Next Article in Journal
On the Construction of Exact Numerical Schemes for Linear Delay Models
Previous Article in Journal
Horizontal Axis Wind Turbine Weather Vane Aerodynamic Characteristics: Delayed Detached Eddy Simulation and Experimental Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Coefficient Problems for a Class of Univalent Functions

1
School of Mathematical Sciences, Yangzhou Polytechnic College, Yangzhou 225009, China
2
College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China
3
Faculty of Humanities and Social Sciences, Guangzhou Civil Aviation College, Guangzhou 510403, China
4
Department of Basic Disciplines, Chuzhou Polytechnic College, Chuzhou 239000, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(8), 1835; https://doi.org/10.3390/math11081835
Submission received: 21 January 2023 / Revised: 22 March 2023 / Accepted: 10 April 2023 / Published: 12 April 2023

Abstract

:
In this paper, a new subclass has been defined as Ω of the univalent function in D = { z C : | z | < 1 } . The central goal of this paper is to determine estimates for logarithmic coefficients, inverse logarithmic coefficients, some cases of the Hankel determinant and Zalcman functionals J n , m of inverse functions.

1. Introduction and Definitions

Let D be the unit disk, { z C : | z | < 1 } denotes the open unit disc and the symbol A indicates the class of analytic functions f normalized by f ( 0 ) = 0 = f ( 0 ) 1 . It signifies that f A has the following representation
f ( z ) = z + n = 2 a n z n .
Let S denote the subclass of all univalent functions in A . In [1,2], Peng and Zhong discuss the properties of the class Ω . A function f is in Ω if
Ω = f A : | z f ( z ) f ( z ) | < 1 2 ( z D ) .
The study of function coefficients has focused on the estimation of the Hankel determinants. In the 1960s, Pommerenke [3] defined the qth Hankel determinant for a function f of the form (1) as
H q , n f : = a n a n + 1 a n + q 1 a n + 1 a n + 2 a n + q a n + q 1 a n + q a n + 2 q 2 ,
where q 1 and n 1 . The sharp bounds of the second Hankel determinant H 2 , 2 ( f ) were studied for almost all meaningful subclasses of the class S [4,5,6,7]. The best known second-order case is due to Hayman ([8]), saying that H 2 ( n ) B λ 1 / 2 , where B is an absolute constant. The estimate of the third Hankel determinant H 3 , 1 ( f ) = a 3 a 5 + 2 a 2 a 3 a 4 a 3 3 a 4 2 a 2 2 a 5 is more difficult to obtain than | H 2 , 2 ( f ) | . Even for principal subclasses of the class S, the estimates of the third Hankel determinant are still not sharp [9,10,11,12,13,14,15].
The logarithmic coefficients of f S , denoted by γ n = γ n ( f ) , are described as
l o g f z z = 2 n = 1 γ n z n z D .
If f is given by (1), then its logarithmic coefficients are given as follows
γ 1 = 1 2 a 2 , γ 2 = 1 2 a 3 1 2 a 2 2 , γ 3 = 1 2 a 4 a 2 a 3 + 1 3 a 2 3 , γ 4 = 1 2 a 5 a 4 a 2 + a 3 a 2 2 1 2 a 3 2 1 4 a 2 4 , γ 5 = 1 2 a 6 a 2 a 5 a 3 a 4 + a 4 a 2 2 + a 2 a 3 2 a 2 3 a 3 + 1 5 a 2 5 . .
The famous Köebe 1/4-theorem ensures that, for each univalent function f defined in D , its inverse f 1 exists at least on a disc of radius 1/4 with Taylor’s series of the form representation
f 1 ( ω ) = ω + A 2 ω 2 + A 3 ω 3 + A 4 ω 4 + .
Using the representation f f 1 ω = ω , we obtain
A 2 = a 2 , A 3 = 2 a 2 2 a 3 , A 4 = a 4 + 5 a 2 a 3 5 a 2 3 , A 5 = a 5 + 6 a 4 a 2 21 a 3 a 2 2 + 3 a 3 2 + 14 a 2 4 , A 6 = a 6 + 7 a 5 a 2 28 a 4 a 2 2 28 a 2 a 3 2 + 84 a 3 a 2 3 42 a 2 5 + 7 a 3 a 4 . .
The logarithmic coefficients of f 1 S , denoted by Γ n = Γ n f 1 , are described as
l o g f 1 ω ω = 2 n = 1 Γ n ω n | ω | < 1 / 4 .
Differentiating and using (4), we obtain
Γ 1 = 1 2 a 2 , Γ 2 = 1 2 a 3 3 2 a 2 2 , Γ 3 = 1 2 a 4 4 a 2 a 3 + 10 3 a 2 3 , Γ 4 = 1 2 a 5 5 a 4 a 2 + 15 a 3 a 2 2 5 2 a 3 2 35 4 a 2 4 , Γ 5 = 1 2 a 6 6 a 2 a 5 6 a 3 a 4 + 21 a 4 a 2 2 + 21 a 2 a 3 2 56 a 2 3 a 3 + 126 5 a 2 5 . .
Recently, researchers [16,17] have studied the Hankel determinant for the inverse function. In this paper, we give the bounds of the logarithmic coefficients and the upper bound of the second and third Hankel determinant for the inverse functions of the functions in the class Ω . Let B 0 be the class of analytic functions ω ( z ) = n = 1 c n z n ( z D ) and satisfy the condition ω ( z ) 1 for z D . Consider the functional Φ ω = c 3 + μ c 1 c 2 + ν c 1 3 for ω B 0 and μ , ν R . Now, we define the sets D 1 , D 2 and D 3 by:
D 1 = μ , ν R 2 : μ 1 2 , 1 ν 1 ,
D 2 = μ , ν R 2 : 1 2 μ 2 , 4 27 μ + 1 3 μ + 1 ν 1 ,
D 3 = μ , ν R 2 : 1 2 | μ | 2 , 2 3 ( | μ | + 1 ) ν 4 27 ( | μ | + 1 ) 3 ( | μ | + 1 ) ,
D 4 = μ , ν R 2 : μ 1 2 , ν 1 .
In this paper, we introduced Schwarz functions and applied the properties of function class B 0 (see References [18,19,20,21,22]) and obtained the exact inequalities and corresponding extreme value functions. When studying Hankel determinants, we encountered the extreme value problem of multivariate functions. Currently, the literature mostly avoids discussing the possible internal extreme points, and some methods for finding the extreme value were incorrect. However, we have introduced a method for calculating the solutions of multivariate nonlinear equations and completed the calculation of possible internal extreme points.
To prove our results, we need the following lemmas for Schwarz functions.

2. A Set of Lemmas

Lemma 1
(see [18]). If ω B 0 , then the sharp estimate c n 1 holds for n 1 .
Lemma 2
(see [19]). Let ω B 0 , the following sharp estimate Φ ω Ψ μ , ν holds for μ , ν R , where
Ψ ( μ , ν ) 1 , i f ( μ , ν ) D 1 D 2 , 2 3 ( | μ | + 1 ) ( | μ | + 1 3 ( | μ | + 1 + ν ) ) 1 / 2 , i f ( μ , ν ) D 3 , | ν | , i f ( μ , ν ) D 4 .
Lemma 3
(see [20]). Let ω B 0 , then
c 2 1 c 1 2 , | c 3 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | , | c 4 | 1 | c 1 | 2 | c 2 | 2 , | c 5 | 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | .
Lemma 4
(see [21]). Let ω B 0 , then for all μ C , we have
c 2 + μ c 1 2 m a x 1 , μ
Lemma 5
(see [22]). Let ω B 0 , then for all μ C , μ 1 , we have
c 4 + 2 μ c 1 c 3 + μ c 2 2 + 3 μ 2 c 1 2 c 2 + μ 3 c 1 4 1
Lemma 6
(see [22]). Let ω B 0 , then for all μ C , μ 1 , we have
c 5 + ( 1 + μ ) c 1 c 4 + ( 1 + μ ) c 2 c 3 + 3 μ c 1 c 2 2 + ( 1 + μ + μ 2 ) c 1 2 c 3 + 2 μ ( 1 + μ ) c 1 3 c 2 + μ 2 c 1 5 1 ,
c 5 + 2 μ c 1 c 4 + 2 μ c 2 c 3 + 3 μ 2 c 1 c 2 2 + 3 μ 2 c 1 2 c 3 + 4 μ 3 c 1 3 c 2 + μ 4 c 1 5 1 .

3. Logarithmic Coefficients and Hankel Determinants

In the first theorem, we derive the sharp bound for the logarithmic coefficients.
Theorem 1.
If f Ω is given by (1), then
| γ 1 | 1 4 , | γ 2 | 1 4 , | γ 3 | 1 4 , | γ 4 | 1 4 , | γ 5 | 1 4 .
All bounds are sharp.
Proof. 
Let f Ω . From the formula
f ( z ) = z + 1 2 z ω z ,
we obtain
a 2 = c 1 2 , a 3 = c 2 2 , a 4 = c 3 2 , a 5 = c 4 2 , a 6 = c 5 2 , a 7 = c 6 2 .
From (2) and (7), we obtain
γ 1 = 1 4 c 1 , γ 2 = 1 4 c 2 1 4 c 1 2 , γ 3 = 1 4 c 3 1 2 c 1 c 2 + 1 12 c 1 3 , γ 4 = 1 4 c 4 1 2 c 1 c 3 + 1 4 c 1 2 c 2 1 4 c 2 2 1 32 c 1 4 , γ 5 = 1 4 c 5 1 2 c 1 c 4 1 2 c 2 c 3 + 1 4 c 1 c 2 2 + 1 4 c 3 c 1 2 1 8 c 1 3 c 2 + 1 80 c 1 5 . .
From Lemmas 1 and 4, the bounds of γ 1 and γ 2 are obvious. By using Lemma 2 with μ = 1 2 and ν = 1 12 , the inequality for γ 3 can be obtained.
γ 4 in Formula (8) can be written as
γ 4 = 2 c 4 c 1 c 3 + 1 2 c 1 2 c 2 1 2 c 2 2 1 16 c 1 4 = c 4 c 1 c 3 1 2 c 2 2 + 3 4 c 1 2 c 2 1 8 c 1 4 + c 4 1 4 c 1 2 c 2 + 1 16 c 1 4 .
Applying the triangle inequality, we have
8 γ 4 c 4 c 1 c 3 1 2 c 2 2 + 3 4 c 1 2 c 2 1 8 c 1 4 + c 4 1 4 c 1 2 c 2 + 1 16 c 1 4 .
From Lemma 5 for μ = 1 2 , we get c 4 c 1 c 3 1 2 c 2 2 + 3 4 c 1 2 c 2 1 8 c 1 4 1 , thus we have
8 γ 4 1 + Δ
where
Δ = c 4 1 4 c 1 2 c 2 + 1 16 c 1 4 .
Now, we claim that Δ 1 . Applying Lemma 3 and the triangle inequality in (9), we get
Δ 1 c 1 2 c 2 2 + 1 4 c 2 c 1 2 + 1 16 c 1 4 = φ 1 x , y = 1 x 2 y 2 + 1 4 x 2 y + 1 16 x 4
where c 1 = x , c 2 = y .
Assume that φ 1 x , y has a maximum value at an interior point of Λ = x , y : 0 x 1 , 0 y 1 x 2 . Then φ 1 x = 2 x + 1 2 x y + 1 4 x 3 = φ 1 y = 2 y + 1 4 x 2 = 0 implies x = y = 0 which is a contradiction.
On the boundary of Λ , we get
φ 1 0 , y = 1 y 2 1 ,
φ 1 x , 0 = 1 x 2 + 1 16 x 4 φ 1 0 , 0 = 1 ,
φ 1 x , 1 x 2 = 5 4 x 2 19 16 x 4 = τ 1 ( x ) τ 1 10 19 = 25 76 < 1 .
Hence, Δ 1 , and so 8 γ 4 2 . Thus, we get the fourth inequality in Theorem 1.
γ 5 in Formula (8) can be written as
8 γ 5 = 2 c 5 c 1 c 4 c 2 c 3 + 1 2 c 1 c 2 2 + 1 2 c 3 c 1 2 1 4 c 2 c 1 3 + 1 40 c 1 5 = c 5 c 1 c 4 c 2 c 3 + 3 4 c 1 c 2 2 + 3 4 c 3 c 1 2 1 2 c 2 c 1 3 + 1 16 c 1 5 + c 5 1 4 c 1 c 2 2 1 4 c 3 c 1 2 + 1 4 c 2 c 1 3 3 80 c 1 5 .
From Lemma 6 for μ = 1 2 , we know that
c 5 c 1 c 4 c 2 c 3 + 3 4 c 1 c 2 2 + 3 4 c 3 c 1 2 1 2 c 2 c 1 3 + 1 16 c 1 5 1 .
Thus, we obtain
8 γ 5 1 + Δ
where
Δ = c 5 1 4 c 1 c 2 2 1 4 c 3 c 1 2 + 1 4 c 2 c 1 3 3 80 c 1 5 .
Next, we claim that Δ 1 . Applying Lemma 3 and the triangle inequality in (10), we have
Δ 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | + 1 4 | c 1 | | c 2 | 2 + 1 4 | c 3 | | c 1 | 2 + 1 4 | c 2 | | c 1 | 3 + 3 80 | c 1 | 5 .
The expression on the right side of the above inequality takes its greatest value with respect to c 3 when c 3 = 1 8 c 1 2 1 + c 1 , so
Δ φ 2 x , y = 1 x 2 y 2 + 1 64 x 4 1 + x + 1 4 x y 2 + 1 4 y x 3 + 3 80 x 5
where c 1 = x , c 2 = y .
Assume that φ 2 x , y has a maximum value at an interior point of Λ = x , y : 0 x 1 , 0 y 1 x 2 . Then φ 2 x = 2 x + 1 64 5 x 4 + 4 x 3 + 1 4 y 2 + 3 4 y x 2 + 3 16 x 4 = φ 2 y = 2 y + 1 2 x y + 1 4 x 3 = 0 implies x = y = 0 which is a contradiction.
On the boundary of Λ , we get
φ 2 0 , y = 1 y 2 1 ,
φ 2 x , 0 = 1 x 2 + 1 16 x 4 + 17 320 x 5 φ 2 ( 0 , 0 ) = 1 ,
φ 2 x , 1 x 2 = 1 4 x + x 2 1 4 x 3 63 64 x 4 + 17 320 x 5 .
Since the functions f 1 x = 1 4 x 1 4 x 3 + 17 320 x 5 and f 2 x = x 2 63 64 x 4 reach their greatest values for x = 24 4 19 17 and x = 4 2 63 , respectively. Thus, f 1 ( x ) f 1 ( 24 4 19 17 ) 0.1002856 and f 2 x f 1 4 2 63 = 16 63 , and it follows that
φ 2 x , 1 x 2 0.1002856 + 16 63 < 1 .
Hence, Δ 1 , and so 8 γ 5 2 . Thus, we obtain the fifth inequality in Theorem 1.
The equalities in Theorem 1 hold for functions f given by (6) with ω z = z , ω z = z 2 , ω z = z 3 , ω z = z 4 , ω z = z 5 respectively. □
Remark 1.
The estimates of the coefficients γ 1 , γ 2 and γ 3 of Theorem 1 are the improvement of the estimates obtained in ([2], Theorem 2.1).
Theorem 2.
Let ( x 0 , y 0 ) ( 0.147952 , 0.356608 ) be the approximate root of the system of linear equations
32 y 4 + 16 x 16 y 3 + 8 x 4 + 56 x 3 + 120 x 2 + 104 x + 32 y 2 + ( 24 x 6 + 24 x 5 104 x 4 200 x 3 96 x 2 + 16 x + 16 ) y + 6 x 8 + 18 x 7 + 50 x 6 + 102 x 5 + 48 x 4 112 x 3 144 x 2 48 x = 0 , 64 y 3 + 48 x 2 48 x y 2 + 8 x 4 + 80 x 3 + 72 x 2 64 x 64 y + 6 x 6 4 x 5 42 x 4 32 x 3 + 32 x 2 + 48 x + 16 = 0 .
If f Ω be of form (1) and its inverse f 1 is given by (3), then we have
H 2 , 2 f 1 = A 2 A 4 A 3 2 1 4
and
H 3 , 1 ( f 1 ) 1 64 16 y 0 4 ( 1 + x 0 ) 2 16 x 0 1 + x 0 y 0 3 + ( 4 x 0 2 + 32 x 0 32 ) y 0 2 + ( 6 x 0 4 16 x 0 3 16 x 0 2 + 16 x 0 + 16 ) y 0 + x 0 6 + 8 x 0 4 24 x 0 2 + 16 0.289558 .
The first inequality is sharp.
Proof. 
From (4) and (7), we get
A 2 = 1 2 c 1 , A 3 = 1 2 c 1 2 c 2 , A 4 = 1 8 4 c 3 + 10 c 1 c 2 5 c 1 3 , A 5 = 1 8 4 c 4 + 12 c 1 c 3 21 c 2 c 1 2 + 6 c 2 2 + 7 c 1 4 . .
From (11), we have
H 2 , 2 f 1 = A 2 A 4 A 3 2 = 1 16 c 1 4 2 c 1 2 c 2 + 4 c 3 c 1 4 c 2 2 .
Applying the triangle inequality and Lemma 3 in the above equality, we obtain
H 2 , 2 f 1 1 16 | c 1 | 4 + 2 | c 1 | 2 | c 2 | + 4 | c 3 | | c 1 | + 4 | c 2 | 2 1 16 | c 1 | 4 + 2 | c 1 | 2 | c 2 | + 4 | c 1 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 4 | c 2 | 2 | = 1 16 | c 1 | 4 + 2 | c 1 | 2 | c 2 | + 4 | c 1 | 4 | c 1 | 3 + 4 1 + | c 1 | | c 2 | 2 | 1 16 | c 1 | 4 + 2 | c 1 | 2 1 | c 1 | 2 + 4 | c 1 | 4 | c 1 | 3 + 4 1 + | c 1 | 1 | c 1 | 2 2 = 1 16 4 2 | c 1 | 2 | c 1 | 4 1 4 .
From (11), we have
64 H 3 , 1 f 1 = 16 c 3 2 + 16 c 1 c 2 c 3 + 16 c 2 c 4 8 c 4 c 1 2 16 c 2 3 + 12 c 1 2 c 2 2 + c 1 6 6 c 2 c 1 4 .
Hence, applying the triangle inequality and Lemma 3, we get
64 H 3 , 1 ( f 1 ) 16 | c 3 | 2 + 16 | c 1 | | c 2 | | c 3 | + 16 | c 2 | | c 4 | + 8 | c 1 | 2 | c 4 | + 16 | c 2 | 3 + 12 | c 1 | 2 | c 2 | 2 + | c 1 | 6 + 6 | c 2 | | c 1 | 4 16 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | 2 + 16 | c 1 | | c 2 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 16 | c 2 | 1 | c 1 | 2 | c 2 | 2 + 8 | c 1 | 2 1 | c 1 | 2 | c 2 | 2 + 16 | c 2 | 3 + 12 | c 1 | 2 | c 2 | 2 + | c 1 | 6 + 6 | c 2 | | c 1 | 4 = 16 | c 2 | 4 1 + | c 1 | 2 16 | c 1 | 1 + | c 1 | | c 2 | 3 + ( 4 | c 1 | 2 + 32 | c 1 | 32 ) | c 2 | 2 + ( 6 | c 1 | 4 16 | c 1 | 3 16 | c 1 | 2 + 16 | c 1 | + 16 ) | c 2 | + | c 1 | 6 + 8 | c 1 | 4 24 | c 1 | 2 + 16 .
Setting x = | c 1 | and y = | c 2 | , we obtain
64 H 3 , 1 ( f 1 ) 16 y 4 1 + x 2 16 x 1 + x y 3 + 4 x 2 + 32 x 32 y 2 + 6 x 4 16 x 3 16 x 2 + 16 x + 16 y + x 6 + 8 x 4 24 x 2 + 16 = φ 3 x , y .
We need to calculate the maximum value of φ 3 x , y on Λ = x , y : 0 x 1 , 0 y 1 x 2 . Differentiating φ 3 x , y with respect to x and y, we get
φ 3 x = 32 y 4 1 + x 3 16 1 + x 2 y 3 + 8 x + 32 y 2 + 24 x 3 48 x 2 32 x + 16 y + 6 x 5 + 32 x 3 48 x
and
φ 3 y = 64 y 3 1 + x 2 48 x 1 + x y 2 + 8 x 2 + 64 x 64 y + 6 x 4 16 x 3 16 x 2 + 16 x + 16 .
Setting φ 3 x = 0 , φ 3 y = 0 and simplifying, we obtain
32 y 4 + ( 16 x 16 ) y 3 + ( 8 x 4 + 56 x 3 + 120 x 2 + 104 x + 32 ) y 2 + ( 24 x 6 + 24 x 5 104 x 4 200 x 3 96 x 2 + 16 x + 16 ) y + 6 x 8 + 18 x 7 + 50 x 6 + 102 x 5 + 48 x 4 112 x 3 144 x 2 48 x = 0 , 64 y 3 + ( 48 x 2 48 x ) y 2 + ( 8 x 4 + 80 x 3 + 72 x 2 64 x 64 ) y + 6 x 6 4 x 5 42 x 4 32 x 3 + 32 x 2 + 48 x + 16 = 0 .
By numerical computation we obtain the following:
x 0 0.147952 , y 0 0.356608 , x 1 = 1 , y 1 = 0 , x 2 0.062301 , y 2 1.125603 x 3 0.300973 , y 3 0.9613356 , x 4 1.086663 , y 4 0.068860 , x 5 1.403759 , y 5 0.757992 , x 6 74.674540 , y 6 1439.155590 ,
Thus, in Ω , there is a critical point x 0 , y 0 0.147952 , 0.356608 satisfying y 1 x 2 . For the point, we have φ 3 x 0 , y 0 18.5317 .
On the boundary of Λ , we get
φ 3 0 , y = 16 y 4 32 y 2 + 16 y + 16 φ 3 0 , 0.2696 18.0722 ,
φ 3 x , 0 = x 6 + 8 x 4 24 x 2 + 16 φ 3 0 , 0 = 16 ,
φ 3 x , 1 x 2 = 16 x 6 + 30 x 5 43 x 4 60 x 3 + 27 x 2 + 30 x + 1 = τ 2 x τ 2 0.518961 12.433 .
Thus, H 3 , 1 f 1 18.5317 64 0.289558 , and we obtain the second inequality in Theorem 2.
Observe that, if c 2 = 1 and c k = 0 ( k 2 ) , then A 2 = A 2 = 0 , A 3 = 1 2 . This means that the first inequality is sharp. □
Theorem 3.
Let f Ω be of form (1) and its inverse f 1 is given by (3). Then we have
| Γ 1 | 1 4 , | Γ 2 | 1 4 , | Γ 3 | 2 6 13 , | Γ 4 | 1507 2512 , | Γ 5 | 1251 320 .
All bounds are sharp.
Proof. 
From (5) and (7), we get
Γ 1 = 1 4 c 1 , Γ 2 = 1 4 ( c 2 3 4 c 1 2 ) , Γ 3 = 1 4 ( c 3 2 c 1 c 2 + 5 6 c 1 3 ) , Γ 4 = 1 4 ( c 4 5 2 c 1 c 3 + 15 4 c 2 c 1 2 5 4 c 2 2 35 32 c 1 4 ) , Γ 5 = 1 4 ( c 5 3 c 1 c 4 3 c 2 c 3 + 21 4 c 1 c 2 2 + 21 4 c 3 c 1 2 7 c 1 3 c 2 + 63 40 c 1 5 ) . .
The bounds of Γ 1 , Γ 2 follow from Lemma 1 and Lemma 4, respectively.
Formula (12) for Γ 3 can be written as
4 Γ 3 = c 3 2 c 1 c 2 + 5 6 c 1 3 .
Applying the triangle and Lemma 3 in (13), we obtain
4 Γ 3 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 2 | c 1 | | c 2 | + 5 6 | c 1 | 3 = φ 4 x , y = 1 x 2 y 2 1 + x + 2 x y + 5 6 x 3
where x = c 1 , y = c 2 .
Assume that φ 4 x , y has a maximum value at an interior point of Λ = x , y : 0 x 1 , 0 y 1 x 2 . Then, φ 4 x = 2 x + y 2 ( 1 + x ) 2 + 2 y + 5 2 x 2 = φ 4 y = 2 x 2 y 1 + x = 0 implies x = y = 0 , which is a contradiction.
On the boundary of Λ , we get
φ 4 0 , y = 1 y 2 1 ,
φ 4 x , 0 = 1 x 2 + 5 6 x 3 φ 4 0 , 0 = 1 ,
φ 4 x , 1 x 2 = 3 x 13 6 x 3 = τ 3 x τ 3 6 13 = 2 6 13 = 1.3587 > 1 .
We note that equality in the inequality in Γ 3 2 6 13 is attained when c 1 = 6 13 , c 2 = 7 13 and c 3 = 7 13 6 13 .
Formula (12) for γ 4 can be written
128 Γ 4 = 32 c 4 80 c 1 c 3 + 120 c 2 c 1 2 40 c 2 2 35 c 1 4 .
Applying the triangle and Lemma 3, we obtain
128 Γ 4 32 1 | c 1 | 2 | c 2 | 2 + 80 | c 1 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 120 | c 2 | | c 1 | 2 + 40 | c 2 | 2 + 35 | c 1 | 4 = 32 32 | c 1 | 2 + 8 | c 2 | 2 + 80 | c 1 | 80 | c 1 | 3 80 | c 1 | | c 2 | 2 1 + | c 1 | + 120 | c 2 | | c 1 | 2 + 35 | c 1 | 4 = φ 5 x , y = 32 + 80 x 32 x 2 + 8 y 2 80 x 3 80 x y 2 1 + x + 120 y x 2 + 35 x 4
where c 1 = x , c 2 = y .
Assume that φ 5 x , y has a maximum value at an interior point of Λ = ( x , y ) : 0 x 1 , 0 y 1 x 2 . The critical points of Λ satisfy the conditions
80 64 x 240 x 2 80 y 2 ( 1 + x ) 2 + 240 x y + 140 x 3 = 0 a n d y = 15 ( x 2 + x 3 ) 2 ( 9 x 1 ) .
Solving this system leads to the equality
27540 x 5 12060 x 4 2524 x 3 + 7392 x 2 1504 x + 80 = 0 ,
which has two solutions: x 1 = 0.1218 and x 2 = 0.1005 . Hence, we get two critical points: 0.1218 , 1.2973 and 0.1005 , 0.87277 . Both points do not belong to Λ .
On the boundary of Λ , we get
φ 5 0 , y = 32 + 8 y 2 φ 5 0 , 1 = 40 ,
φ 5 x , 0 = 32 + 80 x 32 x 2 80 x 3 + 35 x 4 φ 5 0.5275 , 0 56.2633 ,
φ 5 x , 1 x 2 = 40 + 152 x 2 157 x 4 = τ 4 x τ 4 76 157 = 12056 157 76.7898 .
We note that equality in the inequality in Γ 4 1507 2512 is attained when c 1 = 76 157 , c 2 = 81 157 , c 3 = 81 157 76 157 and c 4 = 6156 24649 .
Formula (12) for Γ 5 can be written as
8 Γ 5 = | 2 c 5 6 c 1 c 4 6 c 2 c 3 + 21 2 c 1 c 2 2 + 21 2 c 3 c 1 2 14 c 1 3 c 2 + 63 20 c 1 5 | = | ( c 5 2 c 1 c 4 2 c 2 c 3 + 3 c 1 c 2 2 + 3 c 3 c 1 2 4 c 1 3 c 2 + c 1 5 ) + c 5 4 c 1 c 4 4 c 2 c 3 + 15 2 c 1 c 2 2 + 15 2 c 3 c 1 2 10 c 1 3 c 2 + 43 20 c 1 5 | .
From Lemma 6 for μ = 1 , we know that
c 5 2 c 1 c 4 2 c 2 c 3 + 3 c 1 c 2 2 + 3 c 3 c 1 2 4 c 1 3 c 2 + c 1 5 1 .
Thus, we get
8 Γ 5 1 + Δ
where
Δ = c 5 4 c 1 c 4 4 c 2 c 3 + 15 2 c 1 c 2 2 + 15 2 c 3 c 1 2 10 c 1 3 c 2 + 43 20 c 1 5 .
Now, we show that Δ 1211 40 . Applying the triangle inequality and Lemma 3 in (14), we have
Δ 1 | c 1 | 2 | c 2 | 2 | c 3 | 2 1 + | c 1 | + 4 | c 1 1 | c 1 | 2 | c 2 | 2 + 4 | c 2 | | c 3 | + 15 2 | c 1 | | c 2 | 2 + 15 2 | c 3 | | c 1 | 2 + 10 | c 1 | 3 | c 2 | + 43 20 | c 1 | 5 .
The expression on the right side of the above inequality takes its greatest value with respect to c 3 when c 3 = 1 + | c 1 | ( 8 | c 2 | + 15 | c 1 | 2 ) 4 , so
Δ φ 6 ( x , y ) = 1 + 4 x x 2 4 x 3 + 225 16 x 4 + 1297 80 x 5 + 15 2 x + 3 y 2 + 25 x 3 + 15 x 2 y
where c 1 = x , c 2 = y .
We try to find the maximum value of φ 6 x , y on 0 , 1 × 1 , 1 x 2 . Differentiating φ 6 x , y with respect to x and y, we get
φ 6 x = 4 2 x 12 x 2 + 225 4 x 3 + 1297 16 x 4 + 15 2 y 2 + 75 x 2 + 30 x y
and
φ 6 y = 25 x 3 + 15 x 2 + 15 x + 6 y .
Setting φ 6 x = 0 , φ 6 y = 0 , we obtain
x 1 0.390648 , y 1 0.318681 , x 2 0.398223 , y 2 30.013200 , x 3 0.574696 , y 3 0.079731 .
Thus, in Λ , there is no critical point.
On the boundary, we get
φ 6 0 , y = 3 y 2 φ 6 0 , 1 3
φ 6 x , 0 = 1 + 4 x x 2 4 x 3 + 225 16 x 4 + 1297 80 x 5 φ 6 ( 1 , 0 ) = 1211 40 ,
φ 6 x , 1 x 2 = 4 + 23 2 x + 8 x 2 + 6 x 3 + 33 16 x 4 103 80 x 5 = τ 5 x τ 5 ( 1 ) = 1211 40 .
We note that equality in the inequality in | Γ 5 | 1251 320 is attained when c 1 = 1 . □
Remark 2.
From Lemma 2 and (12), we have Γ 3 1 2 6 23 , which contradicts the estimate of Γ 3 in Theorem 3. This means that the function Ψ μ , ν does not hold for ( μ , ν ) D 3 .

4. Generalized Zalcman Functional of Inverse Function

Let us consider some cases of the generalized Zalcman functional J n , m ( f 1 ) = A n + m 1 A n A m for f Ω .
Theorem 4.
Let f Ω be of form (1) and its inverse f 1 be given by (3). Then we have
J 2 , 3 ( f 1 ) = A 4 A 2 A 3 12 27 , J 2 , 4 ( f 1 ) = A 5 A 2 A 4 47 20 , J 3 , 3 ( f 1 ) = A 5 A 3 2 1009 768 .
All bounds are sharp.
Proof. 
From (11) and Lemma 3, we get
2 J 2 , 3 ( f 1 ) = 2 | A 4 A 2 A 3 | = | c 3 2 c 1 c 2 + 3 4 c 1 3 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 2 | c 1 | | c 2 | + 3 4 | c 1 | 3 = φ 7 x , y = 1 x 2 y 2 1 + x + 2 x y + 3 4 x 3
where c 1 = x , c 2 = y .
Assume that φ 7 x , y has a maximum value at an interior point of Λ = x , y : 0 x 1 , 0 y 1 x 2 . Then φ 7 x = 2 x + y 2 ( 1 + x ) 2 + 2 y + 9 4 x 2 = φ 7 y = y 1 + x + x = 0 , implies ( x , y ) = ( 0 , 0 ) which is a contradiction.
On the boundary of Λ , we get
φ 7 0 , y = 1 y 2 1
φ 7 x , 0 = 1 x 2 + 3 4 x 3 φ 6 ( 0 , 0 ) = 1 ,
φ 7 x , 1 x 2 = 3 x 9 4 x 3 = φ 7 12 27 , 15 27 = 2 12 27 = 1.3333 > 1 .
We note the equality in the inequality in J 2 , 3 ( f 1 ) 12 27 is attained when c 1 = 12 27 , c 2 = 15 27 and c 3 = 15 27 12 27 .
From (11) and Lemma 3, we get
2 J 2 , 4 ( f 1 ) = 2 A 5 A 2 A 4 = c 4 + 5 2 c 3 c 1 4 c 2 c 1 2 + 3 4 c 2 2 + 9 8 c 1 4 1 | c 1 | 2 | c 2 | 2 + 5 2 | c 1 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 4 | c 1 | 2 | c 2 | + 3 4 | c 2 | 2 + 9 8 | c 1 | 4 = 1 | c 1 | 2 1 4 | c 2 | 2 + 5 2 | c 1 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 4 | c 1 | 2 | c 2 | + 9 8 | c 1 | 4 = φ 8 x , y = 1 x 2 1 4 y 2 + 5 2 x 5 2 x 3 5 x y 2 2 ( 1 + x ) + 4 x 2 y + 9 8 x 4
where | c 1 | = x , | c 2 | = y .
Assume that φ 8 x , y has a maximum value at an interior point of Λ = x , y : 0 x 1 , 0 y 1 x 2 . The critical points of Λ satisfy the conditions
5 2 2 x 15 2 x 2 5 y 2 2 ( 1 + x ) 2 + 8 x y + 9 2 x 3 = 0 a n d y = 8 x 2 ( 1 + x ) 6 x + 1 .
Solving this system leads to an equality
1092 x 5 + 144 x 4 187 x 3 + 117 x 2 + 56 x + 5 = 0
which has no solutions.
On the boundary of Λ , we get
φ 8 0 , y = 1 1 4 y 2 1
φ 8 x , 0 = 1 + 5 2 x x 2 5 2 x 3 + 9 8 x 4 φ 8 ( 0.5305 , 0 ) 1.76067 ,
φ 8 x , 1 x 2 = 3 4 + 6 x 2 45 8 x 4 = τ 6 ( x ) τ 6 ( 24 45 ) = 47 20 .
We note that equality in the inequality in J 2 , 4 ( f 1 ) 47 20 is attained when c 1 = 24 45 , c 2 = 21 45 , c 3 = 21 45 24 45 and c 4 = 504 2025 .
From (11) and Lemma 3, we get
2 J 3 , 3 ( f 1 ) = 2 A 5 A 3 2 = c 4 + 3 c 3 c 1 17 4 c 2 c 1 2 + c 2 2 + 5 4 c 1 4 1 | c 1 | 2 | c 2 | 2 + 3 | c 1 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | + 17 4 | c 1 | 2 | c 2 | + | c 2 | 2 + 5 4 | c 1 | 4 = 1 | c 1 | 2 + 3 | c 1 | 3 | c 1 | 3 3 | c 1 | | c 2 | 2 1 + | c 1 | + 17 4 | c 1 | 2 | c 2 | + 5 4 | c 1 | 4 = φ 9 x , y = 1 + 3 x x 2 3 x 3 3 x y 2 1 + x + 17 4 x 2 y + 5 4 x 4
where | c 1 | = x , | c 2 | = y .
Assume that φ 9 x , y has a maximum value at an interior point of 0 , 1 × 1 , 1 x 2 . The critical points satisfy the conditions
3 2 x 9 x 2 3 y 2 ( 1 + x ) 2 + 17 2 x y + 5 x 3 = 0 a n d y = 17 x ( 1 + x ) 24 .
Solving this system leads to an equality
6348 x 3 2583 x 2 1152 x + 1728 = 0
which has no solutions.
On the boundary of Λ , we get
φ 9 0 , y = 1
φ 9 x , 0 = 1 + 3 x x 2 3 x 3 + 5 4 x 4 φ 9 ( 0.5513 , 0 ) 1.96277 ,
φ 9 x , 1 x 2 = 1 + 25 4 x 2 6 x 4 = τ 7 ( x ) τ 7 ( 25 448 ) = 1009 384 .
We note that equality in the inequality in J 3 , 3 ( f 1 ) 1009 768 is attained when c 1 = 25 48 , c 2 = 23 48 , c 3 = 23 48 25 48 and c 4 = 575 2304 . □

5. Conclusions

In Geometric Function Theory, many authors have studied and investigated various coefficient functionals of other classes of analytic functions. By using the class B 0 of Schwarz functions, we achieved the bounds of logarithmic coefficients, inverse logarithmic coefficients, the Hankel determinant and Zalcman functionals J n , m of inverse functions in the class Ω presented in this paper.
It is worth noting that the class B 0 of the Schwartz function is a good tool to study the coefficients for different subclasses of analytic functions.

Author Contributions

Conceptualization, D.G.; Methodology, D.G.; Software, E.A.; Formal analysis, D.G. and Z.L.; Investigation, H.T. and Q.X.; Resources, E.A.; Data curation, H.T.; Writing—original draft, D.G.; Project administration, Q.X.; Funding acquisition, Q.X. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11561001; 11271045), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT-18-A14), the Natural Science Foundation of Inner Mongolia of China (Grant No. 2018MS01026; 2020MS01010), the Higher School Foundation of Inner Mongolia of China (Grant No. NJZY19211) and the Natural Science Foundation of Anhui Provincial Department of Education (Grant Nos. KJ2020A0993; KJ2020ZD74).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors state that they have no conflict of interest.

References

  1. Peng, Z.; Zhong, G. Some properties for certain classes of univalent functions defined by differential inequalities. Acta Math. Sci. 2017, 37B, 69–78. [Google Scholar] [CrossRef]
  2. Peng, Z.; Obradović, M. New results for a class of univalent functions. Acta Math. Sci. 2019, 39B, 1579–1588. [Google Scholar] [CrossRef]
  3. Pommerenke, C. On the coefficients and Hankel determinant of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
  4. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of orderalpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
  5. Thomas, D.K. The second Hankel determinant of functions convex in one direction. Int. J. Math. Anal. 2016, 10, 423–428. [Google Scholar]
  6. Raducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. C. R. Math. Acad. Sci. Paris 2017, 355, 1063–1071. [Google Scholar] [CrossRef]
  7. Zaprawa, P.; Futa, A. On coefficient functionals for functions with coefficients boundary by 1. Mathematics 2020, 8, 491. [Google Scholar] [CrossRef] [Green Version]
  8. Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
  9. Babalola, K.O. On H3,1 Hankel determinant for some classes of univalent function. Inequal Theory Appl. 2007, 6, 1–7. [Google Scholar]
  10. Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
  11. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
  12. Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of Hankel determinant of the third kind for starlike functions. Bull. Aust. Math. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
  13. Lecko, A.; Sim, Y.J.; Smiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
  14. Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
  15. Zaprawa, P.; Obradocić, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Racsam 2021, 115, 49. [Google Scholar] [CrossRef]
  16. Guo, D.; Ao, E.; Tang, H.; Xiong, L.P. Third Hankel determinant for the inverse of starlike and convex functions. Commun. Math. Res. 2019, 35, 354–358. [Google Scholar]
  17. Maharana, S.; Prajapat, J.K.; Bansal, D. Coefficient bounds for inverse of functions convex in one direction. Honam Math. J. 2020, 42, 781–794. [Google Scholar]
  18. Duren, P.L. Univalent Funtions; Springer: New York, NY, USA, 1983. [Google Scholar]
  19. Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Sklodowska 1981, 35, 125–143. [Google Scholar]
  20. Carlson, F. Sur les coefficient dune fonction bornee dans le cercle unite. Ark. Mat. Astr. Fys. 1940, 27A, 8. [Google Scholar]
  21. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
  22. Zaprawa, P. Initial logarithmic coeffficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Guo, D.; Tang, H.; Li, Z.; Xu, Q.; Ao, E. Coefficient Problems for a Class of Univalent Functions. Mathematics 2023, 11, 1835. https://doi.org/10.3390/math11081835

AMA Style

Guo D, Tang H, Li Z, Xu Q, Ao E. Coefficient Problems for a Class of Univalent Functions. Mathematics. 2023; 11(8):1835. https://doi.org/10.3390/math11081835

Chicago/Turabian Style

Guo, Dong, Huo Tang, Zongtao Li, Qingbing Xu, and En Ao. 2023. "Coefficient Problems for a Class of Univalent Functions" Mathematics 11, no. 8: 1835. https://doi.org/10.3390/math11081835

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop