Next Article in Journal
Estimations of the Jensen Gap and Their Applications Based on 6-Convexity
Next Article in Special Issue
A Look at Generalized Degenerate Bernoulli and Euler Matrices
Previous Article in Journal
Towards a Proof of Bahri–Coron’s Type Theorem for Mixed Boundary Value Problems
Previous Article in Special Issue
On Apostol-Type Hermite Degenerated Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials

by
Abel Díaz-González
1,
Juan Hernández
2 and
Héctor Pijeira-Cabrera
3,*
1
Department of Computer Science, Vanderbilt University, Nashville, TN 37240, USA
2
Escuela de Matemáticas, Universidad Autónoma de Santo Domingo, Santo Domingo 10105, Dominican Republic
3
Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(8), 1956; https://doi.org/10.3390/math11081956
Submission received: 16 March 2023 / Revised: 17 April 2023 / Accepted: 18 April 2023 / Published: 20 April 2023

Abstract

:
We study the sequence of polynomials { S n } n 0 that are orthogonal with respect to the general discrete Sobolev-type inner product f , g s = f ( x ) g ( x ) d μ ( x ) + j = 1 N k = 0 d j λ j , k f ( k ) ( c j ) g ( k ) ( c j ) , where μ is a finite Borel measure whose support supp μ is an infinite set of the real line, λ j , k 0 , and the mass points c i , i = 1 , , N are real values outside the interior of the convex hull of supp μ ( c i R \ C h ( supp ( μ ) ) ) . Under some restriction of order in the discrete part of · , · s , we prove that S n has at least n d * zeros on C h ( supp μ ) , being d * the number of terms in the discrete part of · , · s . Finally, we obtain the outer relative asymptotic for { S n } in the case that the measure μ is the classical Laguerre measure, and for each mass point, only one order derivative appears in the discrete part of · , · s .

1. Introduction

Let μ be a positive finite Borel measure with finite moments, whose support Δ R contains infinitely many points. We will denote by C h ( A ) the convex hull of a set A and by A its interior.
Let { P n } n 0 be the monic orthogonal polynomial sequence with respect to the inner product
f , g μ = Δ f ( x ) g ( x ) d μ ( x ) .
An inner product is called standard if the multiplication operator is symmetric with respect to the inner product. Obviously, x f , g μ = f , x g μ , i.e., · , · μ is standard. Significant parts of the applications of orthogonal polynomials in mathematics and particular sciences are based on the following three consequences of this fact.
  • The polynomial P n has exactly n real simple zeros in C h Δ . Moreover, there is a zero of P n 1 between any two consecutive zeros of P n .
  • The three-term recurrence relation
    x P n ( x ) = P n + 1 ( x ) + β n P n ( x ) + γ n 2 P n 1 ( x ) ; P 0 ( x ) = 1 , P 1 ( x ) = 0 ,
    where γ n = P n μ / P n 1 μ for n 1 , β n = P n , x P n μ / P n μ 2 and · μ = · , · μ denotes the norm induced by · , · μ .
  • For the kernel polynomials
    K n ( x , y ) = k = 0 n P k ( x ) P k ( y ) P k μ 2 ,
    we have the Christoffel–Darboux identities
    K n ( x , y ) = P n + 1 ( x ) P n ( y ) P n + 1 ( y ) P n ( x ) P n μ 2 ( x y ) , if x y , P n + 1 ( x ) P n ( x ) P n + 1 ( x ) P n ( x ) P n μ 2 , if x = y .
These identities play a fundamental role in the treatment of Fourier expansions with respect to a system of orthogonal polynomials (see [1], Section 2.2). For a review of the use of (1) and (2) in the spectral theory of orthogonal polynomials, we refer the reader to [2]. In addition, see the usual references [3,4,5], for a basic background on these and other properties of { P n } n 0 .
Let  ( a , b ) = C h supp μ , N , d j Z + , λ j , k 0 , for j = 1 , , N , k = 0 , 1 , , d j , { c 1 , c 2 , , c N } R \ ( a , b ) , where c i c j if i j and I + = { ( j , k ) : λ j , k > 0 } . We consider the following Sobolev-type (or discrete Sobolev) inner product
f , g s = f ( x ) g ( x ) d μ ( x ) + j = 1 N k = 0 d j λ j , k f ( k ) ( c j ) g ( k ) ( c j ) = f ( x ) g ( x ) d μ ( x ) + ( j , k ) I + λ j , k f ( k ) ( c j ) g ( k ) ( c j ) ,
where f ( k ) denotes the k-th derivative of the function f. Without loss of generality, we also assume { ( j , d j ) } j = 1 N I + and d 1 d 2 d N . For n Z + , we shall denote by S n the monic polynomial of the lowest degree satisfying
x k , S n s = 0 , for k = 0 , 1 , , n 1 .
It is easy to see that for all n 0 , there exists such a unique polynomial S n of degree n. This is deduced by solving a homogeneous linear system with n equations and n + 1 unknowns. Uniqueness follows from the minimality of the degree for the polynomial solution. We refer the reader to [6,7] for a review of this type of non-standard orthogonality.
Clearly, (3) is not standard, i.e., x p , q s p , x q s , for some p , q P . It is well known that the properties of orthogonal polynomials with respect to standard inner products differ from those of the Sobolev-type polynomials. In particular, the zeros of the Sobolev-type polynomials can be complex, or if real, they can be located outside the convex hull of the support of the measure μ , as can be seen in the following example.
Example 1 
(Zeros outside the convex hull of the measures supports). Set
f , g s = 0 f ( x ) g ( x ) e x d x + 2 f ( 1 ) g ( 1 ) ,
then the corresponding second-degree monic Sobolev-type orthogonal polynomial is S 2 ( z ) = z 2 2 , whose zeros are z 1 , 2 = ± 2 . Note that 2 [ 1 , ) .
Let { Q n } n 0 be the sequence of monic orthogonal polynomials with respect to the inner product
f , g μ ρ = f ( x ) g ( x ) d μ ρ ( x ) , where ρ ( x ) = c j a x c j d j + 1 c j b c j x d j + 1 and d μ ρ ( x ) = ρ ( x ) d μ ( x ) .
Note that ρ is a polynomial of degree d = j = 1 N ( d j + 1 ) , which is positive on ( a , b ) . If n > d , from (4), { S n } satisfies the following quasi-orthogonality relations with respect to μ ρ
S n , f μ ρ = S n , ρ f μ = S n ( x ) f ( x ) ρ ( x ) d μ ( x ) = S n , ρ f s = 0 ,
for f P n d 1 , where P n is the linear space of polynomials with real coefficients and the degree at most n Z + . Hence, the polynomial S n is quasi-orthogonal of order d with respect to μ ρ and by this argument, we obtain that S n has at least ( n d ) changes of sign in ( a , b ) .
The results obtained for measures μ with bounded support (see [8], (1.10)) suggest that the number of zeros located in the interior of the support of the measure is closely related to d * = | I + | , the number of terms in the discrete part of · , · s (i.e., λ j , k > 0 ), instead of this greater quantity d.
Our first result, Theorem 1, goes in this direction for the case when the inner product is sequentially ordered. This kind of inner product is introduced in Section 2 (see Definition 1).
Theorem 1.
If the discrete Sobolev inner product (3) is sequentially ordered, then S n has at least n d * changes of sign on ( a , b ) , where d * is the number of positive coefficients λ j , k in (3).
Previously, this result was obtained for more restricted cases in ([9], Th. 2.2) and ([10], Th. 1). In ([9], Th. 2.2), the authors proved this result for the case N = 1 . In ([10], Th. 1), the notion of a sequentially ordered inner product is more restrictive than here, because it did not include the case when the Sobolev inner product has more than one derivative order at the same mass point.
In the second part of this paper, we focus our attention on the Laguerre–Sobolev-type polynomials (i.e., d μ = x α e x d x , with α > 1 ). In the case of the inner product, (3) takes the form
f , g s = 0 f ( x ) g ( x ) x α e x d x + j = 1 N λ j f ( d j ) ( c j ) g ( d j ) ( c j ) ,
where λ j : = λ j , d j > 0 , c j < 0 , for j = 1 , 2 , , N , we obtain the outer relative asymptotic of the Laguerre–Sobolev-type polynomials.
Theorem 2.
Let { L n α } n 0 be the sequence of monic Laguerre polynomials and let { S n } n 0 be the monic orthogonal polynomials with respect to the inner product (5). Then,
S n ( x ) L n α ( x ) j = 1 N x | c j | x + | c j | , K C ¯ \ R + .
Throughout this paper, we use the notation f n f , K U when the sequence of functions f n converges to f uniformly on every compact subset K of the region U .
Combining this result with Theorem 1, we obtain that the Sobolev polynomials S n , orthogonal with respect to a sequentially ordered inner product in the form (5), have at least n - - N zeros in ( 0 , ) and, for sufficiently large n, each one of the other N zeros are contained in a neighborhood of each mass point c j ( j = 1 , , N ). Then, we have located all zeros of S n and we obtain that for a sufficiently large n, they are simple and real, as in the Krall case (see [11]) or the Krall–Laguerre-type orthogonal polynomial (see [12]). This is summarized in the following corollary.
Corollary 1.
Let μ = μ α be the classical Laguerre measure ( d μ α ( x ) = x α e x d x ) and (5) a sequentially ordered discrete Sobolev inner product. Then, the following statements hold:
1. 
Every point c j attracts exactly one zero of S n for sufficiently large n, while the remaining n N zeros are contained in ( 0 , ) . This means:
For every r > 0 , there exists a natural value N such that if n N , then the n zeros of S n { ξ i } i = 1 n satisfy
ξ j B ( c j , r ) for j = 1 , , N a n d ξ i ( 0 , ) for i = N + 1 , N + 2 , , n .
2. 
The zeros of S n are real and simple for large-enough values of n.
3. 
The zeros of { S n } n = 1 are at a finite distance from ( 0 , ) . This means that there exists a positive constant M such that if ξ is a zero of S n , then
d ( ξ , ( 0 , ) ) : = inf x > 0 { | x ξ | } < M .
Section 2 is devoted to introducing the notion of a sequentially ordered Sobolev inner product and to prove Theorem 1. In Section 3, we summarize some auxiliary properties of Laguerre polynomials to be used in the proof of Theorem 2. Some results about the asymptotic behavior of the reproducing kernels are given. The aim of the last section is to prove Theorem 2 and some of its consequences stated in Corollary 2.

2. Sequentially Ordered Inner Product

Definition 1
(Sequentially ordered Sobolev inner product). Consider a discrete Sobolev inner product in the general form (3) and assume d 1 d 2 d N without loss of generality. We say that a discrete Sobolev inner product is sequentially ordered if the conditions
Δ k C h i = 0 k 1 Δ i = , k = 1 , 2 , , d N ,
hold, where
Δ k = C h ( supp μ { c j : λ j , 0 > 0 } ) , if k = 0 , C h ( { c j : λ j , k > 0 } ) , if 1 k d N .
Note that Δ k is the convex hull of the support of the measure associated with the k-th order derivative in the Sobolev inner product (3). Let us see two examples.
Example 2
(Sequentially ordered inner product).
Set
f , g s = 0 f ( x ) g ( x ) e x d x + 10 f ( 1 ) g ( 1 ) + 5 f ( 3 ) g ( 3 ) + 5 f ( 9 ) g ( 9 ) + 20 f ( 10 ) g ( 10 ) ,
then the corresponding fifth-degree Sobolev orthogonal polynomial has the following exact expression
S 5 ( x ) = x 5 + 380961336355365 16894750106161 x 4 + 1836311881214045 16894750106161 x 3 7830454972601355 16894750106161 x 2 36972053870326650 16894750106161 x 22386262325875230 16894750106161 ,
whose zeros are approximately ξ 1 4.46 , ξ 2 0.74 , ξ 3 2.8 , ξ 4 11.74 + 2.51 i and ξ 5 11.74 2.51 i . Note that four of them are outside of ( 0 , ) and two are even complex.
Example 3
(Non-sequentially ordered inner product).
Set f , g = 0 f ( x ) g ( x ) e x d x + f ( 15 ) g ( 15 ) + f ( 9 ) g ( 9 ) , then the corresponding fifth-degree Sobolev orthogonal polynomial has the following exact expression
S 5 ( x ) = x 5 + 55079160 21682477 x 4 5053767275 21682477 x 3 + 40953207555 21682477 x 2 98030649090 21682477 x + 42523040550 21682477 ,
whose zeros are approximately ξ 1 0.55 , ξ 2 3.36 , ξ 3 6.66 + 3.02 i , ξ 4 6.66 3.02 i and ξ 5 19.77 . Note that, in spite of Theorem 1, d * = 2 and three of the zeros of S 5 are outside of ( 0 , ) , with two of them as not even real.
In the sequentially ordered example (Example 2), S 5 has exactly 1 = 5 4 = n d * simple zeros on the interior of the convex hull of the support of the Laguerre measure ( 0 , ) , and thus, the bound of Theorem 1 is sharp. In addition, this example shows that the remaining d * zeros might even be complex, although Corollary 1 shows that this does not happen when n is sufficiently large.
On the other hand, in the non-sequentially ordered example (Example 3), this condition is not satisfied, since S 5 has only 2 < 3 = 5 2 = n d * zeros on ( 0 , ) , showing that the sequential order plays a main role in the localization of the zeros of S n , at least to obtain this property for every value of n.
Throughout the remainder of this section, we will consider inner products of the form (3) that are sequentially ordered. The next lemma is an extension of ([13], Lemma 2.1) and ([10], Lemma 3.1).
Lemma 1.
Let { I i } i = 0 m be a set of m + 1 intervals on the real line and let P be a polynomial with real coefficients of degree m . If
I k C h i = 0 k 1 I i = , k = 1 , 2 , , m ,
then
N z P ; J + N P ; I 0 \ J + i = 1 m N P ( i ) ; I i N z P ( m ) ; J + N P ( m ) ; C h i = 0 m I i \ J + m ,
for every closed subinterval J of I 0 (both empty set and unitary sets are assumed to be intervals). Here, given a real set A and a polynomial P, N P ; A denotes the number of values where the polynomial P vanishes on A (i.e., zeros of P on A without counting multiplicities), and N z P ; A denotes the total number of zeros (counting multiplicities) of P on A.
Proof. 
First, we point out the following consequence of Rolle’s Theorem. If I is a real interval and J is a closed subinterval of I , then
N z P ; J + N P ; I \ J N z P ; J + N P ; I \ J + 1 .
It is easy to see that (9) holds for m = 0 . We now proceed by induction on m. Suppose that we have m + 1 intervals { I i } i = 0 m satisfying (8); thus, the first m intervals { I i } i = 0 m 1 also satisfy (8), and we obtain (9) by induction hypothesis (taking m 1 instead of m). Then
N z P ; J + N P ; I 0 \ J + i = 1 m N P ( i ) ; I i , N z P ( m 1 ) ; J + N P ( m 1 ) ; C h i = 0 m 1 I i \ J + m 1 + N P ( m ) ; I m , N z P ( m ) ; J + N P ( m ) ; C h i = 0 m 1 I i \ J + m + N P ( m ) ; I m , N z P ( m ) ; J + N P ( m ) ; C h i = 0 m I i \ J + m ,
where in the second inequality, we have used (10). □
As an immediate consequence of Lemma 1, the following result is obtained.
Lemma 2.
Under the assumptions of Lemma 1, we have
N z P ; J + N P ; I 0 \ J + i = 1 m N P ( i ) ; I i deg P
for every J closed subinterval of I 0 . In particular, for J = , we obtain
i = 0 m N P ( i ) ; I i deg P .
Lemma 3.
Let { ( r i , ν i ) } i = 1 M R × Z + be a set of M ordered pairs. Then, there exists a unique monic polynomial U M of minimal degree (with 0 deg U M M ), such that
U M ( ν i ) ( r i ) = 0 , i = 1 , 2 , , M .
Furthermore, if the intervals  I k = C h ({ri: vi = k}), k = 0, 1, 2, …, vM, satisfy (8), then UM has degree u M = min I M 1 ,  where 
I M = { i : 1 i M and ν i i } { M + 1 } .
Proof. 
The existence of a nonidentical zero polynomial with degree M satisfying (13) reduces to solving a homogeneous linear system with M equations and M + 1 unknowns (its coefficients). Thus, a non-trivial solution always exists. In addition, if we suppose that there exist two different minimal monic polynomials U M and U ˜ M , then the polynomial U ^ M = U M U ˜ M is not identically zero, it satisfies (13), and deg U ^ M < deg U M . Thus, if we divide U ^ M by its leading coefficient, we reach a contradiction.
The rest of the proof runs by induction on the number of points M. For M = 1 , the result follows taking
U 1 ( x ) = x r 1 , if ν 1 = 0 , 1 , if ν 1 1 .
Suppose that, for each sequentially ordered sequence of M ordered pairs, the corresponding minimal polynomial U M has degree u M .
Let { ( r i , ν i ) } i = 1 M be a set of M ordered pairs satisfying (8). Obviously, { ( r i , ν i ) } i = 1 M 1 also satisfies (8) and U M satisfies (13) for i = 1 , 2 , , M 1 ; thus, we obtain deg U M 1 = u M 1 and deg U M deg U M 1 . Now, we divide the proof into two cases:
  • If u M = M , then for all 1 i M we have ν i < i , which yields
    deg U M deg U M 1 = u M 1 = M 1 ν M .
    Since { ( r i , ν i ) } i = 1 M satisfies (8), from (12) we obtain
    M i = 0 ν M N U M ( i ) ; I i deg U M ,
    which implies that deg U M = M = u M .
  • If u M M 1 , then there exists a minimal j ( 1 j M ), such that ν j j , and ν i < i for all 1 i j 1 . Therefore, u M = j 1 = u M 1 . From the induction hypothesis, we obtain
    deg U M 1 = u M 1 = j 1 ν j 1 ν M 1 ,
    which gives U M 1 ( ν M ) 0 . Hence, U M U M 1 and, consequently, we obtain
    deg U M = deg U M 1 = u M 1 = u M .
Note that, in Lemma 3, condition (8) is necessary for asserting that the polynomial U M has degree u M . If we consider { ( 1 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) } , whose corresponding convex hulls I 0 = [ 1 , 1 ] and I 1 = { 0 } do not satisfy (8), we obtain U 3 ( x ) = x 2 1 and u 3 = 3 deg U 3 .
Now we are able to prove the zero localization theorem for sequentially ordered discrete Sobolev inner products.
Proof of Theorem 1.
Let ξ 1 < ξ 2 < < ξ η be the points on ( a , b ) = C h ( supp ( μ ) ) where S n changes sign and suppose that η < n d * . Consider the set of ordered pairs
{ ( r i , ν i ) } i = 1 d * + η = { ( ξ i , 0 ) } i = 1 η { ( c j , k ) : η j , k > 0 , j = 1 , 2 , , N , k = 1 , , d j } .
Since · , · s is sequentially ordered, the intervals I k = Δ k for k = 0 , 1 , , ν N (see (7)) satisfy (8) (we can assume without loss of generality that ν 1 ν 2 ν d * + η ). Consequently, from Lemma 3, there exists a unique monic polynomial U d * + η of minimal degree, such that
U d * + η ( ξ i ) = 0 ; for i = 1 , , η , U d * + η ( k ) ( c j ) = 0 ; for each ( j , k ) : η j , k > 0 ,
and deg U d * + η = min I d * + η 1 d * + η , where
I d * + η = { i : 1 i d * + η and ν i i } { d * + η + 1 } .
Now, we need to consider the following two cases.
  • If deg U d * + η = d * + η , from (15), we obtain deg U d * + η ν η + d * + 1 . Thus, taking the closed interval J = [ ξ 1 , ξ η ] ( a , b ) in (11), we obtain
    d * + η k = 0 ν d * + η N U d * + η ( k ) ; I k N z U d * + η ; [ ξ 1 , ξ η ] + N U d * + η ; I 0 \ [ ξ 1 , ξ η ] + k = 1 ν d * + η N U d * + η ( k ) ; I k deg U d * + η = d * + η .
  • If deg U d * + η < d * + η , from (15), there exists 1 j d * + η such that deg U d * + η = j 1 , ν j j and ν i i 1 for i = 1 , 2 , , j 1 . Hence,
    ν j 1 + 1 j 1 = deg U d * + η
    and, again, from (11) we have
    j 1 k = 0 ν j 1 N U d * + η ( k ) ; I k N z U d * + η ; [ ξ 1 , ξ η ] + N U d * + η ; I 0 \ [ ξ 1 , ξ η ] + k = 1 ν j 1 N U d * + η ( k ) ; I k deg U d * + η = j 1 .
In both cases, we obtain that U d * + η has no other zeros in I 0 than those given by construction, and from N U d * + η ; [ ξ 1 , ξ η ] = N z U d * + η ; [ ξ 1 , ξ η ] , all the zeros of S n on I are simple. Thus, in addition to (14), we obtain that S n U d * + η does not change sign on I . Now, since deg U d * + η d * + η < n , we arrive at the contradiction
0 = S n , U d * + η = S n ( x ) U d * + η ( x ) d μ ( x ) + j = 1 N k = 0 d j λ j , k S n ( k ) ( c j ) U d * + η ( k ) ( c j ) = a b S n ( x ) U d * + η ( x ) d μ ( x ) 0 .

3. Auxiliary Results

The family of Laguerre polynomials is one of the three very well-known classical orthogonal polynomials families (see [3,4,5]). It consists of the sequence of polynomials { L n ( α ) } that are orthogonal with respect to the measure d μ = x α e x d x , x ( 0 , ) , for α > 1 , and that are normalized by taking ( 1 ) n n ! as the leading coefficient of the n-th degree polynomial of the sequence. Laguerre polynomials play a key role in applied mathematics and physics, where they are involved in the solutions of the wave equation of the hydrogen atom (c.f. [14]).
Some of the structural properties of this family are listed in the following proposition in order to be used later.
Proposition 1.
Let { L n ( α ) } n 0 (note the brackets in parameter α) be the sequence of Laguerre polynomials and let { L n α } n 0 be the monic sequence of Laguerre polynomials. Then, the following statements hold.
1.  
For every n N ,
L n ( α ) x = 1 n n ! L n α x .
2.  
Three-term recurrence relation. For every n 1 ,
x L n α ( x ) = L n + 1 α ( x ) + ( 2 n + α + 1 ) L n α ( x ) + n ( n + α ) L n 1 α ( x ) x L n ( α ) ( x ) = ( n + 1 ) L n + 1 ( α ) ( x ) + ( 2 n + α + 1 ) L n ( α ) ( x ) ( n + α ) L n 1 ( α ) ( x )
with L 1 ( α ) L 1 α = 0 , and L 0 ( α ) L 0 α 1 .
3.  
Structure relation. For every n N ,
L n ( α ) ( x ) = L n ( α + 1 ) x L n 1 ( α + 1 ) x .
4.  
For every n N ,
| | L n ( α ) | | μ 2 = Γ ( α + 1 ) n + α n = Γ ( α + n + 1 ) n ! .
In addition, we have
| | L n α | | μ 2 = n ! Γ ( n + α + 1 )
5.  
Hahn condition. For every n N ,
[ L n ( α ) ] ( x ) = L n 1 ( α + 1 ) ( x ) .
6.  
Outer strong asymptotics (Perron’s asymptotics formula on C \ R + ). Let α R . Then
L n ( α ) x = e x / 2 n α / 2 1 / 4 e 2 n x 1 / 2 2 π 1 / 2 x α / 2 + 1 / 4 k = 0 p 1 C k ( x ) n k / 2 + O ( n p / 2 ) .
Here, { C k ( x ) } k = 0 p 1 are certain analytic functions of x independent of n, with C 0 1 . This relation holds for x in the complex plane with a cut along the positive part of the real axis. The bound for the remainder holds uniformly in every closed domain with no points in common with x 0 (see [5], Theorem 8.22.3).
Now, we summarize some auxiliary lemmas to be used in the proof of Theorem 2 (see ([15], Lem. 1) and ([16], Prop. 6)).
Lemma 4.
For z C \ [ 0 , ) , α , β R and j , k n we have
L n + j ( α + β ) ( z ) L n + k ( α ) ( z ) = 1 + ( j k ) z n + α 2 1 4 z ( j k ) 2 ( j k ) n + O z n 3 2 if β = 0 n z β 1 + O z n 1 / 2 if β 0 .
where O z ( n j ) denotes some analytic function sequence { g n ( z ) } n = 1 such that { n j g n } is uniformly bounded on every compact subset of C \ [ 0 , ) .
To study the outer relative asymptotic between the standard Laguerre polynomials and the Laguerre–Sobolev orthogonal polynomials (see Formula (6)), we need to compute the behavior of the Laguerre kernel polynomials and their derivatives when n approaches infinity. To this end, we prove the following auxiliary result, which is an extension of ([17], Ch. 5, Th. 16).
Lemma 5.
Let G and G be two open subsets of the complex plane and f n : G × G C be a sequence of functions that are analytic with respect to each variable separately. If { f n } n = 1 is a uniformly bounded sequence on each set in the form K × K , where K G and K G are compact sets, then any of its partial derivative sequences are also uniformly bounded on each set in the form K × K .
Proof. 
Note that it is sufficient to prove this for the first derivative order with respect to any of the variables and then proceed by induction. Let K G and K G be two compact sets. Denote G c = C \ G , d ( K , G c ) = inf z K , w G c | z w | , r = d ( K , G c ) / 2 > 0 and B ( z , r ) = { ζ C : | z ζ | < r } . Take K * as the closure of z K B ( z , r ) ; thus, K * is a compact subset of G. Thus, there exists a positive constant M > 0 such that | f n ( z , w ) | M for all z K * , w K and n N . Hence, for all z K , w K and n N , we obtain
f n z ( z , w ) = 1 2 π i c ( z , r ) f n ( ξ , w ) ( ξ z ) 2 d ξ V ( c ( z , r ) ) 2 π max ξ c ( z , r ) f n ( ξ , w ) | ξ z | 2 = 2 π r 2 π r 2 max ξ c ( z , r ) f n ( ξ , w ) M r ,
where c ( z , r ) denotes the circle with center at z, radius r and length V ( c ( z , r ) ) . □
From the Fourier expansion of S n in terms of the basis L n α n 0 we obtain
S n ( x ) = i = 0 n S n , L i α μ L i α ( x ) L i α μ 2 = L n α ( x ) + i = 0 n 1 S n , L i α μ L i α ( x ) L i α μ 2 = L n α ( x ) + i = 0 n 1 S n , L i α s ( j , k ) I + λ j , k S n ( k ) ( c j ) L i α ( k ) ( c j ) L i α ( x ) L i α μ 2 = L n α ( x ) ( j , k ) I + λ j , k S n ( k ) ( c j ) i = 0 n 1 L i α ( x ) L i α ( k ) ( c j ) L i α μ 2 = L n α ( x ) ( j , k ) I + λ j , k S n ( k ) ( c j ) K n 1 ( 0 , k ) ( x , c j ) ,
where we use the notation K n ( j , k ) x , y = j + k K n x , y j x k y to denote the partial derivatives of the kernel polynomials defined in (1). Differentiating Equation (21) ℓ-times and evaluating then at x = c i for each ordered pair ( i , ) I + , we obtain the following system of d * linear equations and d * unknowns S n ( k ) ( c j ) .
L n α ( ) ( c i ) = 1 + λ i , K n 1 ( , ) ( c i , c i ) S n ( ) ( c i ) + ( j , k ) I + ( j , k ) ( i , ) d j λ j , k K n 1 ( , k ) ( c i , c j ) S n ( k ) ( c j ) .
Lemma 6.
The Laguerre kernel polynomials and their derivatives satisfy the following behavior when n approaches infinity for x , y C \ [ 0 , )
K n 1 ( i , j ) x , y = i + j K n 1 i x j y ( x , y ) = L n ( α + i ) ( x ) L n ( α + j ) ( y ) n α 1 2 ( x + y ) ( 1 ) i + j + O x , y ( n 1 / 2 ) , i , j 0 ,
where O x , y ( n k ) denotes some sequence of functions { g n ( x , y ) } n = 1 that are holomorphic with respect to each variable and whose sequence { n k g n } is uniformly bounded on every set K × K , such that K and K are compact subsets of C \ R + .
Proof. 
The proof is by induction on k = i + j . First, suppose k = 0 (i.e., i = j = 0 ) and split the proof into two cases according to whether x = y or not. If x = y , from (2), (16), (18) and (20), we obtain
L n 1 ( α ) μ 2 n K n 1 ( x , x ) = L n ( α ) ( x ) ( L n 1 ( α ) ) ( x ) ( L n ( α ) ) ( x ) L n 1 ( α ) ( x ) = L n 1 ( α + 1 ) ( x ) L n 1 ( α ) ( x ) L n 2 ( α + 1 ) ( x ) L n ( α ) ( x ) = L n 2 ( α + 1 ) ( x ) L n 1 ( α ) ( x ) L n 1 ( α + 1 ) ( x ) L n 2 ( α + 1 ) ( x ) L n ( α ) ( x ) L n 1 ( α ) ( x ) = L n 2 ( α + 1 ) ( x ) L n 1 ( α ) ( x ) 1 + x n + α + 1 2 1 4 x 2 1 n + O x ( n 3 / 2 ) 1 + x n + α 2 1 4 x 2 1 n + O x ( n 3 / 2 ) = L n 2 ( α + 1 ) ( x ) L n 1 ( α ) ( x ) 1 2 n + O x ( n 3 / 2 ) = L n ( α ) ( x ) L n ( α ) ( x ) 2 n n x 1 + O x ( n 1 / 2 ) = L n ( α ) ( x ) L n ( α ) ( x ) 2 n x 1 + O x ( n 1 / 2 ) .
On the other hand, if x y , from (2) and (20) we obtain
L n 1 ( α ) μ 2 n K n 1 ( x , y ) = L n 1 ( α ) ( x ) L n ( α ) ( y ) L n ( α ) ( x ) L n 1 ( α ) ( y ) x y = L n 1 ( α ) ( x ) L n 1 ( α ) ( y ) x y L n ( α ) ( y ) L n 1 ( α ) ( y ) L n ( α ) ( x ) L n 1 ( α ) ( x ) = L n 1 ( α ) ( x ) L n 1 ( α ) ( y ) x y y x n + O x , y ( n 1 ) = L n 1 ( α ) ( x ) L n 1 ( α ) ( y ) x + y 1 n + O x , y ( n 1 ) = L n ( α ) ( x ) L n ( α ) ( y ) n ( x + y ) 1 + O x , y ( n 1 / 2 ) .
From (17) and ([18], Appendix, (1.14))
L n 1 ( α ) μ 2 = Γ ( n + α ) Γ ( n ) = n α ( 1 + O ( n 1 ) ) ,
which proves the case k = 0 . Now, we assume that the theorem is true for i + j = k and we will prove it for i + j = k + 1 . By the symmetry of the formula, the proof is analogous when any of the variables increase its derivative order; thus, we only will prove it when the variable y does.
k + 1 K n 1 x i j + 1 y ( x , y ) = y L n ( α + i ) ( x ) L n ( α + j ) ( y ) n α 1 2 ( x + y ) ( 1 ) k + O x , y ( n 1 / 2 ) = L n ( α + i ) ( x ) n α 1 2 y L n ( α + j ) ( y ) x + y ( 1 ) k + O x , y ( n 1 / 2 ) + L n ( α + j ) ( y ) x + y y ( 1 ) k + O x , y ( n 1 / 2 ) = L n ( α + i ) ( x ) n α 1 2 ( x + y ) L n 1 ( α + j + 1 ) ( y ) + 1 2 L n ( α + j ) ( y ) ( y ) 1 / 2 ( x + y ) 2 · ( 1 ) k + O x , y ( n 1 / 2 ) + L n ( α + j ) ( y ) x + y O x , y ( n 1 / 2 ) = L n ( α + i ) ( x ) L n 1 ( α + j + 1 ) ( y ) n α 1 2 ( x + y ) 1 + y n + O x , y ( n 1 ) 2 y ( x + y ) · ( 1 ) k + O x , y ( n 1 / 2 ) + y n + O x , y ( n 1 ) O x , y ( n 1 ) = L n ( α + i ) ( x ) L n 1 ( α + j + 1 ) ( y ) n α 1 2 ( x + y ) 1 + O x , y ( n 1 / 2 ) ( 1 ) k + O x , y ( n 1 / 2 ) + O x , y ( n 3 / 2 ) = L n ( α + i ) ( x ) L n ( α + j + 1 ) ( y ) n α 1 2 ( x + y ) ( 1 ) k + 1 + O x , y ( n 1 / 2 ) ,
where in the third equality we use Lemma 5 to guarantee that y O x , y ( n 1 ) = O x , y ( n 1 ) , and in the fourth equality, we use (20). □

4. Proof of Theorem 2 and Consequences

Proof of Theorem 2.
Without loss of generality, we will consider the polynomials L n ( α ) = ( 1 ) n / n ! L n α and S ^ n = ( 1 ) n / n ! S n , instead of the monic polynomials L n α and S n .
Multiplying both sides of (21) by ( 1 ) n / n ! , we obtain
S ^ n ( x ) = L n ( α ) ( x ) j = 1 N λ j S ^ n ( d j ) ( c j ) K n 1 ( 0 , d j ) ( x , c j ) ,
Dividing by L n ( α ) ( x ) on both sides of (23), we obtain
S ^ n ( x ) L n ( α ) ( x ) = 1 j = 1 N λ j S ^ n ( d j ) ( c j ) K n 1 ( 0 , d j ) ( x , c j ) L n ( α ) ( x ) .
Recall that we are considering the Laguerre–Sobolev polynomials { S ^ n } that are orthogonal with respect to (5). In this case, the consistent linear system (22) becomes
L n ( α ) ( d k ) ( c k ) = 1 + λ k K n 1 ( d k , d k ) ( c k , c k ) S ^ n ( d k ) ( c k ) + j = 1 j k N λ j K n 1 ( d k , d j ) ( c k , c j ) S ^ n ( d j ) ( c j ) ,
for k = 1 , 2 , , N . Let us define
P n , j α ( x ) : = λ j S ^ n ( d j ) ( c j ) K n 1 ( 0 , d j ) ( x , c j ) L n ( α ) ( x ) and P j α ( x ) : = lim n P n , j α ( x ) .
From (24), in order to prove the existence of the limit (6), we need to figure out the values of P j α ( x ) . Note that
S ^ n ( d j ) ( c j ) = L n ( α ) ( x ) P n , j ( α ) ( x ) λ j K n 1 ( 0 , d j ) ( x , c j ) .
If we replace these expressions in (25), then we obtain the following linear system in the unknowns P n , j ( x )
a 1 , 1 ( n , x ) a 1 , 2 ( n , x ) a 1 , N ( n , x ) a 2 , 1 ( n , x ) a 2 , 2 ( n , x ) a 1 , N ( n , x ) a N , 1 ( n , x ) a N , 2 ( n , x ) a N , N ( n , x ) P n , 1 α ( x ) P n , 2 α ( x ) P n , N α ( x ) = 1 1 1 ,
where
a k , j ( n , x ) = L n ( α ) ( x ) K n 1 ( d k , d j ) ( c k , c j ) L n ( α ) ( d k ) ( c k ) K n 1 ( 0 , d j ) ( x , c j ) , j k , L n ( α ) ( x ) 1 λ k + K n 1 ( d k , d k ) ( c k , c k ) L n ( α ) ( d k ) ( c k ) K n 1 ( 0 , d k ) ( x , c k ) , j = k .
Now, we will find the behavior of the coefficients a k , j ( n , x ) when n approaches infinity. If k = j , we have
a k , k ( n , x ) = L n ( α ) ( x ) 1 λ k + K n 1 ( d k , d k ) ( c k , c k ) L n ( α ) ( d k ) ( c k ) K n 1 ( 0 , d k ) ( x , c k ) = L n ( α ) ( x ) 1 λ k + L n ( α + d k ) ( c k ) L n ( α + d k ) ( c k ) n α 1 2 c k + c k ( 1 ) d k + d k + O ( n 1 / 2 ) ( 1 ) d k L n d k ( α + d k ) ( c k ) L n ( α + d k ) ( c k ) L n ( α ) ( x ) n α 1 2 ( x + c k ) ( 1 ) d k + O x ( n 1 / 2 ) = x + c k 2 c k n α 1 2 λ k L n ( α + d k ) ( c k ) + L n ( α + d k ) ( c k ) 1 + O ( n 1 / 2 ) L n d k ( α + d k ) ( c k ) 1 + O x ( n 1 / 2 ) = x + c k 2 c k n α 1 2 λ k L n ( α + d k ) ( c k ) 2 + 1 + O ( n 1 / 2 ) 1 + O x ( n 1 / 2 ) = x + c k 2 c k 1 + O ( n 1 / 2 ) 1 + O x ( n 1 / 2 ) ,
where in the last equality we use Perron’s Asymptotic Formula (19) to obtain
n α 1 2 ( L n ( α + d k ) ( c k ) ) 2 = 4 π n α 1 2 e c k + 4 c k n ( c k ) α + d k + 1 2 n α + d k 1 2 O ( 1 ) = 1 n d k e 4 c k n O ( 1 ) ,
which has exponential decay ( c k < 0 ). On the other hand, if k j , we obtain
a k , j ( n , x ) = L n ( α ) ( x ) K n 1 ( d k , d j ) ( c k , c j ) L n ( α ) ( d k ) ( c k ) K n 1 ( 0 , d j ) ( x , c j ) = L n ( α + d k ) ( c k ) c k + c j ( 1 ) d k + d j + O ( n 1 / 2 ) ( 1 ) d k L n d k ( α + d k ) ( c k ) x + c j ( 1 ) d j + O ( n 1 / 2 ) = x + c j c k + c j 1 + O ( n 1 / 2 ) 1 + O ( n 1 / 2 ) .
Hence,
lim n a k , j ( n , x ) = x + c j c k + c j , if j k x + c k 2 c k , if j = k = x + | c j | | c k | + | c j | .
Next, taking limits on both sides of (26) when n approaches ∞, we obtain
x + | c 1 | | c 1 | + | c 1 | x + | c 2 | | c 1 | + | c 2 | x + | c N | | c 1 | + | c N | x + | c 1 | | c 2 | + | c 1 | x + | c 2 | | c 2 | + | c 2 | x + | c N | | c 2 | + | c N | x + | c 1 | | c N | + | c 1 | x + | c 2 | | c N | + | c 2 | x + | c N | | c N | + | c N | P 1 α ( x ) P 2 α ( x ) P N α ( x ) = 1 1 1 .
Using Cauchy determinants, it is not difficult to prove that the N solutions of the above linear system are
P j α ( x ) = 2 | c j | x + | c j | l = 1 l j N | c j | + | c l | | c j | | c l | .
Now, from (24), we obtain
lim n S ^ n ( x ) L n ( α ) ( x ) = 1 + j = 1 N 2 | c j | x + | c j | l = 1 l j N | c j | + | c l | | c j | | c l | .
If we consider the change of variable z = x and for simplicity we also consider the notation t j = | c j | , then we obtain the following partial fraction decomposition
1 + j = 1 N 2 t j z + t j l = 1 l j N t j + t l t j t l .
Thus, we only have to prove that this is the partial fraction decomposition of
j = 1 N z t j z + t j .
Let P N ( z ) = j = 1 N ( z t j ) and Q N ( z ) = j = 1 N ( z + t j ) , then
j = 1 N z t j z + t j = P N ( z ) Q N ( z ) = 1 + P N ( z ) Q N ( z ) Q N ( z ) = 1 + j = 1 N A j z + t j ,
where
A j = lim z t j ( z + t j ) P N ( z ) Q N ( z ) Q N ( z ) = P N ( t j ) Q N ( t j ) Q N ( t j ) = l = 1 N ( t j t l ) l = 1 N ( t j + t l ) l = 1 l j N ( t j + t l ) = ( 1 ) N 2 t j ( 1 ) N l = 1 l j N t j + t l t j t l = 2 t j l = 1 l j N t j + t l t j t l ,
which completes the proof. □
Obviously, the inner product (5) and the monic polynomial S n depend on the parameter α > 1 , so that in what follows, we will denote S n α = S n . Formula (6) allows us to obtain other asymptotic formulas for the polynomials S n α . Three of them are included in the following corollary.
Corollary 2.
Let α , β > 1 , n Z + and k n . Under the hypotheses of Theorem 2, we obtain
( 1 ) S n + k α + β ( z ) n k + β / 2 L n α ( z ) 1 k z β j = 1 N x | c j | x + | c j | , K C ¯ \ R + .
( 2 ) S n + k α + β ( z ) n k + β / 2 S n α ( z ) 1 k z β , K C ¯ \ R + .
( 3 ) S n α ( z ) ( ν ) L n α ( z ) ( ν ) j = 1 N x | c j | x + | c j | , K C ¯ \ R + .
Proof. 
Formulas (27) and (28) are direct consequences of Theorem 2 and Lemma 4.
The proof of (29) is by induction on ν. Of course, (6) is (29) for ν = 0 . Assume that (29) is true for ν = κ 0 . Note that
S n α ( z ) ( κ + 1 ) L n α ( z ) ( κ + 1 ) = L n α ( z ) ( κ ) L n α ( z ) ( κ + 1 ) S n α ( z ) ( κ ) L n α ( z ) ( κ ) + S n α ( z ) ( κ ) L n α ( z ) ( κ )
From (16), (18) and Lemma 4
L n α ( z ) ( κ ) L n α ( z ) ( κ + 1 ) = L n κ ( α + κ ) L n κ 1 ( α + κ + 1 ) 0 , K C ¯ \ R + .
Hence, from Theorem 2, we obtain (29) for ν = κ + 1 .

Author Contributions

All authors have contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding

The research of J. Hernández was partially supported by the Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico (FONDOCYT), Dominican Republic, under grant 2020-2021-1D1-135.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Osilenker, B. Fourier Series in Orthogonal Polynomials; World Scientific: Singapore, 1999. [Google Scholar]
  2. Simon, B. The Christoffel-Darboux kernel. Perspectives in PDE, Harmonic Analysis and Applications: A volume in honor of VG Maz’ya’s 70th birthday. Proc. Sympos. Pure Math. Am. Math. Soc. 2008, 79, 295–335. [Google Scholar]
  3. Chihara, T.S. An Introduction to Orthogonal Polynomials; Gordon and Breach: New York, NY, USA, 1978. [Google Scholar]
  4. Freud, G. Orthogonal Polynomials; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
  5. Szegó, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications Series; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
  6. Marcellán, F.; Xu, Y. On Sobolev orthogonal polynomials. Expo. Math. 2015, 33, 308–352. [Google Scholar] [CrossRef]
  7. Martinez-Finkelshtein, A. Analytic properties of Sobolev orthogonal polynomials revisited. J. Comput. Appl. Math. 2001, 127, 255–266. [Google Scholar] [CrossRef]
  8. Lagomasino, G.L.; Marcellán, F.; Assche, W.V. Relative asymptotics for orthogonal polynomials with respect to a discrete Sobolev inner product. Constr. Approx. 1995, 11, 107–137. [Google Scholar]
  9. <i>Alfaro, M.; Lagomasino, G.L.; Rezola, M.L. Some properties of zeros of Sobolev-type orthogonal polynomials. J. Comput. Appl. Math. 1996, 69, 171–179. [Google Scholar] [CrossRef]
  10. Díaz-González, A.; Pijeira-Cabrera, H.; Pérez-Yzquierdo, I. Rational approximation and Sobolev-type orthogonality. J. Approx. Theory 2020, 260, 105481. [Google Scholar] [CrossRef]
  11. Littlejohn, L.L. The Krall polynomials: A new class of orthogonal polynomials. Quaest. Math. 1982, 5, 255–265. [Google Scholar] [CrossRef]
  12. Huertas, E.J.; Marcellán, F.; Pijeira-Cabrera, H. An electrostatic model for zeros of perturbed Laguerre polynomials. Proc. Am. Math. Soc. 2014, 142, 1733–1747. [Google Scholar] [CrossRef]
  13. Lagomasino, G.L.; Pijeira-Cabrera, H.; Pérez, I. Sobolev orthogonal polynomials in the complex plane. J. Comput. Appl. Math. 2001, 127, 219–230. [Google Scholar] [CrossRef]
  14. Schatz, G.C.; Ratner, M.A. Quantum Mechanics in Chemistry; Dover Publications: Mineola, NY, USA, 2002. [Google Scholar]
  15. Due nas, H.; Huertas, E.; Marcellán, F. Asymptotic properties of Laguerre-Sobolev type orthogonal polynomials. Numer. Algorithms 2012, 26, 51–73. [Google Scholar] [CrossRef]
  16. Marcellán, F.; Zejnullahu, R.; Fejzullahu, B.; Huertas, E. On orthogonal polynomials with respect to certain discrete Sobolev inner product. Pac. J. Math. 2012, 257, 167–188. [Google Scholar] [CrossRef]
  17. Ahlfors, L. Complex Analysis, 3rd ed.; McGraw-Hill Book Co.: New York, NY, USA, 1979. [Google Scholar]
  18. Rusev, P. Classical Orthogonal Polynomials and Their Associated Functions in Complex Domain; Marin Drinov Academic Publishing House: Sofia, Bulgaria, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Díaz-González, A.; Hernández, J.; Pijeira-Cabrera, H. Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials. Mathematics 2023, 11, 1956. https://doi.org/10.3390/math11081956

AMA Style

Díaz-González A, Hernández J, Pijeira-Cabrera H. Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials. Mathematics. 2023; 11(8):1956. https://doi.org/10.3390/math11081956

Chicago/Turabian Style

Díaz-González, Abel, Juan Hernández, and Héctor Pijeira-Cabrera. 2023. "Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials" Mathematics 11, no. 8: 1956. https://doi.org/10.3390/math11081956

APA Style

Díaz-González, A., Hernández, J., & Pijeira-Cabrera, H. (2023). Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials. Mathematics, 11(8), 1956. https://doi.org/10.3390/math11081956

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop