FR | 0.980 | 0.974 | 0.962 | 0.982 | 0.950 | 0.927 | |
DOA error | 4.23 | 6.42 | 8.49 | 6.42 | 8.56 | 9.26 | |
Frame Recall | 98.78 | 98.52 | 97.63 | 98.04 | 96.66 | 96.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Veerajagadheswar, P.; Mohan, R.E.; Ramalingam, B.; Yang, Z. Microphone-Based Context Awareness and Coverage Planner for a Service Robot Using Deep Learning Techniques. Mathematics 2023, 11, 1766. https://doi.org/10.3390/math11081766
Jia Y, Veerajagadheswar P, Mohan RE, Ramalingam B, Yang Z. Microphone-Based Context Awareness and Coverage Planner for a Service Robot Using Deep Learning Techniques. Mathematics. 2023; 11(8):1766. https://doi.org/10.3390/math11081766
Chicago/Turabian StyleJia, Yin, Prabakaran Veerajagadheswar, Rajesh Elara Mohan, Balakrishnan Ramalingam, and Zhenyuan Yang. 2023. "Microphone-Based Context Awareness and Coverage Planner for a Service Robot Using Deep Learning Techniques" Mathematics 11, no. 8: 1766. https://doi.org/10.3390/math11081766
APA StyleJia, Y., Veerajagadheswar, P., Mohan, R. E., Ramalingam, B., & Yang, Z. (2023). Microphone-Based Context Awareness and Coverage Planner for a Service Robot Using Deep Learning Techniques. Mathematics, 11(8), 1766. https://doi.org/10.3390/math11081766