Next Article in Journal
Evaluating Natural Hazards in Cities Using a Novel Integrated MCDM Approach (Case Study: Tehran City)
Previous Article in Journal
Towards Sustainable Transportation: A Review of Fuzzy Decision Systems and Supply Chain Serviceability
Previous Article in Special Issue
Formal Matrix Rings: Isomorphism Problem
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Higher Nash Blow-Up Derivation Lie Algebras of Isolated Hypersurface Singularities

by
Muhammad Asif
1,†,
Ahmad N. Al-Kenani
2,†,
Naveed Hussain
3,* and
Muhammad Ahsan Binyamin
4,†
1
Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Punjab, Pakistan
2
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3
Department of Mathematics and Statistics, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
4
Department of Mathematics, GC University Faisalabad, Faisalabad 38000, Punjab, Pakistan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2023, 11(8), 1935; https://doi.org/10.3390/math11081935
Submission received: 17 February 2023 / Revised: 4 April 2023 / Accepted: 15 April 2023 / Published: 20 April 2023

Abstract

:
It is a natural question to ask whether there is any Lie algebra that completely characterize simple singularities? The higher Nash blow-up derivation Lie algebras L k l ( V ) associated to isolated hypersurface singularities defined to be the Lie algebra of derivations of the local Artinian algebra M n l ( V ) : = O l / F , J n , i.e., L k l ( V ) = D e r ( M n l ( V ) ) . In this paper, we construct a new conjecture for the complete characterization of simple hypersurface singularities using the Lie algebras L k l ( V ) under certain condition and prove it true for L k l ( V ) when k , l = 2 .

1. Introduction

The class of simple (ADE) singularities, comprised of A k : { x 2 2 + x 1 k + 1 = 0 } C 2 , k 1 , D k : { x 1 2 x 2 + x 2 k 1 = 0 } C 2 , k 4 , and E 6 , E 7 , E 8 , exceptional singularities defined in C 2 by polynomials x 1 3 + x 2 4 , x 1 3 + x 1 x 2 3 , x 1 3 + x 2 5 , respectively. From the nineteenth century, characterization of ADE singularities have been studied extensively [1]. This class of singularities have many important applications in group theory, singularity theory, etc.
The root system have important role in the classification of nilpotent Lie algebras. Using the root systems, Santharoubane [2] developed a relationship between the Kac–Mody and nilpotent Lie algebras.
Yau [3,4] purposed Lie algebra A ( V ) : = O n / ( f , f x 1 , , f x n ) for isolated hypersurface singularity ( V , 0 ) ( C n , 0 ) . This Lie algebra is a finite dimensional solvable Lie algebra and is called the Yau algebra of V [5,6,7]. Its study began in the 1980s [8,9,10,11,12,13,14,15,16]. Hussain, Yau, and Zuo [17] generalized the Yau algebra as the k-th Yau algebra. Hussain and collaborators further studied k-th Yau algebras [18]. In [19], authors show that the generalized Cartan matrix of Lie algebra L * ( V ) can be used to characterize the ADE singularities except the one pair ( A 6 and D 5 singularities). The Lie algebra L * ( V ) also cannot completely characterize the ADE singularities [20]. So it is natural to ask whether there is any other Lie algebra that completely characterized the simple singularities?
With regards to the above question, Hussain, Yau, and Zuo [21] define the higher Nash blow-up derivation Lie algebra of isolated hypersurface singularities as L k l ( V ) = D e r ( M n l ( V ) ) where M n l ( V ) is local Artinian algebra, ( V , 0 ) defined by a polynomial F ( x 1 , , x l ) , J n C x 1 , , x l is an ideal generated by the ( M × M ) -minors of Jac n ( F ) (higher-order Jacobian matrix) [22] and M n l ( V ) : = O l / F , J n is higher Nash blow-up local algebra. The dimension of M n l ( V ) is d n l ( V ) and dimension of Lie algebra L k l ( V ) denoted as ρ k l ( V ) . The Lie algebra L k l ( V ) , k , l 2 found useful for characterization. In this work, we propose the following conjecture for Lie algebra L k l ( V ) , k , l 2 .
Conjecture 1. 
Generalized Cartan matrices C k l ( V ) , k , l 2 arising from L k l ( V ) completely characterize the ADE singularities. Equivalently, for any two ADE singularities X and Y C k l ( X ) = C k l ( Y ) ⇔X and Y are analytically isomorphic.
Theorem 1. 
The generalized Cartan matrix C 2 2 ( V ) arising from L 2 2 ( V ) characterizes the ADE singularities. Equivalently, if X and Y are two ADE singularities, then C 2 2 ( X ) = C 2 2 ( Y ) ⇔X and Y are analytically isomorphic.

2. Basic Results

Basic definitions and important results related to the higher Nash blow-up derivation Lie algebra of isolated singularities can be found in [21].
Definition 1. 
An n × n matrix with entries in Z , C = ( c i j ) is a generalized Cartan matrix (GCM) if
(1) 
c i i = 2 i = 1 , , n ,
(2) 
c i j 0 i , j = 1 , , n , i j ,
(3) 
c i j = 0 c j i = 0 i , j = 1 , , n , i j .
Theorem 2 
(Mostow’s theorem, [2]). Let T 1 and T 2 be two maximal torus of ξ ( V ) , then there exist φ A u t ξ ( V ) defined as φ T 1 φ 1 = T 2 .
Consider the root space decomposition of ξ ( V ) relatively to T (maximal torus) ([2]);
ξ ( V ) = α R ( T ) ξ ( V ) α ,
ξ ( V ) α = { y ξ ( V ) : t y = α ( t ) y , t T } , and R ( T ) = { α T * : ξ ( V ) α ( 0 ) } ( root system ) ,
R 1 ( T ) = { α R ( T ) : ξ ( V ) α [ ξ ( V ) , ξ ( V ) ] } ,
l α = d i m ( ξ ( V ) α [ ξ ( V ) , ξ ( V ) ] ξ ( V ) α ) , α R 1 ( T ) ,
d α = d i m ( ξ ( V ) α ) , α R 1 ( T ) .
Then the map: α d α R 1 ( T ) N * gives the following partition:
R 1 ( T ) = R 1 ( T ) r 1 R 1 ( T ) r q , r 1 < < r q , R 1 ( T ) r j ,
R 1 ( T ) r = { α R 1 ( T ) ; d α = r } .
Set s j = R 1 ( T ) r j and s = s 1 + + s q . Let d α j = d j and n α j = n j . Let f : { 1 , , n } { 1 , , s } be defined by:
f j = 1 ; 1 j n 1 , 2 ; n 1 j n 1 + n 2 , s ; n 1 + n 2 + + n s 1 j n .
Theorem 3 
([2]). For j , k { 1 , , n } , j k , let c j k ( T ) = m i n { l N ; ( ad v ) l + 1 w = 0 , v ξ β f ( j ) , w ξ β f ( k ) } , with ( ad 0 ) 0 = 0 and let c j j ( T ) = 2 for j = 1 , , n . Then, the generalized Cartan matrix define as C ( T ) = ( c j k ( T ) ) 1 j , k n .

3. Proof of Theorem 1

The following propositions will be used to prove the main theorem.
Proposition 1. 
Let V = { ( x 1 , x 2 ) C 2 : x 1 k + 1 + x 2 2 = 0 } be the A k singularity, k 1 . Then
C 2 2 ( A k ) = is not defined ; k = 1 , 2 , 3 , 2 0 0 2 ; k = 4 , 2 ( k 4 ) k 4 2 2 ; w h e n   k     6   i s   e v e n , 2 ( k 4 ) k 3 2 2 ; w h e n   k     5   a n d   k   i s   o d d .
Proof. 
It follows that algebra M 2 2 ( V ) has a basis of the form x 1 i 1 , 0 i 1 k 1 . The basis of Lie algebra L 2 2 ( V ) is defined as:
ϵ 1 * = x 1 1 + 2 x 1 2 2 , ϵ 2 * = x 1 2 1 + 2 x 1 3 2 , ϵ 3 * = x 1 4 1 + 2 x 1 5 2 , , ϵ k 1 * = x 1 k 1 .
For k = 1 , the Lie algebra dimension are zero and for k = 2 the dimension of nilradical ξ ( V ) are zero. It is also noteworthy that for k 3 the ξ ( V ) of Lie algebra L 2 2 ( V ) is generated by ϵ 2 * , ϵ 3 * , ϵ 4 * , , ϵ k 1 * .
For A 4 singularity, the ξ ( V ) = ϵ 2 * , ϵ 3 * have multiplication table as: [ ϵ 2 * , ϵ 3 * ] = 0 . From multiplication table the type of A 4 singularity are 2 and the nilpotency are 0. The torus T ([8]) of ξ ( V ) is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 3 * 0 ϵ 3 * ϵ 3 * .
Thus, T = C t 1 + C t 2 . It follows that T is maximal torus of ξ ( V ) , because dim T = 2 = the type of A 4 . Suppose that α k : T C be a linear map with α k ( t l ) = δ k l for k , l = 1 , 2 .
ξ ( V ) = ξ α 1 ξ α 2 = C ϵ 2 * C ϵ 3 * .
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 3 * ) . So the generalized Cartan matrix is
C 2 2 ( A 4 ) = 2 0 0 2 .
Case (a). For k is odd and k 5 , the ξ ( V ) = ϵ 2 * , ϵ 3 * , ϵ 4 * , , ϵ k 1 * have following multiplication table:
[ ϵ 2 * , ϵ 3 * ] = ϵ 4 * , [ ϵ 2 * , ϵ 4 * ] = 2 ϵ 5 * , [ ϵ 2 * , ϵ 5 * ] = 3 ϵ 6 * , , [ ϵ 2 * , ϵ k 2 * ] = ( k 4 ) ϵ k 1 * , [ ϵ 3 * , ϵ 4 * ] = ϵ 6 * , [ ϵ 3 * , ϵ 5 * ] = 2 ϵ 7 * , [ ϵ 3 * , ϵ 6 * ] = 3 ϵ 8 * , , [ ϵ 3 * , ϵ k 3 * ] = ( k 6 ) ϵ k 1 * , [ ϵ 4 * , ϵ 5 * ] = ϵ 8 * , [ ϵ 4 * , ϵ 6 * ] = 2 ϵ 9 * , [ ϵ 4 * , ϵ 7 * ] = 3 ϵ 10 * , , [ ϵ 4 * , ϵ k 4 * ] = ( k 8 ) ϵ k 1 * , [ ϵ k 1 2 * , ϵ k 1 2 + 1 * ] = ϵ k 1 * .
Case (b). For k is even and k 6 , the ξ ( V ) = ϵ 2 * , ϵ 3 * , ϵ 4 * , , ϵ k 1 * have following multiplication table:
[ ϵ 2 * , ϵ 3 * ] = ϵ 4 * , [ ϵ 2 * , ϵ 4 * ] = 2 ϵ 5 * , [ ϵ 2 * , ϵ 5 * ] = 3 ϵ 6 * , , [ ϵ 2 * , ϵ k 2 * ] = ( k 4 ) ϵ k 1 * , [ ϵ 3 * , ϵ 4 * ] = ϵ 6 * , [ ϵ 3 * , ϵ 5 * ] = 2 ϵ 7 * , [ ϵ 3 * , ϵ 6 * ] = 3 ϵ 8 * , , [ ϵ 3 * , ϵ k 3 * ] = ( k 6 ) ϵ k 1 * , [ ϵ 4 * , ϵ 5 * ] = ϵ 8 * , [ ϵ 4 * , ϵ 6 * ] = 2 ϵ 9 * , [ ϵ 4 * , ϵ 7 * ] = 3 ϵ 10 * , , [ ϵ 4 * , ϵ k 4 * ] = ( k 8 ) ϵ k 1 * , [ ϵ k 2 2 * , ϵ k 2 2 + 1 * ] = ϵ k 2 * , [ ϵ k 2 2 * , ϵ k 2 2 + 2 * ] = 2 ϵ k 1 * .
For the A 5 singularity, the nilradical ξ ( V ) = ϵ 2 * , ϵ 3 * , ϵ 4 * have following multiplication table [ ϵ 2 * , ϵ 3 * ] = ϵ 4 * . From the multiplication table, the type of A 5 singularity are 2 and the nilpotency are 1. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 3 * 0 ϵ 3 * ϵ 3 * ϵ 4 * ϵ 4 * ϵ 4 * ϵ 4 * .
After simple calculation we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 + α 2 = C ϵ 2 * C ϵ 3 * C ϵ 4 * .
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 3 * ) . So the generalized Cartan matrix is
C 2 2 ( A 5 ) = 2 1 1 2 .
For A 6 singularity, the ξ ( V ) = ϵ 2 * , ϵ 3 * , ϵ 4 * , ϵ 5 * have following multiplication table [ ϵ 2 * , ϵ 3 * ] = ϵ 4 * , [ ϵ 2 * , ϵ 4 * ] = 2 ϵ 5 * . From multiplication table, the type for A 6 singularity is 2 and the nilpotency is 1. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 3 * 0 ϵ 3 * ϵ 3 * ϵ 4 * ϵ 4 * ϵ 4 * ϵ 4 * ϵ 5 * 2 ϵ 5 * ϵ 5 * ϵ 5 * .
After a simple calculation, we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 + α 2 ξ 2 α 1 + α 2 = C ϵ 2 * C ϵ 3 * C ϵ 4 * C ϵ 5 * .
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 3 * ) . So the generalized Cartan matrix is
C 2 2 ( A 6 ) = 2 2 1 2 .
From above multiplication table, the type of A k ( k 7 ) singularity is 2 and the nilpotency is k 4 . The torus T is spanned by
t : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 3 * 2 ϵ 3 * ϵ 4 * 4 ϵ 4 * ϵ 5 * 5 ϵ 5 * ϵ k 1 * ( k 2 ) ϵ k 1 * .
After simple calculation we obtain
ξ ( V ) = ξ α ξ 2 α ξ 3 α ξ 4 α ξ ( k 2 ) α = C ϵ 2 * C ϵ 3 * C ϵ 4 * C ϵ k 1 * .
Therefore, the T-minimal system of generators are ( ϵ 2 * , ϵ 3 * ) . So the generalized Cartan matrices are:
  • Case (a). For k is even and k 8 , we have C 2 2 ( A k ) = 2 k 4 k 4 2 2 .
  • Case (b). For k is odd and k 7 we have C 2 2 ( A k ) = 2 k 4 k 3 2 2 .
Proposition 2. 
Let V = { ( x 1 , x 2 ) C 2 : x 1 2 x 2 + x 2 k 1 = 0 } be the D k singularity, k 4 . Then
C 2 2 ( D k ) = 2 3 1 0 2 0 1 0 2 ; k = 4 , 2 3 2 2 2 1 1 1 2 ; k = 5 , 2 1 2 2 1 2 1 1 1 1 2 0 1 1 0 2 ; k = 6 , 2 1 2 0 1 2 1 0 1 1 2 2 0 0 1 2 ; k = 7 , 2 1 2 2 0 1 2 1 1 0 1 1 2 0 k + 5 1 1 0 2 k + 5 0 0 k + 6 2 k + 6 2 2 ; w h e n   k     8   a n d   k   i s   e v e n , 2 1 2 2 0 1 2 1 1 0 1 1 2 0 k + 5 1 1 0 2 k + 5 0 0 k + 5 2 k + 5 2 2 ; w h e n   k     9   a n d   k   i s   o d d .
Proof. 
It follows that the algebra M 2 2 ( V ) has a monomial basis of the form:
{ x 2 i 2 , 0 i 2 k 2 ; x 1 ; x 1 x 2 ; x 1 2 } .
When k = 4 , then the basis of Lie algebra L 2 2 ( V ) define as:
ϵ 1 * = x 1 1 + x 2 2 , ϵ 2 * = x 2 1 , ϵ 3 * = x 1 2 , ϵ 4 * = x 2 2 , ϵ 5 * = x 1 2 2 , ϵ 6 * = x 1 x 2 2 , ϵ 7 * = x 2 2 2 , ϵ 8 * = x 1 2 1 , ϵ 9 * = x 1 x 2 1 , ϵ 10 * = x 2 2 1 .
For the D 4 singularity, the nilradical ξ ( V ) = ϵ 2 * , ϵ 5 * , ϵ 6 * , ϵ 7 * , , ϵ 10 * have following multiplication table:
[ ϵ 2 * , ϵ 5 * ] = 2 ϵ 6 * ϵ 8 * , [ ϵ 2 * , ϵ 6 * ] = ϵ 7 * ϵ 9 * , [ ϵ 2 * , ϵ 7 * ] = ϵ 10 * , [ ϵ 2 * , ϵ 8 * ] = 2 ϵ 9 * , [ ϵ 2 * , ϵ 9 * ] = ϵ 10 * .
From multiplication table the type of D 4 singularity are 3 and the nilpotency are 3. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) t 3 : ξ ( V ) ξ ( V ) ϵ 2 * 0 ϵ 2 * 0 ϵ 2 * ϵ 2 * ϵ 5 * 0 ϵ 5 * ϵ 5 * ϵ 5 * 0 ϵ 6 * ϵ 6 * + ϵ 8 * ϵ 6 * ϵ 8 * ϵ 6 * ϵ 8 * ϵ 7 * 2 ϵ 7 * + 2 ϵ 9 * ϵ 7 * ϵ 7 * 2 ϵ 9 * ϵ 7 * 2 ϵ 9 * ϵ 8 * 2 ϵ 6 * + 2 ϵ 8 * ϵ 8 * 2 ϵ 6 * ϵ 8 * ϵ 8 * 2 ϵ 6 * ϵ 8 * ϵ 9 * ϵ 7 * + ϵ 9 * ϵ 9 * ϵ 7 * ϵ 9 * ϵ 7 * + ϵ 9 * ϵ 10 * 0 ϵ 10 * ϵ 10 * ϵ 10 * 3 ϵ 10 * .
After simple calculation we obtain
ξ ( V ) = ξ 3 α 1 2 α 2 α 3 ξ 3 α 1 2 α 2 2 α 3 ξ α 2 + 3 α 3 ξ α 2 + 2 α 3 ξ α 2 + α 3 ξ α 2 ξ α 3 = C ( ϵ 7 * ϵ 9 * ) C ( ϵ 6 * + ϵ 8 * ) C ϵ 10 * C ( ϵ 7 * 2 + ϵ 9 * ) ( 2 ϵ 6 * + ϵ 8 * ) C ϵ 5 * C ϵ 2 *
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 5 * , ϵ 6 * + ϵ 8 * ) . So the generalized Cartan matrix are
C 2 2 ( D 4 ) = 2 3 1 0 2 0 1 0 2 .
For k 5 , the basis of Lie algebra L 2 2 ( V ) are:
ϵ 1 * = x 1 1 x 2 2 , ϵ 2 * = x 1 2 , ϵ 3 * = x 2 2 , ϵ 4 * = x 2 k 3 1 , ϵ 5 * = x 2 2 2 , ϵ 6 * = x 2 3 2 , ϵ 7 * = x 2 4 2 , , ϵ k * = x 2 k 3 2 , ϵ k + 1 * = x 1 2 2 , ϵ k + 2 * = x 1 x 2 2 , ϵ k + 3 * = x 2 k 2 2 , ϵ k + 4 * = x 1 2 1 , ϵ k + 5 * = x 1 x 2 1 , ϵ k + 6 * = x 2 k 2 1 .
For D 5 singularity, the nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ 11 * have following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = 2 ϵ 10 * + ϵ 5 * , [ ϵ 2 * , ϵ 5 * ] = 2 ϵ 7 * , [ ϵ 2 * , ϵ 7 * ] = ϵ 6 * , [ ϵ 2 * , ϵ 9 * ] = ϵ 6 * , [ ϵ 4 * , ϵ 5 * ] = 2 ϵ 11 * , [ ϵ 4 * , ϵ 7 * ] = ϵ 8 * , [ ϵ 4 * , ϵ 10 * ] = ϵ 11 * .
From multiplication table, the type of D 5 singularity is 3 and the nilpotency is 3. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * 0 ϵ 2 * 0 ϵ 4 * 0 ϵ 4 * ϵ 4 * ϵ 5 * ϵ 5 * ϵ 5 * ϵ 5 * ϵ 6 * 3 ϵ 6 * ϵ 6 * ϵ 6 * ϵ 7 * 2 ϵ 7 * ϵ 7 * ϵ 7 * ϵ 8 * 2 ϵ 8 * ϵ 8 * 2 ϵ 8 * ϵ 9 * 2 ϵ 9 * ϵ 9 * ϵ 9 * ϵ 10 * ϵ 10 * ϵ 10 * ϵ 10 * ϵ 11 * ϵ 11 * ϵ 11 * 2 ϵ 11 * .
After simple calculation we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 + α 2 ξ 3 α 1 + α 2 ξ 2 α 1 + α 2 ξ 2 α 1 + 2 α 2 ξ α 1 + 2 α 2 = C ϵ 2 * C ϵ 4 * C ( ϵ 5 * ϵ 10 * ) C ϵ 6 * C ( ϵ 7 * ϵ 9 * ) C ϵ 8 * C ϵ 11 *
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 4 * , ϵ 5 * ) . So the generalized Cartan matrix is
C 2 2 ( D 5 ) = 2 3 2 2 2 1 1 1 2 .
For D 6 singularity, the nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ 12 * have following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = ϵ 6 * , [ ϵ 2 * , ϵ 5 * ] = 2 ϵ 8 * , [ ϵ 2 * , ϵ 8 * ] = ϵ 7 * , [ ϵ 2 * , ϵ 10 * ] = ϵ 7 * , [ ϵ 2 * , ϵ 11 * ] = ϵ 10 * + ϵ 8 * , [ ϵ 2 * , ϵ 12 * ] = ϵ 9 * , [ ϵ 4 * , ϵ 5 * ] = 3 ϵ 12 * , [ ϵ 4 * , ϵ 8 * ] = ϵ 9 * , [ ϵ 4 * , ϵ 11 * ] = ϵ 12 * , [ ϵ 5 * , ϵ 6 * ] = ϵ 9 * .
From multiplication table, the type of D 6 singularity is 4 and the nilpotency is 2. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) t 3 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 2 * 0 ϵ 4 * 0 ϵ 4 * ϵ 4 * ϵ 4 * 0 ϵ 5 * 0 ϵ 5 * 0 ϵ 5 * ϵ 5 * ϵ 6 * ϵ 6 * ϵ 6 * ϵ 6 * ϵ 6 * 0 ϵ 7 * 2 ϵ 7 * ϵ 7 * 0 ϵ 7 * ϵ 7 * ϵ 8 * ϵ 8 * ϵ 8 * 0 ϵ 8 * ϵ 8 * ϵ 9 * ϵ 9 * ϵ 9 * ϵ 9 * ϵ 9 * ϵ 9 * ϵ 10 * ϵ 10 * ϵ 10 * 0 ϵ 10 * ϵ 10 * ϵ 11 * 0 ϵ 11 * 0 ϵ 11 * ϵ 11 * ϵ 12 * 0 ϵ 12 * ϵ 12 * ϵ 12 * ϵ 12 * .
After a simple calculation, we obtain
ξ ( V ) = ξ β 1 ξ β 2 ξ β 3 ξ β 1 + β 2 ξ 2 β 1 + β 3 ξ β 1 + β 3 ξ β 1 + β 2 + β 3 ξ β 2 + β 3 = C ϵ 2 * C ϵ 4 * C ( ϵ 5 * ϵ 11 * ) C ϵ 6 * C ϵ 7 * C ( ϵ 8 * ϵ 10 * ) C ϵ 9 * C ϵ 12 *
Therefore, the T-minimal system of generators are ( ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 11 * ) . So the generalized Cartan matrix is
C 2 2 ( D 6 ) = 2 1 2 2 1 2 1 1 1 1 2 0 1 1 0 2 .
For D 7 singularity, the nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ 13 * have following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = ϵ 7 * , [ ϵ 2 * , ϵ 5 * ] = 2 ϵ 9 * , [ ϵ 2 * , ϵ 9 * ] = ϵ 8 * , [ ϵ 2 * , ϵ 11 * ] = ϵ 8 * , [ ϵ 2 * , ϵ 12 * ] = ϵ 11 * + ϵ 9 * , [ ϵ 2 * , ϵ 13 * ] = ϵ 10 * , [ ϵ 4 * , ϵ 5 * ] = 4 ϵ 13 * , [ ϵ 4 * , ϵ 9 * ] = ϵ 10 * , [ ϵ 4 * , ϵ 12 * ] = ϵ 13 * , [ ϵ 5 * , ϵ 6 * ] = ϵ 7 * , [ ϵ 5 * , ϵ 7 * ] = 2 ϵ 10 * .
From multiplication table the type of D 7 singularity is 5 and the nilpotency is 2. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) t 3 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 2 * 0 ϵ 4 * 0 ϵ 4 * ϵ 4 * ϵ 4 * 0 ϵ 5 * ϵ 5 * ϵ 5 * 0 ϵ 5 * ϵ 5 * ϵ 6 * ϵ 6 * ϵ 6 * ϵ 6 * ϵ 6 * ϵ 6 * ϵ 7 * ϵ 7 * ϵ 7 * ϵ 7 * ϵ 7 * 0 ϵ 8 * 2 ϵ 8 * ϵ 8 * 0 ϵ 8 * ϵ 8 * ϵ 9 * ϵ 9 * ϵ 9 * 0 ϵ 9 * ϵ 9 * ϵ 10 * ϵ 10 * ϵ 10 * ϵ 10 * ϵ 10 * ϵ 10 * ϵ 11 * ϵ 11 * ϵ 11 * 0 ϵ 11 * ϵ 11 * ϵ 12 * 0 ϵ 12 * 0 ϵ 12 * ϵ 12 * ϵ 13 * 0 ϵ 12 * ϵ 13 * ϵ 13 * ϵ 13 * .
After a simple calculation, we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 + α 3 ξ α 1 + α 2 α 3 ξ α 1 + α 2 ξ 2 α 1 + α 3 ξ α 1 + α 2 + α 3 ξ α 3 ξ α 2 + α 3 = C ϵ 2 * C ϵ 4 * C ( ϵ 5 * ϵ 9 * ϵ 11 * ) C ϵ 6 * C ϵ 7 * C ϵ 8 * C ϵ 10 * C ϵ 12 * C ϵ 13 *
Therefore, the T-minimal system of generators are ( ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , ϵ 12 * ) . So the generalized Cartan matrix is
C 2 2 ( D 7 ) = 2 1 2 0 1 2 1 0 1 1 2 2 0 0 1 2 .
Case (a). For k 8 and k is even the nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ k + 6 * have following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = ϵ k * , [ ϵ 2 * , ϵ 5 * ] = 2 ϵ k + 2 * , [ ϵ 2 * , ϵ k + 2 * ] = ϵ k + 1 * , [ ϵ 2 * , ϵ k + 4 * ] = ϵ k + 1 * , [ ϵ 2 * , ϵ k + 5 * ] = ϵ k + 2 * ϵ k + 4 * , [ ϵ 2 * , ϵ k + 6 * ] = ϵ k + 3 * , [ ϵ 4 * , ϵ 5 * ] = ( k 3 ) ϵ k + 6 * , [ ϵ 4 * , ϵ k + 2 * ] = ϵ k + 3 * , [ ϵ 4 * , ϵ k + 5 * ] = ϵ k + 6 * , [ ϵ 5 * , ϵ 6 * ] = ϵ 7 * , [ ϵ 5 * , ϵ 7 * ] = 2 ϵ 8 * , [ ϵ 5 * , ϵ 8 * ] = 3 ϵ 9 * , , [ ϵ 5 * , ϵ k 1 * ] = ( k 6 ) ϵ k * , [ ϵ 5 * , ϵ k * ] = ( k 5 ) ϵ k + 3 * , [ ϵ 6 * , ϵ 7 * ] = ϵ 9 * , [ ϵ 6 * , ϵ 8 * ] = 2 ϵ 10 * , [ ϵ 6 * , ϵ 9 * ] = 3 ϵ 11 * , , [ ϵ 6 * , ϵ k 2 * ] = ( k 8 ) ϵ k * , [ ϵ 6 * , ϵ k 1 * ] = ( k 7 ) ϵ k + 3 * , [ ϵ 7 * , ϵ 8 * ] = ϵ 11 * , [ ϵ 7 * , ϵ 9 * ] = 2 ϵ 12 * , [ ϵ 7 * , ϵ 10 * ] = 3 ϵ 13 * , , [ ϵ 7 * , ϵ k 3 * ] = ( k 10 ) ϵ k * , [ ϵ 7 * , ϵ k 2 * ] = ( k 9 ) ϵ k + 3 * , [ ϵ k + 2 2 * , ϵ k + 2 2 + 1 * ] = ϵ k 1 * , [ ϵ k + 2 2 * , ϵ k + 2 2 + 2 * ] = 2 ϵ k * , [ ϵ k + 2 2 * , ϵ k + 2 2 + 3 * ] = 3 ϵ k + 3 * , [ ϵ k + 4 2 * , ϵ k + 4 2 + 1 * ] = ϵ k + 3 * .
Case (b). For k 9 and k is odd and, the nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ k + 6 * have following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = ϵ k * , [ ϵ 2 * , ϵ 5 * ] = 2 ϵ k + 2 * , [ ϵ 2 * , ϵ k + 2 * ] = ϵ k + 1 * , [ ϵ 2 * , ϵ k + 4 * ] = ϵ k + 1 * , [ ϵ 2 * , ϵ k + 5 * ] = ϵ k + 2 * ϵ k + 4 * , [ ϵ 2 * , ϵ k + 6 * ] = ϵ k + 3 * , [ ϵ 4 * , ϵ 5 * ] = ( k 3 ) ϵ k + 6 * , [ ϵ 4 * , ϵ k + 2 * ] = ϵ k + 3 * , [ ϵ 4 * , ϵ k + 5 * ] = ϵ k + 6 * , [ ϵ 5 * , ϵ 6 * ] = ϵ 7 * , [ ϵ 5 * , ϵ 7 * ] = 2 ϵ 8 * , [ ϵ 5 * , ϵ 8 * ] = 3 ϵ 9 * , , [ ϵ 5 * , ϵ k 1 * ] = ( k 6 ) ϵ k * , [ ϵ 5 * , ϵ k * ] = ( k 5 ) ϵ k + 3 * , [ ϵ 6 * , ϵ 7 * ] = ϵ 9 * , [ ϵ 6 * , ϵ 8 * ] = 2 ϵ 10 * , [ ϵ 6 * , ϵ 9 * ] = 3 ϵ 11 * , , [ ϵ 6 * , ϵ k 2 * ] = ( k 8 ) ϵ k * , [ ϵ 6 * , ϵ k 1 * ] = ( k 7 ) ϵ k + 3 * , [ ϵ 7 * , ϵ 8 * ] = ϵ 11 * , [ ϵ 7 * , ϵ 9 * ] = 2 ϵ 12 * , [ ϵ 7 * , ϵ 10 * ] = 3 ϵ 13 * , , [ ϵ 7 * , ϵ k 3 * ] = ( k 10 ) ϵ k * , [ ϵ 7 * , ϵ k 2 * ] = ( k 9 ) ϵ k + 3 * , [ ϵ k + 1 2 * , ϵ k + 1 2 + 1 * ] = ϵ k 2 * , [ ϵ k + 1 2 * , ϵ k + 1 2 + 2 * ] = 2 ϵ k 1 * , [ ϵ k + 1 2 * , ϵ k + 1 2 + 3 * ] = 3 ϵ k * , [ ϵ k + 1 2 * , ϵ k + 1 2 + 4 * ] = 4 ϵ k + 3 * , [ ϵ k + 3 2 * , ϵ k + 3 2 + 1 * ] = ϵ k * , [ ϵ k + 3 2 * , ϵ k + 3 2 + 2 * ] = 2 ϵ k + 3 * .
From multiplication table the type of D k ( k 8 ) singularity is 5 and the nilpotency is k 5 . The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 4 * 0 ϵ 4 * ϵ 4 * k 4 ϵ 5 * ϵ 5 * k 4 ϵ 5 * 2 ϵ 5 * k 4 ϵ 6 * 2 ϵ 6 * k 4 ϵ 6 * 3 ϵ 6 * k 4 ϵ 7 * 3 ϵ 7 * k 4 ϵ 7 * 4 ϵ 7 * k 4 ϵ k * ϵ k * ϵ k * ϵ k * ϵ k + 1 * ( 2 k 7 ) ϵ k + 1 * k 4 ϵ k + 1 * ϵ k + 1 * k 4 ϵ k + 2 * ( k 3 ) ϵ k + 2 * k 4 ϵ k + 2 * ϵ k + 2 * k 4
ϵ k + 3 * ( k 3 ) ϵ k + 3 * k 4 ϵ k + 3 * ( k 3 ) ϵ k + 3 * k 4 ϵ k + 4 * ( k 3 ) ϵ k + 4 * k 4 ϵ k + 4 * ϵ k + 4 * k 4 ϵ k + 5 * ϵ k + 5 * k 4 ϵ k + 5 * ϵ k + 5 * k 4 ϵ k + 6 * ϵ k + 6 * k 4 ϵ k + 6 * ( k 3 ) ϵ k + 6 * k 4 .
After a simple calculation, we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 + α 2 k 4 ξ 2 ( α 1 + α 2 ) k 4 ξ 3 ( α 1 + α 2 ) k 4 ξ α 1 + α 2 ξ ( 2 k 7 ) α 1 k 4 + α 2 k 4 ξ ( k 3 ) α 1 k 4 + α 2 k 4 ξ ( k 3 ) α 1 k 4 + ( k 3 ) α 2 k 4 ξ ( k 3 ) α 1 k 4 + α 2 k 4 ξ α 1 k 4 + ( k 3 ) α 2 k 4 = C ϵ 2 * C ϵ 4 * C ( ϵ 5 * ϵ k + 5 * ) C ϵ 6 * C ϵ 7 * C ϵ k * C ϵ k + 1 * C ϵ k + 2 * C ϵ k + 3 * C ϵ k + 4 * C ϵ k + 5 * C ϵ k + 6 *
Therefore, the T-minimal system of generators are ( ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ k + 5 * , ϵ 6 * ) . So the generalized Cartan matrix is
  • Case (a). For k 8 and k is even we have
    C 2 2 ( D k ) = 2 1 2 2 0 1 2 1 1 0 1 1 2 0 k + 5 1 1 0 2 k + 5 0 0 k + 6 2 k + 6 2 2 .
  • Case (b). For k 9 and k is odd we have
    C 2 2 ( D k ) = 2 1 2 2 0 1 2 1 1 0 1 1 2 0 k + 5 1 1 0 2 k + 5 0 0 k + 5 2 k + 5 2 2 .
Proposition 3. 
Let V = { ( x 1 , x 2 ) C 2 : x 1 3 + x 2 4 = 0 } be the ϵ 6 * singularity. Then
C 2 2 ( E 6 ) = 2 1 2 1 2 2 2 3 2
Proof. 
The algebra M 2 2 ( V ) has a basis of:
{ 1 , x 1 , x 2 , x 2 2 , x 2 3 , x 1 x 2 , x 1 x 2 2 , x 1 2 , x 1 2 x 2 } .
Basis of Lie algebra L 2 2 ( V ) define as:
ϵ 1 * = x 2 2 ; ϵ 2 * = x 1 x 2 1 x 2 2 2 , ϵ 3 * = x 1 1 2 x 2 2 , ϵ 4 * = x 2 2 1 , ϵ 5 * = x 1 2 , ϵ 6 * = x 1 2 1 , ϵ 7 * = x 2 2 2 , ϵ 8 * = x 1 2 2 , ϵ 9 * = x 1 2 1 + x 1 x 2 2 , ϵ 10 * = x 1 2 x 2 2 , ϵ 11 * = x 1 x 2 2 2 , ϵ 12 * = x 2 3 2 , ϵ 13 * = x 1 2 x 2 1 , ϵ 14 * = x 1 x 2 2 1 , ϵ 15 * = x 2 3 1 .
The nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ 15 * have the following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = 3 ϵ 15 * , [ ϵ 2 * , ϵ 5 * ] = 2 ϵ 6 * 3 ϵ 9 * , [ ϵ 2 * , ϵ 6 * ] = ϵ 13 * , [ ϵ 2 * , ϵ 7 * ] = ϵ 14 * , [ ϵ 2 * , ϵ 8 * ] = 4 ϵ 10 * , [ ϵ 2 * , ϵ 9 * ] = 2 ϵ 11 * + 2 ϵ 13 * , [ ϵ 4 * , ϵ 5 * ] = 2 ϵ 2 * + ϵ 7 * , [ ϵ 4 * , ϵ 6 * ] = 2 ϵ 14 * , [ ϵ 4 * , ϵ 7 * ] = 2 ϵ 15 * , [ ϵ 4 * , ϵ 8 * ] = 2 ϵ 11 * + 2 ϵ 13 * , [ ϵ 4 * , ϵ 9 * ] = ϵ 12 * + 4 ϵ 14 * , [ ϵ 5 * , ϵ 6 * ] = ϵ 8 * , [ ϵ 5 * , ϵ 7 * ] = 2 ϵ 6 * 2 ϵ 9 * , [ ϵ 5 * , ϵ 9 * ] = 2 ϵ 8 * , [ ϵ 5 * , ϵ 11 * ] = 2 ϵ 10 * , [ ϵ 5 * , ϵ 12 * ] = 3 ϵ 11 * , [ ϵ 5 * , ϵ 13 * ] = ϵ 10 * , [ ϵ 5 * , ϵ 14 * ] = ϵ 11 * 2 ϵ 13 * , [ ϵ 5 * , ϵ 15 * ] = ϵ 12 * 3 ϵ 14 * , [ ϵ 6 * , ϵ 9 * ] = ϵ 10 * , [ ϵ 7 * , ϵ 8 * ] = 2 ϵ 10 * , [ ϵ 7 * , ϵ 9 * ] = ϵ 11 * .
From multiplication table the type of ϵ 6 * singularity is 3 and the nilpotency is 5. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 4 * 0 ϵ 4 * ϵ 4 * ϵ 5 * ϵ 5 * ϵ 5 * ϵ 5 * ϵ 6 * 2 ϵ 6 * ϵ 6 * ϵ 6 * ϵ 7 * ϵ 7 * ϵ 7 * 0 ϵ 8 * 3 ϵ 8 * ϵ 8 * 2 ϵ 8 * ϵ 9 * 2 ϵ 9 * ϵ 9 * ϵ 9 * ϵ 10 * 4 ϵ 10 * ϵ 10 * 2 ϵ 10 * ϵ 11 * 3 ϵ 11 * ϵ 11 * ϵ 11 * ϵ 12 * 2 ϵ 12 * ϵ 12 * 0 ϵ 13 * 3 ϵ 13 * ϵ 13 * ϵ 13 * ϵ 14 * 2 ϵ 14 * ϵ 14 * 0 ϵ 15 * ϵ 15 * ϵ 15 * ϵ 15 * .
After a simple calculation, we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 α 2 ξ 2 α 1 α 2 ξ 3 α 1 2 α 2 ξ 4 α 1 2 α 2 ξ 3 α 1 α 2 ξ 2 α 1 ξ α 1 + β 2 = C ( ϵ 2 * ϵ 7 * ) C ϵ 4 * C ϵ 5 * C ( ϵ 6 * ϵ 9 * ) C ϵ 7 * C ϵ 10 * C ( ϵ 11 * ϵ 13 * ) C ( ϵ 12 * ϵ 14 * ) C ϵ 15 * .
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 4 * , ϵ 5 * ) . So the generalized Cartan matrix is
C 2 2 ( E 6 ) = 2 1 2 1 2 2 2 3 2 .
Proposition 4. 
Let V = { ( x 1 , x 2 ) C 2 : x 1 3 + x 2 3 x 1 = 0 } be the ϵ 7 * singularity. Then
C 2 2 ( E 7 ) = 2 2 2 1 2 3 2 5 2 .
Proof. 
The basis of algebra M 2 2 ( V ) is defined as:
{ 1 , x 1 , x 2 , x 2 2 , x 2 3 , x 2 4 , x 1 x 2 , x 1 x 2 2 , x 1 2 , x 1 2 x 1 } .
After these simple calculations, the basis of the Lie algebra L 2 2 ( V ) is defined as:
ϵ 1 * = x 2 2 , ϵ 2 * = x 1 x 2 1 x 2 2 2 , ϵ 3 * = x 1 1 2 x 2 2 , ϵ 4 * = x 2 2 1 , ϵ 5 * = x 1 2 , ϵ 6 * = x 1 2 1 , ϵ 7 * = x 2 2 2 , ϵ 8 * = x 2 3 1 , ϵ 9 * = x 1 2 2 , ϵ 10 * = x 1 2 1 + x 1 x 2 2 , ϵ 11 * = x 2 3 2 , ϵ 12 * = x 1 2 x 2 2 , ϵ 13 * = x 1 x 2 2 2 , ϵ 14 * = x 2 4 2 , ϵ 15 * = x 1 2 x 2 1 , ϵ 16 * = x 1 x 2 2 1 , ϵ 17 * = x 2 4 1 .
The nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ 17 * have following multiplication table:
[ ϵ 2 * , ϵ 5 * ] = 3 ϵ 10 * 2 ϵ 6 * , [ ϵ 2 * , ϵ 6 * ] = ϵ 15 * , [ ϵ 2 * , ϵ 7 * ] = ϵ 16 * , [ ϵ 2 * , ϵ 8 * ] = 4 ϵ 17 * , [ ϵ 2 * , ϵ 9 * ] = 4 ϵ 12 * , [ ϵ 2 * , ϵ 10 * ] = 2 ϵ 13 * + 2 ϵ 15 * , [ ϵ 2 * , ϵ 11 * ] = ϵ 14 * , [ ϵ 4 * , ϵ 5 * ] = 2 ϵ 2 * + 2 ϵ 7 * , [ ϵ 4 * , ϵ 6 * ] = 2 ϵ 16 * , [ ϵ 4 * , ϵ 7 * ] = 2 ϵ 8 * , [ ϵ 4 * , ϵ 9 * ] = 2 ϵ 13 * + 2 ϵ 15 * , [ ϵ 4 * , ϵ 10 * ] = ϵ 11 * + 4 ϵ 16 * , [ ϵ 4 * , ϵ 11 * ] = 2 ϵ 17 * , [ ϵ 4 * , ϵ 13 * ] = ϵ 14 * , [ ϵ 4 * , ϵ 16 * ] = ϵ 17 * , [ ϵ 5 * , ϵ 6 * ] = ϵ 9 * , [ ϵ 5 * , ϵ 7 * ] = 2 ϵ 10 * 2 ϵ 6 * , [ ϵ 5 * , ϵ 8 * ] = ϵ 11 * 3 ϵ 16 * , [ ϵ 5 * , ϵ 10 * ] = 2 ϵ 9 * , [ ϵ 5 * , ϵ 11 * ] = 3 ϵ 13 * , [ ϵ 5 * , ϵ 13 * ] = 2 ϵ 12 * , [ ϵ 5 * , ϵ 15 * ] = ϵ 12 * , [ ϵ 5 * , ϵ 16 * ] = ϵ 13 * 2 ϵ 15 * , [ ϵ 5 * , ϵ 17 * ] = ϵ 14 * [ ϵ 6 * , ϵ 10 * ] = ϵ 12 * , [ ϵ 7 * , ϵ 8 * ] = 3 ϵ 17 * , [ ϵ 7 * , ϵ 9 * ] = 2 ϵ 12 * , [ ϵ 7 * , ϵ 10 * ] = ϵ 13 * , [ ϵ 7 * , ϵ 11 * ] = ϵ 14 * , [ ϵ 8 * , ϵ 10 * ] = ϵ 14 * .
From multiplication table the type of ϵ 7 * singularity is 3 and the nilpotency is 5. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 4 * 0 ϵ 4 * ϵ 4 * ϵ 5 * ϵ 5 * ϵ 5 * ϵ 5 * ϵ 6 * 2 ϵ 6 * ϵ 6 * ϵ 6 * ϵ 7 * ϵ 7 * ϵ 7 * 0 ϵ 8 * ϵ 8 * ϵ 8 * ϵ 8 * ϵ 9 * 3 ϵ 9 * ϵ 9 * 2 ϵ 9 * ϵ 10 * 2 ϵ 10 * ϵ 10 * ϵ 10 * ϵ 11 * 2 ϵ 11 * ϵ 11 * 0 ϵ 12 * 4 ϵ 12 * ϵ 12 * 2 ϵ 12 * ϵ 13 * 3 ϵ 13 * ϵ 13 * ϵ 13 * ϵ 14 * 3 ϵ 14 * ϵ 14 * 0 ϵ 15 * 3 ϵ 15 * ϵ 15 * ϵ 15 * ϵ 16 * 2 ϵ 16 * ϵ 16 * 0 ϵ 17 * 2 ϵ 17 * ϵ 17 * ϵ 17 * .
After a simple calculation, we obtain
ξ ( V ) = ξ α 1 ξ α 2 ξ α 1 α 2 ξ 2 α 1 α 2 ξ α 1 + α 2 ξ 3 α 1 2 α 2 ξ 4 α 1 2 α 2 ξ 2 α 1 ξ 3 α 1 α 2 ξ 2 α 1 + α 2 ξ 3 α 1 = C ( ϵ 2 * ϵ 7 * ) C ϵ 4 * C ϵ 5 * C ( ϵ 6 * ϵ 10 * ) C ϵ 8 * C ϵ 9 * C ( ϵ 11 * ϵ 16 * ) C ( ϵ 13 * ϵ 15 * ) C ϵ 12 * C ϵ 14 * C ϵ 17 * .
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 4 * , ϵ 5 * ) . So the generalized Cartan matrix is
C 2 2 ( E 7 ) = 2 2 2 1 2 3 2 5 2 .
Proposition 5. 
Let V = { ( x 1 , x 2 ) C 2 : x 1 3 + x 2 5 = 0 } be the ϵ 8 * singularity. Then
C 2 2 ( E 8 ) = 2 2 1 4 2 2 1 4 1 1 2 1 2 2 3 2 .
Proof. 
The basis of algebra M 2 2 ( V ) define as:
{ 1 , x 1 , x 2 , x 2 2 , x 2 3 , x 2 4 , x 1 x 2 , x 1 x 2 2 , x 1 x 2 3 , x 1 2 , x 1 2 x 2 , x 1 2 x 2 2 } .
After some calculations we obtain the following basis of Lie algebra L 2 2 ( V ) :
ϵ 1 * = x 1 1 2 x 2 2 , ϵ 2 * = x 2 2 2 , ϵ 3 * = x 1 1 + x 2 2 , ϵ 4 * = x 1 x 2 2 1 + x 2 3 2 , ϵ 5 * = x 1 x 2 1 + 2 x 2 2 2 , ϵ 6 * = x 2 3 1 , ϵ 7 * = x 1 2 , ϵ 8 * = x 1 2 1 x 1 x 2 2 , ϵ 9 * = x 1 2 x 2 1 , ϵ 10 * = 2 x 1 2 1 + x 1 x 2 2 , ϵ 11 * = x 2 3 2 , ϵ 12 * = x 1 2 2 , ϵ 13 * = x 1 2 x 2 2 , ϵ 14 * = x 1 2 x 2 1 . x 1 x 2 2 2 , ϵ 15 * = x 1 2 x 2 2 2 , ϵ 16 * = x 1 x 2 3 2 , ϵ 17 * = x 2 4 2 , ϵ 18 * = x 1 2 x 2 2 1 , ϵ 19 * = x 1 x 2 3 1 , ϵ 20 * = x 2 4 1
The nilradical ξ ( V ) = ϵ 2 * , ϵ 4 * , ϵ 5 * , ϵ 6 * , , ϵ 20 * have the following multiplication table:
[ ϵ 2 * , ϵ 4 * ] = ϵ 17 * + 2 ϵ 19 * , [ ϵ 2 * , ϵ 5 * ] = ϵ 11 * + ϵ 4 * , [ ϵ 2 * , ϵ 6 * ] = 3 ϵ 20 * , [ ϵ 2 * , ϵ 7 * ] = 2 ϵ 10 * 4 ϵ 8 * , [ ϵ 2 * , ϵ 8 * ] = ϵ 14 * ϵ 9 * , [ ϵ 2 * , ϵ 9 * ] = ϵ 18 * , [ ϵ 2 * , ϵ 10 * ] = ϵ 14 * + ϵ 9 * , [ ϵ 2 * , ϵ 11 * ] = ϵ 17 * , [ ϵ 2 * , ϵ 12 * ] = 2 ϵ 13 * , [ ϵ 2 * , ϵ 13 * ] = ϵ 15 * , [ ϵ 2 * , ϵ 14 * ] = ϵ 18 * , [ ϵ 4 * , ϵ 5 * ] = 2 ϵ 17 * + 3 ϵ 19 * , [ ϵ 4 * , ϵ 7 * ] = 4 ϵ 14 * + 2 ϵ 9 * , [ ϵ 4 * , ϵ 8 * ] = 3 ϵ 16 * 3 ϵ 18 * , [ ϵ 4 * , ϵ 10 * ] = 3 ϵ 16 * + 4 ϵ 18 * , [ ϵ 4 * , ϵ 12 * ] = 5 ϵ 15 * , [ ϵ 5 * , ϵ 6 * ] = 7 ϵ 20 * , [ ϵ 5 * , ϵ 7 * ] = 4 ϵ 10 * + 9 ϵ 8 * , [ ϵ 5 * , ϵ 8 * ] = 3 ϵ 14 * + ϵ 9 * , [ ϵ 5 * , ϵ 9 * ] = ϵ 18 * , [ ϵ 5 * , ϵ 10 * ] = 3 ϵ 14 * , [ ϵ 5 * , ϵ 11 * ] = 2 ϵ 17 * ϵ 19 * , [ ϵ 5 * , ϵ 12 * ] = 6 ϵ 13 * , [ ϵ 5 * , ϵ 13 * ] = 4 ϵ 15 * , [ ϵ 5 * , ϵ 14 * ] = ϵ 16 * , [ ϵ 6 * , ϵ 7 * ] = 2 ϵ 11 * 3 ϵ 4 * , [ ϵ 6 * , ϵ 8 * ] = ϵ 17 * 5 ϵ 19 * , [ ϵ 6 * , ϵ 10 * ] = ϵ 17 * + 7 ϵ 19 * , [ ϵ 6 * , ϵ 12 * ] = 2 ϵ 16 * 3 ϵ 18 * , [ ϵ 7 * , ϵ 8 * ] = 2 ϵ 12 * , [ ϵ 7 * , ϵ 9 * ] = ϵ 13 * , [ ϵ 7 * , ϵ 10 * ] = 3 ϵ 12 * , [ ϵ 7 * , ϵ 11 * ] = 3 ϵ 14 * + 3 ϵ 9 * , [ ϵ 7 * , ϵ 14 * ] = 3 ϵ 13 * , [ ϵ 7 * , ϵ 16 * ] = 3 ϵ 15 * , [ ϵ 7 * , ϵ 17 * ] = 4 ϵ 16 * , [ ϵ 7 * , ϵ 18 * ] = ϵ 15 * , [ ϵ 7 * , ϵ 19 * ] = ϵ 16 * + 3 ϵ 18 * , [ ϵ 7 * , ϵ 20 * ] = ϵ 17 * + 4 ϵ 19 * , [ ϵ 8 * , ϵ 9 * ] = ϵ 15 * , [ ϵ 8 * , ϵ 10 * ] = ϵ 13 * , [ ϵ 8 * , ϵ 11 * ] = 2 ϵ 16 * , [ ϵ 8 * , ϵ 14 * ] = ϵ 15 * , [ ϵ 9 * , ϵ 10 * ] = ϵ 15 * , [ ϵ 10 * , ϵ 11 * ] = 2 ϵ 16 * , [ ϵ 11 * , ϵ 12 * ] = 3 ϵ 15 * .
From multiplication table the type of ϵ 8 * singularity is 4 and the nilpotency is 4. The torus T is spanned by
t 1 : ξ ( V ) ξ ( V ) t 2 : ξ ( V ) ξ ( V ) ϵ 2 * ϵ 2 * ϵ 2 * 0 ϵ 4 * 2 ϵ 4 * ϵ 4 * 0 ϵ 5 * ϵ 5 * ϵ 5 * 0 ϵ 6 * 0 ϵ 6 * ϵ 6 * ϵ 7 * 2 ϵ 7 * ϵ 7 * ϵ 7 * ϵ 8 * 3 ϵ 8 * ϵ 8 * ϵ 8 * ϵ 9 * 4 ϵ 9 * ϵ 9 * ϵ 9 * ϵ 10 * 3 ϵ 10 * ϵ 10 * ϵ 10 * ϵ 11 * 2 ϵ 11 * ϵ 11 * 0 ϵ 12 * 5 ϵ 12 * ϵ 12 * 2 ϵ 12 * ϵ 13 * 6 ϵ 13 * ϵ 13 * 2 ϵ 13 * ϵ 14 * 4 ϵ 14 * ϵ 14 * ϵ 14 * ϵ 15 * 7 ϵ 15 * ϵ 15 * 2 ϵ 15 * ϵ 16 * 5 ϵ 16 * ϵ 16 * ϵ 16 * ϵ 17 * 3 ϵ 17 * ϵ 17 * 0 ϵ 18 * 5 ϵ 18 * ϵ 18 * ϵ 18 * ϵ 19 * 3 ϵ 19 * ϵ 19 * 0 ϵ 20 * ϵ 20 * ϵ 20 * ϵ 20 * .
After a simple calculation, we obtain
ξ ( V ) = ξ α 1 ξ 2 α 1 ξ α 2 ξ 2 α 1 α 2 ξ 3 α 1 α 2 ξ 4 α 1 2 α 2 ξ 5 α 1 2 α 2 ξ 6 α 1 2 α 2 ξ 7 α 1 2 α 2 ξ 5 α 1 α 2 ξ 3 α 1 ξ α 1 + α 2 = C ( ϵ 2 * ϵ 5 * ) C ( ϵ 4 * ϵ 11 * ) C ϵ 6 * C ϵ 7 * C ( ϵ 8 * ϵ 10 * ) C ( ϵ 9 * ϵ 14 * ) C ϵ 12 * C ϵ 13 * C ϵ 15 * C ( ϵ 16 * ϵ 18 * ) C ( ϵ 17 * ϵ 19 * ) C ϵ 20 * .
Therefore, T-minimal system of generators are ( ϵ 2 * , ϵ 5 * , ϵ 6 * , ϵ 7 * ) . So the generalized Cartan matrices is
C 2 2 ( E 8 ) = 2 2 1 4 2 2 1 4 1 1 2 1 2 2 3 2 .
Proof of Theorem 1. 
The Proof Theorem 1 is an immediate corollary of Proposition 1, Proposition 2, Proposition 3, Proposition 4, and Proposition 5. □

4. Conclusions

The L k l ( V ) is a new analytic invariant of singularities. In this paper, we proposed a conjecture to characterize the ADE singularities using Lie algebra L k l ( V ) and we verify it for L 2 2 ( V ) . We also compute many other invariants namely, dimension of Lie algebra L 2 2 ( V ) , maximal torus, nilpotency, type of singularity, and generalized Cartan matrix for ADE singularities. Before this work, two previous defined Lie algebra L ( V ) and L * ( V ) can not completely characterized the ADE singularities. The novelty of this paper is complete characterization of ADE singularities using generalized Cartan matrix that arising from Lie algebra L 2 2 ( V ) .

Author Contributions

Conceptualization, M.A., A.N.A.-K. and N.H.; methodology, M.A., A.N.A.-K. and N.H.; validation, M.A., A.N.A.-K., N.H. and M.A.B.; writing draft, editing, and review, M.A., A.N.A.-K., N.H. and M.A.B.; funding, A.N.A.-K.; supervision, N.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not available.

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers.

Conflicts of Interest

There are no conflicts of interest among the authors.

References

  1. Durfee, A. Fifteen characterizations of rational double points and simple critical points. Enseign. Math. 1979, 25, 131–163. [Google Scholar]
  2. Santharoubane, L.J. Kac-Moody Lie algebras and the universal element for the category of nilpotent Lie algebras. Math. Ann. 1983, 263, 365–370. [Google Scholar] [CrossRef]
  3. Yau, S.S.-T. Solvable Lie algebras and GCMs arising from isolated singularities. Math. Z. 1986, 191, 489–506. [Google Scholar] [CrossRef]
  4. Yau, S.S.-T. Solvability of Lie algebras arising from isolated singularities and nonisolatedness of singularities defined by sl(2, C) invariant polynomials. Amer. J. Math. 1991, 113, 773–778. [Google Scholar] [CrossRef]
  5. Khimshiashvili, G. Yau algebras of fewnomial singularities. Univ. Utrecht Prepr. 2006, 1352. Available online: http://www.math.uu.nl/publications/preprints/1352.pdf (accessed on 3 April 2023).
  6. Yu, Y. On Jacobian ideals invariant by reducible sl(2;C) action. Trans. Amer. Math. Soc. 1996, 348, 2759–2791. [Google Scholar] [CrossRef]
  7. Seeley, C.; Yau, S.S.-T. Variation of complex structure and variation of Lie algebras. Invent. Math. 1990, 99, 545–565. [Google Scholar] [CrossRef]
  8. Benson, M.; Yau, S.S.-T. Lie algebra and their representations arising from isolated singularities: Computer method in calculating the Lie algebras and their cohomology. Adv. Stud. Pure Math. 1986, 8, 3–58. [Google Scholar]
  9. Benson, M.; Yau, S.S.-T. Equivalence between isolated hypersurface singularities. Math. Ann. 1990, 287, 107–134. [Google Scholar] [CrossRef]
  10. Chen, H.; Yau, S.S.-T.; Zuo, H. Non-existence of negative weight derivations on positively graded Artinian algebras. Trans. Amer. Math. Soc. 2019, 372, 2493–2535. [Google Scholar] [CrossRef]
  11. Xu, Y.-J.; Yau, S.S.-T. Micro-local characterization quasi-homogeneous singularities. Amer. J. Math. 1996, 118, 389–399. [Google Scholar]
  12. Yau, S.S.-T. Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities. Proc. Natl. Acad. Sci. USA 1983, 80, 7694–7696. [Google Scholar] [CrossRef] [PubMed]
  13. Yau, S.S.-T.; Zuo, H. Derivations of the moduli algebras of weighted homogeneous hypersurface singularities. J. Algebra 2016, 457, 18–25. [Google Scholar] [CrossRef]
  14. Yau, S.S.-T.; Zuo, H. A Sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity. Pure Appl. Math. Q. 2016, 12, 165–181. [Google Scholar] [CrossRef]
  15. Xu, P.; Binyamin, M.A.; Aslam, A.; Shahbaz, M.; Aslam, S.; Kanwal, S. Recognition and Implementation of Contact Simple Map Germs from ( C 2 , 0 ) > ( C 2 , 0 ) . Mathematics 2023, 11, 1575. [Google Scholar] [CrossRef]
  16. Aslam, S.; Binyamin, M.A.; Pfister, G. Recognition of unimodal map germs from the plane to the plane by invariants. Int. J. Algebra Comput. 2018, 28, 1199–1208. [Google Scholar] [CrossRef]
  17. Hussain, N.; Yau, S.S.-T.; Zuo, H. On the new k-th Yau algebras of isolated hypersurface singularities. Math. Z. 2020, 294, 331–358. [Google Scholar] [CrossRef]
  18. Hussain, N.; Al-Kenani, A.N.; Arshad, M.; Asif, M. The Sharp Upper Estimate Conjecture for the Dimension δ k ( V ) of New Derivation Lie Algebra. Mathematics 2022, 10, 2618. [Google Scholar] [CrossRef]
  19. Hussain, N.; Yau, S.S.-T.; Zuo, H. GCMs arising from new derivation Lie algebras of isolated hypersurface singularities. Pacific J. Math. 2020, 305, 189–217. [Google Scholar] [CrossRef]
  20. Elashvili, A.; Khimshiashvili, G. Lie algebras of simple hypersurface singularities. J. Lie Theory 2006, 16, 621–649. [Google Scholar]
  21. Hussain, N.; Ma, G.; Yau, S.S.-T.; Zuo, H. Higher Nash blow-up local algebras of singularities and its derivation Lie algebras. J. Algebra 2023, 618, 165–194. [Google Scholar] [CrossRef]
  22. Duarte, D. Computational aspects of the higher Nash blowup of hypersurfaces. J. Algebra 2017, 477, 211–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Asif, M.; Al-Kenani, A.N.; Hussain, N.; Binyamin, M.A. On the Higher Nash Blow-Up Derivation Lie Algebras of Isolated Hypersurface Singularities. Mathematics 2023, 11, 1935. https://doi.org/10.3390/math11081935

AMA Style

Asif M, Al-Kenani AN, Hussain N, Binyamin MA. On the Higher Nash Blow-Up Derivation Lie Algebras of Isolated Hypersurface Singularities. Mathematics. 2023; 11(8):1935. https://doi.org/10.3390/math11081935

Chicago/Turabian Style

Asif, Muhammad, Ahmad N. Al-Kenani, Naveed Hussain, and Muhammad Ahsan Binyamin. 2023. "On the Higher Nash Blow-Up Derivation Lie Algebras of Isolated Hypersurface Singularities" Mathematics 11, no. 8: 1935. https://doi.org/10.3390/math11081935

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop