The Alternating Direction Search Pattern Method for Solving Constrained Nonlinear Optimization Problems
Abstract
:1. Introduction
2. Constructing New Augmented Lagrangian Function
- The first-order KKT condition is satisfied;
- For any with . Here, and .
3. The Equivalence of Local Optimal Solution
4. The Equivalence of Globe Optimal Solution
5. Solution Algorithms
Algorithm 1: Alternating direction search pattern method |
Input: Parameter initialization. and . Give a starting point , and . Let . Output: Stop until a certain stopping criterion is met. Step 1: Solve the optimal solution. Use Algorithm 2 to solve the problem to obtain If and then stop. Step 2: If for any i, then . Otherwise If , for any j, then , otherwise . Step 3: Compute and : Step 4: Set , go to Step 1. |
Algorithm 2: The search pattern method |
Input: Select initial value Output: Stop until a certain stopping criterion is met. Step 1: Let ; for computer Step 2: Set , if , stop; Otherwise, let Let , go to step 1. |
6. Convergence
7. Numerical Experiment
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilli, M.; Maringer, D.; Schumann, E. Numerical Methods and Optimization in Finance; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Yan, M.; Shahidehpour, M.; Paaso, A. Distribution network-constrained optimization of peer-to-peer transactive energy trading among multi-microgrids. IEEE Trans. Smart Grid 2020, 12, 1033–1047. [Google Scholar] [CrossRef]
- Guo, N.; Lenzo, B.; Zhang, X. A real-time nonlinear model predictive controller for yaw motion optimization of distributed drive electric vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4935–4946. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Wang, S.; Cai, Y. Model Predictive Control for Nonlinear Energy Management of a Power Split Hybrid Electric Vehicle. Intell. Autom. Soft Comput. 2020, 26, 27–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Kou, X.; Song, Z. Research on logistics management layout optimization and real-time application based on nonlinear programming. Nonlinear Eng. 2022, 10, 526–534. [Google Scholar] [CrossRef]
- Janabi, A.; Mazin, A. Optimization algorithms and investment portfolio analytics with machine learning techniques under time-varying liquidity constraints. J. Model. Manag. 2022, 17, 864–895. [Google Scholar] [CrossRef]
- Liu, Z.; Reynolds, A. Robust multiobjective nonlinear constrained optimization with ensemble stochastic gradient sequential quadratic programming-filter algorithm. SPE J. 2021, 26, 1964–1979. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Bai, Y.; Yan, X. Perturbed smoothing approach to the lower order exact penalty functions for nonlinear inequality constrained optimization. Tamkang J. Math. 2019, 50, 37–60. [Google Scholar] [CrossRef]
- Tsipianitis, A.; Tsompanakis, Y. Improved Cuckoo Search algorithmic variants for constrained nonlinear optimization. Adv. Eng. Softw. 2020, 149, 102865. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Zheng, J. A new accelerated positive-indefinite proximal ADMM for constrained separable convex optimization problems. J. Nonlinear Var. Anal. 2022, 6, 707–723. [Google Scholar]
- Zhang, X.L.; Zhang, Y.Q.; Wang, Y.Q. Viscosity approximation of a relaxed alternating CQ algorithm for the split equality problem. J. Nonlinear Funct. Anal. 2022, 43, 335. [Google Scholar]
- Di, P.G.; Grippo, L. A new class of augmented Lagrangians in nonlinear programming. SIAM J. Control Optim. 1979, 17, 618–628. [Google Scholar]
- Di, P.G.; Grippo, L. A new augmented Lagrangian function for inequality constraints in nonlinear programming problems. J. Optim. Theory Appl. 1982, 36, 495–519. [Google Scholar]
- Di, P.G.; Lucidi, S. On exact augmented Lagrangian functions in nonlinear programming. Nonlinear Optim. Appl. 1996, 25, 85–100. [Google Scholar]
- Pu, D.G. A class of augmented Lagrangian multiplier function. J. Inst. Railw. Technol. 1984, 5, 45. [Google Scholar]
- Pu, D.; Yang, P. A class of new Lagrangian multiplier methods. In Proceedings of the 2013 Sixth International Conference on Business Intelligence and Financial Engineering, Hangzhou, China, 14–16 November 2013; pp. 647–651. [Google Scholar]
- Pu, D.G.; Zhu, J. New Lagrangian Multiplier Methods. J. Tongji Univ. (Nat. Sci.) 2010, 38, 1387–1391. [Google Scholar]
- Pu, D.G.; Tian, W.W. Globally inexact generalized Newton methods for nonsmooth equation. J. Comput. Appl. Math. 2002, 138, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.F.; Pu, D.G. A Class of New Lagrangian Multiplier Methods with NCP function. J. Tongji Univ. (Nat. Sci.) 2008, 36, 695–698. [Google Scholar]
- Galántai, A. Properties and construction of NCP functions. Comput. Optim. Appl. 2012, 52, 805–824. [Google Scholar] [CrossRef]
- Yu, H.D.; Xu, C.X.; Pu, D.G. Smooth Complementarily Function and 2-Regular Solution of Complementarity Problem. J. Henan Univ. Sci. 2011, 32, 1. [Google Scholar]
- Feng, A.F.; Xu, C.X.; Pu, D.G. New Form of Lagrangian Multiplier Methods. In Proceedings of the 2012 Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26 June 2012; Volume 74, pp. 302–306. [Google Scholar]
- Feng, A.F.; Zhang, L.M.; Xue, Z.X. Alternating Direction Method Of Solving Nonlinear Programming With Inequality Constrained. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Kanton Schwyz, Switzerland, 2014; Volume 651, pp. 2107–2111. [Google Scholar]
- Schittkowski, K. More Test Examples for Nonlinear Programming Codes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
Problem No. | Initial Point | NIT | NF | NG | Initial Point | NIT | NF | NG |
---|---|---|---|---|---|---|---|---|
Problem 215 | 0.6, 0.6 | 11 | 15 | 19 | 1.8, 1.8 | 18 | 25 | 33 |
Problem 227 | 0.8, 0.8 | 7 | 14 | 25 | 1.5, 1.2 | 18 | 23 | 34 |
Problem 232 | 4, 3 | 12 | 16 | 23 | 6, 6 | 9 | 19 | 22 |
Problem 250 | 8, 6, 9 | 15 | 18 | 39 | −6, −7, −8 | 14 | 19 | 27 |
Problem 264 | 1, 0.8, 1, 0.8 | 18 | 24 | 21 | 1.2, 1.2, 1.2, 1.2 | 24 | 36 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, A.; Chang, X.; Shang, Y.; Fan, J. The Alternating Direction Search Pattern Method for Solving Constrained Nonlinear Optimization Problems. Mathematics 2023, 11, 1863. https://doi.org/10.3390/math11081863
Feng A, Chang X, Shang Y, Fan J. The Alternating Direction Search Pattern Method for Solving Constrained Nonlinear Optimization Problems. Mathematics. 2023; 11(8):1863. https://doi.org/10.3390/math11081863
Chicago/Turabian StyleFeng, Aifen, Xiaogai Chang, Youlin Shang, and Jingya Fan. 2023. "The Alternating Direction Search Pattern Method for Solving Constrained Nonlinear Optimization Problems" Mathematics 11, no. 8: 1863. https://doi.org/10.3390/math11081863
APA StyleFeng, A., Chang, X., Shang, Y., & Fan, J. (2023). The Alternating Direction Search Pattern Method for Solving Constrained Nonlinear Optimization Problems. Mathematics, 11(8), 1863. https://doi.org/10.3390/math11081863