Next Article in Journal
On the Mishou Theorem for Zeta-Functions with Periodic Coefficients
Previous Article in Journal
GND-PCA Method for Identification of Gene Functions Involved in Asymmetric Division of C. elegans
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces

School of Sciences, Nantong University, Nantong 226007, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(9), 2041; https://doi.org/10.3390/math11092041
Submission received: 6 March 2023 / Revised: 17 April 2023 / Accepted: 23 April 2023 / Published: 25 April 2023
(This article belongs to the Section Difference and Differential Equations)

Abstract

:
Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approximate and actual solution is negligible, thus succeeding in proving the nonuniform dependence result in both supercritical Besov spaces B p , r s ( T ) × B p , r s ( T ) with s > max { 3 2 , 1 + 1 p } , 1 p , 1 r < and critical Besov space B 2 , 1 3 2 ( T ) × B 2 , 1 3 2 ( T ) . In the non-periodic case, we constructed two sequences of initial data with high and low-frequency terms by analyzing the inner structure of the system under investigation in detail, and we proved that the distance between the two corresponding solution sequences is lower-bounded by time t, but converges to zero at initial time. This implies that the solution map is not uniformly continuous both in supercritical Besov spaces B p , r s ( R ) × B p , r s ( R ) with s > max { 3 2 , 1 + 1 p } , 1 p , 1 r < and critical Besov spaces B p , 1 1 + 1 p ( R ) × B p , 1 1 + 1 p ( R ) with 1 p 2 . The proof of nonuniform dependence is based on approximate solutions and Littlewood–Paley decomposition theory. These approaches are widely applicable in the study of continuous properties for shallow water equations.

1. Introduction

In this paper, we considered the Cauchy problem for the following system, which can be viewed as a two-component generalization of the famous Novikov equation:
m t + m x ( u 2 + v 2 ) + 3 m ( u u x + v v x ) + n ( u x v u v x ) = 0 , t > 0 , x R or x T , n t + n x ( u 2 + v 2 ) + 3 n ( u u x + v v x ) + m ( u x v u v x ) = 0 , t > 0 , x R or x T , m = u u x x , n = v v x x , x R or x T , u ( 0 , x ) = u 0 ( x ) , v ( 0 , x ) = v 0 ( x ) , x R or x T .
System (1) was proposed recently by Li et al. in [1,2]. This system was derived from the zero-curvature equation:
M t N x + [ M , N ] = 0
for the vector prolongation of the Lax pair representation of the Geng–Xue system [3] as follows:
Φ x = M Φ , Φ t = N Φ ,
where the matrix M and N are given by [1,2,4]
M = 0 λ m λ n 1 0 0 0 λ m 0 0 0 λ n 1 0 0 0 , λ R ,
N = ( u u x + v v x ) u x λ λ ( u 2 + v 2 ) m v x λ λ ( u 2 + v 2 ) n u x 2 + v x 2 u λ 1 λ 2 u v x u x v u x λ λ ( u 2 + v 2 ) m v λ u x v u v x 1 λ 2 v x λ λ ( u 2 + v 2 ) n ( u 2 + v 2 ) u λ v λ u u x + v v x , λ R ,
and the bi-Hamiltonian structure of (1) is also given in [1,2,4].
System (1) degenerates into the following well-known Novikov equation by taking u = v in (1) up to a scale invariance:
m t + 3 m u u x + m x u 2 = 0 , m = u u x x .
The Novikov Equation (2) was firstly proposed in [5] in a symmetry classification of integrable non-evolutionary partial differential equation
( 1 D x 2 ) u t = F ( u , u x , u x x , u x x x , )
by applying the perturbative symmetry approach. The first non-trivial higher symmetries were presented, and the integrability and multi-peakon solutions of Equation (2) were also researched, in [6,7]. The well-posedness of (2) has already been well-established by much literature in Sobolev spaces H s with s > 3 2 —see [8,9,10]—and Equation (2) is not locally well-posed in Sobolev spaces H s with s < 3 2 in the sense that the solution does not continuously depend on the initial data [10], which implies that s = 3 2 is the critical Sobolev index for well-posedness. Later, the well-posedness investigation for the Novikov Equation (2) was generalized to Besov spaces. Ni and Zhou [11] established local well-posedness in critical Besov space B 2 , 1 3 2 , and the local well-posedness in super-critical Besov spaces B p , r s with s > 3 2 , p , r [ 1 , ] was also studied, but this result fails for the Novikov equation in B 2 , 3 2 [12,13]. The precise blow-up scenario for the Novikov equation was given in [9,14,15]. The existence of global strong solutions and global weak solutions was also established [9,16,17]. The stability of Novikov peakons was presented in [18,19,20]. For the continuity properties of solutions to Equation (2), it was shown that the solution map for the Novikov equation is Hölder continuous in H r -topology for all 0 r < s with exponent α depending on s > 3 2 and r [21].
The studies of multi-component Camassa–Holm-type equations have also attracted much attention. Concerning the multi-component generalizations of the Novikov equation, three typical systems are popular. The first one is the following system proposed by Popowicz [22]:
m t + 3 m u u x + m x u 2 ρ ( u ρ ) x = 0 , ρ t + u 2 ρ x + ρ u u x = 0 , m = u u x x .
System (3) is locally well-posed both in supercritical Besov spaces B p , r s × B p , r s 1 , s > max { 1 + 1 p , 3 2 } and critical Besov space [23]. The solution map of system (3) is not uniformly continuous in Sobolev spaces H s ( R ) × H s 1 ( R ) with s > 5 2 [24], in supercritical Besov spaces B 2 , r s × B 2 , r s 1 with s > 3 2 , 1 r < and in critical Besov spaces B 2 , 1 3 2 × B 2 , 1 1 2 [25]. The persistence properties of the strong solution to Equation (3) was also investigated by Zhou et al. [26].
The second system is the following Geng–Xue system [3]
m t + 3 m u u x + m x u v = 0 , m t + 3 m u u x + m x u v = 0 , m = u u x x , n = v v x x .
The local well-posedness results of Equation (4) in supercritical Besov spaces B p , r s × B p , r s , s > max { 2 + 1 p , 5 2 } and critical Besov space B 2 , 1 5 2 × B 2 , 1 5 2 were established by Mi et al. [27] and Tang et al. [28], respectively. The bi-Hamiltonian structure was given in [29]. The persistence and wave-breaking criterion [30], integrability [3,29] and dynamics and structure of peaked soliotions [31,32] were also studied recently.
The third system is system (1) under discussion. Fu and Qu [4] established the local well-posedness of (1) in supercritical Besov spaces B p , r s with 1 p , r , s > max { 1 + 1 p , 3 2 } . The wave-breaking mechanism and existence of single-peakons and muli-peakons were also demonstrated in [4].
The continuity of the data-to-solution map plays a crucial role in the well-posedness theory, and there is an increasing interest in investigating the non-uniformly continuous dependence of the solution on the initial data, which indicates that the continuity of the data-to-solution map is sharp. The key issue that lies in these problems is determining the regularity of the initial data, which guarantees the non-uniform dependence. Himonas et al. [8,33,34] obtained the non-uniform dependence of the solution map for equations such as the Camassa–Holm(CH) equation, the Degasperis–Procesi equation and the Novikov equation from H s into C ( [ 0 , T ] ; H s ) , where the regularity index s is always assumed as s > 3 2 . The discussions and methodologies have recently been extended to systems, and similar results were obtained for the two-component Novikov system (3) in the product Sobolev spaces H s × H s 1 with s > 5 2 [24]. Yang et al. [35] studied a high-order two-component b-family system. Based on the local well-posedness results and prior estimates, two sequences of solutions whose distance initially goes to zero but is later bounded below by a positive constant were constructed by the method of approximate solutions; in other words, the authors proved that the data-to-solution map is not uniformly continuous in Sobolev spaces with an index of more than 5 / 2 .
Recently, the discussions of the non-uniform dependence of CH-type equations have been extended to Besov spaces. The techniques devised in this literature are Littlewood–Paley decomposition and transport theories, which are different from the discussions in the Sobolev spaces. Li et al. [36,37] proved the non-uniform dependence of the CH equation in supercritical Besov spaces B p , r s with s > max { 3 2 , 1 + 1 p } and critical Beosv space B 2 , 1 3 2 , respectively. Later, this result was generalized to low-regularity Besov spaces B p , r s with s > 1 , 1 p , r < [38]. It is worth mentioning that the investigation on nonuniform dependence properties has been generalized to equations other than the CH-type equations. In [39], Li et al. proved the nonuniform dependence result for the Benjamin–Ono (BO) equation, where they showed that the BO equation cannot be uniformly continuous on bounded sets on B 2 , r s ( R ) for s > 3 / 2 and r [ 2 , ) . Zhou et al. [40] established the local well-posedness and nonuniform dependence result for the hyperbolic Keller–Segel equation in the Besov framework B p , r s ( R d ) with 1 p , r and s > 1 + d p . Holmes et al. [41] considered a generalized rotation b-family system (R-b-family system) that models the evolution of equatorial water waves. They established sharpness of continuity on the data-to-solution map by showing that it is not uniformly continuous from B p , r s × B p , r s 1 to C ( 0 , T ; B p , r s × B p , r s 1 ) . It is also worth noting that Wang et al. [42] extended the result of non-uniform dependence to the Geng–Xue system (4) in the product Besov spaces.
It can be observed from the above discussions that the non-uniform dependence results have been well-established for systems (3) and (4) in Sobolev spaces, but, up until now, due to the complex structure caused by the strongly coupled terms, the non-uniform dependence of system (1) is still open to debate even in the Sobolev spaces. By utilizing the techniques devised in [36,37,42], based on the already established local well-posedness results, we employed the delicate energy methods, successfully overcame the difficulties in the estimates brought about by the complex structure of this system and then formulated an overall investigation of the non-uniform dependence of system (1). To be specific, we studied the non-uniform dependence in the periodic case and non-periodic case, respectively. In the periodic case, the results were established in both supercritical Besov spaces B p , r s ( T ) × B p , r s ( T ) with s > max { 3 2 , 1 + 1 p } and critical Besov spaces B 2 , 1 3 2 ( T ) × B 2 , 1 3 2 ( T ) , respectively. In the non-periodic case, we also proved that the continuity of the data-to-solution map of system (1) is sharp in the sense that the solution map is non-uniformly dependent on the initial data both in the supercritical space B p , r s ( R ) × B p , r s ( R ) with s > max { 3 2 , 1 + 1 p } and the critical case B p , 1 1 + 1 p ( R ) × B p , 1 1 + 1 p ( R ) with 1 p 2 , respectively.
For T > 0 , s R and 1 p , r , we define
E p , r s ( T ) = C ( [ 0 , T ] ; B p , r s ) C 1 ( [ 0 , T ] ; B p , r s 1 ) , if r < , L ( 0 , T ; B p , s ) L i p ( [ 0 , T ] ; B p , s 1 ) , if r = ,
In order to apply the transport theories, before proceeding any further, we need to reformulate (1). By applying the inverse of Helmholtz operator ( 1 x 2 ) 1 to both sides of the equations in (1), we have
u t + ( u 2 + v 2 ) u x = x ( 1 x 2 ) 1 u 3 + u v 2 + 3 2 u u x 2 + u x v v x + 1 2 u v x 2 1 2 ( 1 x 2 ) 1 u x 3 + u x v x 2 f 1 ( u , v ) + f 2 ( u , v ) , v t + ( u 2 + v 2 ) v x = x ( 1 x 2 ) 1 v 3 + u 2 v + 3 2 v v x 2 + u u x v x + 1 2 u x 2 v 1 2 ( 1 x 2 ) 1 u x 2 v x + v x 3 g 1 ( u , v ) + g 2 ( u , v ) , u ( 0 , x ) = u 0 ( x ) , v ( 0 , x ) = v 0 ( x ) .
The novelty of this paper lies in skilfully devising the error estimates in the proof of the nonuniform dependence result in the critical Besov space B 2 , 1 3 2 ( T ) , where the lack of estimates for errors in B 2 , 1 1 2 ( T ) has caused great difficulties for us. In order to overcome these difficulties, we first estimated the errors in B 2 , 1 2 ( T ) and B 2 , 1 5 2 ( T ) , respectively. Then, we applied the real interpolation formula to obtain the error estimates in B 2 , 1 3 2 ( T ) , thus obtaining the nonuniform dependence result. The novelty of this paper also lies in the subtle choice of approximate solutions in the non-periodic case, since, compared with CH-type equations, the two component Novikov system (1) possesses higher-order terms u x 3 , v x 3 (see Equation (5)) and strongly coupled terms u x v x 2 , u x 2 v x (see Equation (5)). If we choose the low and high-frequency terms of the approximate solutions similar to that of the CH equations, we will not be able to estimate the errors in suitable Besov spaces successively. Therefore, in the non-periodic case, we considered the inner structure of system (1) and found a new sequence of approximate solutions, where we selected more complicated low and high-frequency parts of the approximate solutions (see Section 4).
The pros of the approximate solution technique is that the construction of approximate solutions to prove nonuniform dependence is very natural and easy to understand. The cons of this technique is that the computation is heavy when obtaining the desired error estimates.
We introduce our main results on non-uniform dependence of (5) in Besov spaces as follows.
The first result of non-uniform dependence indicates that the continuity of the data-to-solution map of Equation (5) is sharp in supercritical periodic Besov spaces.
Theorem 1.
Suppose that ( u 0 , v 0 ) B p , r s ( T ) × B p , r s ( T ) with s > max { 3 2 , 1 + 1 / p } , 1 p , r < ; then, there exists a time T 0 > 0 such that the solution map ( u 0 , v 0 ) ( u ( t ) , v ( t ) ) of the Cauchy problem (5) is not uniformly continuous from any bounded subset of B p , r s ( T ) × B p , r s ( T ) into C ( [ 0 , T 0 ] ; B p , r s ( T ) × B p , r s ( T ) ) . More precisely, there exist two sequences of solutions ( u 1 n ( t ) , v 1 n ( t ) ) and ( u 2 n ( t ) , v 2 n ( t ) ) such that the corresponding initial data satisfy
u 1 n ( 0 ) , v 1 n ( 0 ) , u 2 n ( 0 ) , v 2 n ( 0 ) B p , r s ( T ) 1 ,
and
lim n u 1 n ( 0 ) u 2 n ( 0 ) B p , r s ( T ) = lim n v 1 n ( 0 ) v 2 n ( 0 ) B p , r s ( T ) = 0 .
while
lim inf n u 1 n ( t ) u 2 n ( t ) B p , r s ( T ) | sin t 4 | , lim inf n v 1 n ( t ) v 2 n ( t ) B p , r s ( T ) | sin t 4 | , t [ 0 , T 0 ] ,
with small positive time T 0 such that T 0 T 1 .
In the critical case when ( s , p , r ) = ( 3 2 , 2 , 1 ) , there are no estimates for solutions in B 2 , 1 1 / 2 ; therefore, we carried out the error estimates in B 2 , 1 2 instead to establish the following non-uniform dependence result:
Theorem 2.
Suppose that ( u 0 , v 0 ) B 2 , 1 3 / 2 ( T ) × B 2 , 1 3 / 2 ( T ) ; then, there exists a time T 2 > 0 such that the solution map ( u 0 , v 0 ) ( u ( t ) , v ( t ) ) of the Cauchy problem (5) is not uniformly continuous from any bounded subset of B 2 , 1 3 / 2 ( T ) × B 2 , 1 3 / 2 ( T ) into C ( [ 0 , T 2 ] ; B 2 , 1 3 / 2 ( T ) × B 2 , 1 3 / 2 ( T ) ) . More precisely, there exist two sequences of solutions ( u 1 n ( t ) , v 1 n ( t ) ) and ( u 2 n ( t ) , v 2 n ( t ) ) such that the corresponding initial data satisfy
u 1 n ( 0 ) , v 1 n ( 0 ) , u 2 n ( 0 ) , v 2 n ( 0 ) B 2 , 1 3 / 2 ( T ) 1 ,
and
lim n u 1 n ( 0 ) u 2 n ( 0 ) B 2 , 1 3 / 2 ( T ) = lim n v 1 n ( 0 ) v 2 n ( 0 ) B 2 , 1 3 / 2 ( T ) = 0 .
while
lim inf n u 1 n ( t ) u 2 n ( t ) B 2 , 1 3 / 2 ( T ) | sin t 4 | , lim inf n v 1 n ( t ) v 2 n ( t ) B 2 , 1 3 / 2 ( T ) | sin t 4 | , t [ 0 , T 3 ] ,
where exp ( c t ) > 3 / 4 , c is a positive constant and T 3 is a small positive time such that T 3 T 2 .
In the non-periodic case, by choosing an appropriate approximate solution sequence, we managed to show the non-uniform dependence result in the sense that, if the initial data are subtly perturbed, then the approximate solution will no longer converge to the exact solution. The main results are stated as follows:
Theorem 3.
Suppose that ( u 0 , v 0 ) B p , r s ( R ) × B p , r s ( R ) , with s > max { 3 2 , 1 + 1 / p } , 1 p , 1 r < ; then, there exists a time T 4 > 0 such that the solution map ( u 0 , v 0 ) ( u ( t ) , v ( t ) ) of the Cauchy problem (5) is not uniformly continuous from any bounded subset of B p , r s ( R ) × B p , r s ( R ) into C ( [ 0 , T 4 ] ; B p , r s ( R ) × B p , r s ( R ) ) . More precisely, there exist two sequences of solutions ( u n ( t ) , v n ( t ) ) and ( u ˜ n ( t ) , v ˜ n ( t ) ) such that the corresponding initial data satisfy
u n ( 0 ) , v n ( 0 ) , u ˜ n ( 0 ) , v ˜ n ( 0 ) B p , r s ( R ) 1 ,
and
lim n u n ( 0 ) u ˜ n ( 0 ) B p , r s ( R ) = lim n v n ( 0 ) v ˜ n ( 0 ) B p , r s ( R ) = 0 .
while
lim inf n u n ( t ) u ˜ n ( t ) B p , r s ( R ) t , lim inf n v n ( t ) v ˜ n ( t ) B p , r s ( R ) t , t [ 0 , T 5 ] ,
with small positive time T 5 such that T 5 T 4 .
The last theorem concerns non-uniform dependence in non-periodic critical Besov spaces:
Theorem 4.
Suppose that ( u 0 , v 0 ) B p , 1 1 + 1 / p ( R ) × B p , 1 1 + 1 / p ( R ) with 1 p 2 ; then, there exists a time T 6 > 0 such that the solution map ( u 0 , v 0 ) ( u ( t ) , v ( t ) ) of the Cauchy problem (5) is not uniformly continuous from any bounded subset of B p , 1 1 + 1 / p ( R ) × B p , 1 1 + 1 / p ( R ) into C ( [ 0 , T 6 ] ; B p , 1 1 + 1 / p ( R ) × B p , 1 1 + 1 / p ( R ) ) . More precisely, there exist two sequences of solutions ( u n ( t ) , v n ( t ) ) and ( u ˜ n ( t ) , v ˜ n ( t ) ) such that the corresponding initial data satisfy
u n ( 0 ) , v n ( 0 ) , u ˜ n ( 0 ) , v ˜ n ( 0 ) B p , 1 1 + 1 / p ( R ) 1 ,
and
lim n u n ( 0 ) u ˜ n ( 0 ) B p , 1 1 + 1 / p ( R ) = lim n v n ( 0 ) v ˜ n ( 0 ) B p , 1 1 + 1 / p ( R ) = 0 .
while
lim inf n u n ( t ) u ˜ n ( t ) B p , 1 1 + 1 / p ( R ) t , lim inf n v n ( t ) v ˜ n ( t ) B p , 1 1 + 1 / p ( R ) t , t [ 0 , T 5 ] ,
with small positive time T 5 such that T 7 T 6 .
The rest of this paper is organized as follows. In Section 2, we list several Lemmas that will be helpful to prove the main Theorems. In Section 3, we demonstrate the non-uniform dependence in periodic Besov spaces. The discussions are split into two subsections concerning the supercritical case and critical case, respectively. In Section 4, we also consider the non-uniform dependence in non-periodic Besov spaces, and the supercritical case and critical case are also studied separately in two subsections.
Notations. For a given Banach space X, we denote its norm by · X .

2. Preliminaries

In this section, we shall recall some properties of the Besov spaces and the transport equation theories.
Definition 1 ([43]).
Let s R , p , r [ 1 , ] and u D ( T ) . Then, we define the Besov space of functions as
B p , r s = { u D ( T ) : u B p , r s < } ,
where
u B p , r s ( q 1 ( 2 s q Δ q u L p ) r ) 1 r if 1 r < , sup q 1 2 s q Δ q u L p , if r = .
In particular, B p , r = s R B p , r s .
The following lemma summarizes some useful properties of the Besov space B p , r s .
Lemma 1 ([43]).
Let s R , 1 p , r , p j , r j , j = 1 , 2 ; then,
(1) 
Density: C c is dense in B p , r s p , r [ 1 , ) .
(2) 
Embedding: B p 1 , r 1 s B p 2 , r 2 s n ( 1 p 1 1 p 2 ) if p 1 p 2 and r 1 r 2 . B p , r 2 s 2 B p , r 1 s 1 is locally compact if s 1 < s 2 .
(3) 
Algebraic properties: s > 0 , B p , r s L is a Banach algebra. B p , r s is a Banach algebra B p , r s L s > 1 p or ( s 1 p and r = 1 ). In particular, B 2 , 1 1 / 2 is continuously embedded in B 2 , 1 / 2 L and B 2 , 1 / 2 L is a Banach algebra.
(4) 
1-D Moser-type estimates:
(i) 
For s > 0 ,
f g B p , r s C ( f B p , r s g L + f L g B p , r s ) .
(ii) 
s 1 1 p < s 2 ( s 2 1 p if r = 1 ) and s 1 + s 2 > 0 , we have
f g B p , r s 1 C f B p , r s 1 g B p , r s 2 .
(5) 
Complex interpolation:
f B p , r θ s 1 + ( 1 θ ) s 2 f B p , r s 1 θ g B p , r s 2 1 θ , f B p , r s 1 B p , r s 2 , θ [ 0 , 1 ] .
(6) 
Fatou lemma: if { u n } n N is bounded in B p , r s and u n u in D ( T ) , then u B p , r s and
u B p , r s lim inf n u n B p , r s .
(7) 
Real interpolation: if u B p , s 1 B p , s 2 and s 1 < s 2 , then u B p , 1 θ s 1 + ( 1 θ ) s 2 for all θ ( 0 , 1 ) and there exists a universal constant C such that
u B p , 1 θ s 1 + ( 1 θ ) s 2 C θ ( 1 θ ) ( s 2 s 1 ) u B p , s 1 θ u B p , s 2 1 θ .
Now, we state some useful results for the following transport equation that are crucial to the proofs of our main theorems later.
t f + v x f = g , f | t = 0 = f 0 ( x ) .
Lemma 2 ([44]).
Let 1 p , 1 r and θ > min ( 1 p , 1 p ) . Then, there exists a constant C such that, for all solutions f L ( 0 , T ; B p , r θ ) of (6) with initial data f 0 in B p , r θ and g in L 1 ( 0 , T ; B p , r θ ) , we have, for a.e. t [ 0 , T ] ,
f ( t ) B p , r θ f 0 B p , r θ + 0 t g ( t ) B p , r θ d t + 0 t V ( t ) f ( t ) B p , r θ d t
or
f ( t ) B p , r θ e C V ( t ) ( f 0 B p , r θ + 0 t e C V ( t ) g ( t ) B p , r θ d t )
with
V ( t ) = x v ( t ) B p , 1 p L , i f θ < 1 + 1 p , x v ( t ) B p , r θ , i f θ = 1 + 1 p , r > 1 , x v ( t ) B p , r θ 1 , i f θ > 1 + 1 p , ( o r θ = 1 + 1 p , r = 1 ) .
If θ > 0 , then there exists a constant C = C ( p , r , θ ) such that the following statement holds:
f ( t ) B p , r θ f 0 B p , r θ + 0 t g ( τ ) B p , r θ d τ + C 0 t ( f ( τ ) B p , r θ x v ( τ ) L + x f ( τ ) L x v ( τ ) B p , r θ 1 ) d τ .
In particular, if f = a v + b , a , b R , then, for all θ > 0 , V ( t ) = x v ( t ) L .
Lemma 3 ([42]).
For any f B 2 , 1 1 2 , g B 2 , 1 1 2 , the following estimate holds:
f g B 2 , 1 2 f B 2 , 1 1 2 g B 2 , 1 1 2 .
Lemma 4 ([45]).
(Osgood Lemma) Assume that ρ 0 is a measurable function, γ > 0 is a locally integrable function and μ is an increasing function. Suppose that, for some non-negative real number c, the function ρ satisfies
ρ c + t 0 t γ ( τ ) μ ( ρ ( τ ) ) d τ .
If C > 0 , then M ( ρ ( t ) ) + M t 0 t γ ( τ ) d τ with M = x 1 d r μ ( r ) . If c = 0 and μ satisfies 0 1 d r μ ( r ) = + , then the function ρ = 0 .
Lemma 5 ([46]).
Let σ , α R . If n Z and n 1 ; then, for all 1 p , r , we have
sin ( n x α ) B p , r σ ( T ) = cos ( n x α ) B p , r σ ( T ) n σ .
Lemma 6 ([4]).
Assume that p , r [ 1 , ] , s > max { 1 + 1 p , 3 2 } . If the initial data ( u 0 , v 0 ) B p , r s × B p , r s , then there exists a time T > 0 such that the Cauchy problem (5) has a unique solution ( u , v ) E p , r s ( T ) × E p , r s ( T ) , and the solution map ( u 0 , v 0 ) ( u , v ) is continuous from a neighborhood of B p , r s × B p , r s into E p , r s ( T ) × E p , r s ( T ) for all s < s if r = , and s = s otherwise. Moreover, ( u , v ) satisfies the estimate
u B p , r s + v B p , r s 2 ( u 0 B p , r s + v 0 B p , r s ) , 0 t 3 16 C ( u 0 B p , r s + v 0 B p , r s ) 2 ,
where C > 0 is a constant.
Lemma 7 ([47]).
Let ( u 0 , v 0 ) B p , 1 1 + 1 p × B p , 1 1 + 1 p with 1 p < ; then, there exists a time T > 0 such that the Cauchy problem (5) has a unique solution ( u , v ) E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) , and the solution map ( u 0 , v 0 ) ( u , v ) is continuous from a neighborhood of B p , 1 1 + 1 p × B p , 1 1 + 1 p into E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) . Moreover, ( u , v ) satisfies the estimate
u B p , r s + v B p , r s 2 ( u 0 B p , r s + v 0 B p , r s ) , 0 t 3 16 C ( u 0 B p , r s + v 0 B p , r s ) 2 ,
where C > 0 is a constant.

3. Non-Uniform Dependence in the Periodic Case

In this section, we will establish the non-uniform dependence results in the periodic case; in other words, we prove Theorems 1 and 2. Since all function spaces are over T , we drop T in our notations of function spaces for simplicity if there is no ambiguity in this section. Before proceeding further, we first need to construct the following approximate solutions:
u ω , n ( t ) = ω n 1 2 + n s cos ( n x ω t ) , v ω , n ( t ) = ω n 1 2 + n s cos ( n x ω t ) ,
where ω = 0 , 1 2 . s > max { 3 2 , 1 + 1 p } or s = 3 2 , n Z , n 1 .

3.1. Non-Uniform Dependence in the Supercritical Besov Spaces

Substituting ( u ω , n ( t ) , v ω , n ( t ) ) into the equations of (5) yields
t u ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x u ω , n + f 1 ( u ω , n , v ω , n ) + f 2 ( u ω , n , v ω , n ) = E ( t ) , t v ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x v ω , n + g 1 ( u ω , n , v ω , n ) + g 2 ( u ω , n , v ω , n ) = F ( t ) .
Direct calculation shows that
E 1 ( t ) = t u ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x u ω , n = 2 ω n 2 s + 1 2 sin ( 2 n x 2 ω t ) n 3 s + 1 sin ( 2 n x 2 ω ) cos ( n x ω t ) . E 2 ( t ) = f 1 ( u ω , n , v ω , n ) = ( 1 x 2 ) 1 [ 7 2 ω n 5 2 2 s sin ( 2 n x 2 ω t ) + 7 2 ω n 3 3 s sin ( n x ω t ) cos ( 2 n x 2 ω t ) + 7 4 n 3 3 s sin ( 2 n x 2 ω t ) cos ( n x ω t ) 3 2 n 4 3 s sin ( 2 n x 2 ω t ) sin ( n x ω t ) ] . E 3 ( t ) = f 2 ( u ω , n , v ω , n ) = ( 1 x 2 ) 1 [ n 3 3 s sin 3 ( n x ω t ) ] .
Next, we estimate E i ( t ) B p , r μ ( max { 1 2 , 1 p } < μ < min { 1 + 1 p , s 1 } , i = 1 , 2 , 3 ) .
The joint application of Lemmas 1(4) and 5 indicates that
E 1 ( t ) B p , r μ n 2 s + 1 2 sin ( 2 n x 2 ω t ) B p , r μ + n 1 3 s ( sin ( 2 n x 2 ω t ) B p , r μ cos ( n x ω t ) L + sin ( 2 n x 2 ω t ) L cos ( n x ω t ) B p , r μ ) n 2 s + μ + 1 2 + n 1 3 s + μ n 2 s + μ + 1 2 . E 2 ( t ) B p , r μ n 2 s + 5 2 sin ( 2 n x 2 ω t ) B p , r μ 2 + n 3 3 s sin ( n x ω t ) cos ( 2 n x 2 ω t ) B p , r μ 1 + n 3 3 s sin ( 2 n x 2 ω t ) cos ( n x ω t ) B p , r μ 1 + n 4 3 s sin ( 2 n x 2 ω t ) sin ( n x ω t ) B p , r μ 2 n 1 2 + μ 2 s + n 2 + μ 3 s n 1 2 + μ 2 s . E 3 ( t ) B p , r μ n 3 3 s sin 3 ( n x ω t ) B p , r μ 1 n 2 + μ 3 s .
Therefore, we obtain
E ( t ) B p , r μ i = 1 3 E i ( t ) B p , r μ max { n 2 s + μ + 1 2 , n 2 + μ 3 s } = n 2 s + μ + 1 2 .
In a similar way, one has
F ( t ) B p , r μ n 2 s + μ + 1 2 .
As a consequence, we have the following lemma:
Lemma 8.
If s > max { 3 2 , 1 + 1 p } , 1 p , 1 r < , n Z , n 1 , max { 1 p , 1 2 } < μ < min { 1 + 1 p , s 1 } , then we have
E ( t ) B p , r μ , F ( t ) B p , r μ n 2 s + μ + 1 2 , 0 t T 0 .
Let ( u ω , n ( t ) , v ω , n ( t ) ) be the solution to the Cauchy problem with initial data ( u ω , n ( 0 ) , v ω , n ( 0 ) ) ; that is, ( u ω , n ( t ) , v ω , n ( t ) ) solves the following problem:
t u ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x u ω , n + f 1 ( u ω , n , v ω , n ) + f 2 ( u ω , n , v ω , n ) = 0 , t > 0 , x T , t v ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x v ω , n + g 1 ( u ω , n , v ω , n ) + g 2 ( u ω , n , v ω , n ) = 0 , t > 0 , x T , u ω , n ( 0 ) = u ω , n ( 0 ) = w n 1 2 + n s cos n x , x T , v ω , n ( 0 ) = v ω , n ( 0 ) = w n 1 2 + n s cos n x , x T ,
where f 1 ( u ω , n , v ω , n ) , f 2 ( u ω , n , v ω , n ) , g 1 ( u ω , n , v ω , n ) , g 2 ( u ω , n , v ω , n ) are as defined in 5) once ( u , v ) is replaced by ( u ω , n , v ω , n ) . It can be easily verified that ( u ω , n ( 0 ) , v ω , n ( 0 ) ) B p , r s × B p , r s . By applying Lemma 6, there exists a unique solution ( u ω , n ( t ) , v ω , n ( t ) ) to problem (9) with the maximal existence time
T 1 > T 0 = 1 8 C ( u 0 B p , r s 2 + v 0 B p , r s 2 ) 1 .
Next, we will estimate the difference between the approximate and the actual solutions.
Let w = u ω , n u ω , n , z = v ω , n v ω , n . It is easy to verify that ( w ( t ) , z ( t ) ) satisfies the following problem:
t w + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x w + [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x u ω , n + f 1 ( u ω , n , v ω , n ) f 1 ( u ω , n , v ω , n ) + f 2 ( u ω , n , v ω , n ) f 2 ( u ω , n , v ω , n ) = E ( t ) , t > 0 , x T , t z + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x z + [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x v ω , n + g 1 ( u ω , n , v ω , n ) g 1 ( u ω , n , v ω , n ) + g 2 ( u ω , n , v ω , n ) g 2 ( u ω , n , v ω , n ) = F ( t ) , t > 0 , x T , w ( 0 , x ) = w 0 ( x ) = 0 , z ( 0 , x ) = z 0 ( x ) = 0 , x T ,
where
f 1 ( u ω , n , v ω , n ) f 1 ( u ω , n , v ω , n ) = x ( 1 x 2 ) 1 { 3 2 w ( x u ω , n ) 2 + 3 2 u ω , n x w ( x u ω , n + x u ω , n ) + x w v ω , n x v ω , n + x u ω , n z x v ω , n + x u ω , n v ω , n x z + w [ ( u ω , n ) 2 + u ω , n u ω , n + ( u ω , n ) 2 ] + w ( v ω , n ) 2 + u ω , n z ( v ω , n + v ω , n ) + 1 2 w ( x v ω , n ) 2 + 1 2 u ω , n x z ( x v ω , n + x v ω , n ) } , f 2 ( u ω , n , v ω , n ) f 2 ( u ω , n , v ω , n ) = 1 2 ( 1 x 2 ) 1 { x w [ ( x u ω , n ) 2 + x u ω , n x u ω , n + ( x u ω , n ) 2 ] + x u ω , n x z ( x v ω , n + x v ω , n ) + x w ( x v ω , n ) 2 } . g 1 ( u ω , n , v ω , n ) g 1 ( u ω , n , v ω , n ) = x ( 1 x 2 ) 1 { 3 2 z ( x v ω , n ) 2 + 3 2 v ω , n x z ( x v ω , n + x v ω , n ) + x z u ω , n x u ω , n + x v ω , n w x u ω , n + x v ω , n u ω , n x w + z [ ( v ω , n ) 2 + v ω , n v ω , n + ( v ω , n ) 2 ] + z ( u ω , n ) 2 + v ω , n w ( u ω , n + u ω , n ) + 1 2 z ( x u ω , n ) 2 + 1 2 v ω , n x w ( x u ω , n + x u ω , n ) } , g 2 ( u ω , n , v ω , n ) g 2 ( u ω , n , v ω , n ) = 1 2 ( 1 x 2 ) 1 { x z [ ( x v ω , n ) 2 + x v ω , n x v ω , n + ( x v ω , n ) 2 ] + x v ω , n x w ( x u ω , n + x u ω , n ) + x z ( x u ω , n ) 2 } .
Lemma 9.
Suppose that s > max { 3 2 , 1 + 1 p } , 1 p , 1 r < , n Z , n 1 , max { 1 p , 1 2 } < μ < min { 1 + 1 p , s 1 } ; then, we have the following estimates:
w ( t ) B p , r μ , z ( t ) B p , r μ n 2 s + μ + 1 2 , 0 t T 0 ,
w ( t ) B p , r 2 s μ , z ( t ) B p , r 2 s μ n s μ , 0 t T 0 .
Proof. 
Note that w 0 B p , r μ = z 0 B p , r μ = 0 . Applying Lemma 2 to the first and second solution component of (10) yields, respectively,
w ( t ) B p , r μ e C V ( t ) { 0 t ( [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x u ω , n B p , r μ + E ( τ ) B p , r μ ) d τ } + 0 t f 1 ( u ω , n , v ω , n ) f 1 ( u ω , n , v ω , n ) B p , r μ + f 2 ( u ω , n , v ω , n ) f 2 ( u ω , n , v ω , n ) B p , r μ d τ ,
and
z ( t ) B p , r μ e C V ( t ) { 0 t ( [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x v ω , n B p , r μ + F ( τ ) B p , r μ ) d τ } + 0 t g 1 ( u ω , n , v ω , n ) g 1 ( u ω , n , v ω , n ) B p , r μ + g 2 ( u ω , n , v ω , n ) g 2 ( u ω , n , v ω , n ) B p , r μ d τ ,
where V ( t ) = 0 t x [ ( u ω , n ) 2 + ( v ω , n ) 2 ] B p , r μ 1 d τ .
Due to Lemma 1(4)(i), for max { 1 p , 1 2 } < μ < min { 1 + 1 p , s 1 } , we have
x [ ( u ω , n ) 2 + ( v ω , n ) 2 ] B p , r μ 1 [ ( u ω , n ) 2 + ( v ω , n ) 2 ] B p , r μ u ω , n B p , r μ 2 + v ω , n B p , r μ 2 1 . [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x u ω , n B p , r μ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z L x u ω , n B p , r μ + ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z B p , r μ x u ω , n L [ ( u ω , n L + u ω , n L ) w L + v ω , n L + v ω , n L ) z L ] u ω , n B p , r μ + 1 + [ ( u ω , n B p , r μ + u ω , n B p , r μ ) w B p , r μ + ( v ω , n B p , r μ + v ω , n B p , r μ ) z B p , r μ ] u ω , n B p , r μ ( u ω , n B p , r s + u ω , n B p , r s + v ω , n B p , r s + v ω , n B p , r s ) ( w B p , r μ + z B p , r μ ) u ω , n B p , r s . f 1 ( u ω , n , v ω , n ) f 1 ( u ω , n , v ω , n ) B p , r μ u ω , n B p , r μ u ω , n B p , r μ + 1 w B p , r μ + u ω , n B p , r μ ( u ω , n B p , r μ + 1 + u ω , n B p , r μ + 1 ) w B p , r μ + v ω , n B p , r μ v ω , n B p , r μ + 1 w B p , r μ + u ω , n B p , r μ v ω , n B p , r μ + 1 z B p , r μ + u ω , n B p , r μ + 1 v ω , n B p , r μ z B p , r μ + ( u ω , n B p , r μ 2 + u ω , n B p , r μ u ω , n B p , r μ + u ω , n B p , r μ 2 ) w B p , r μ + v ω , n B p , r μ 1 v ω , n B p , r μ w B p , r μ + ( u ω , n B p , r μ 1 v ω , n B p , r μ + u ω , n B p , r μ 1 v ω , n B p , r μ ) z B p , r μ + v ω , n B p , r μ + 1 v ω , n B p , r μ w B p , r μ + u ω , n B p , r μ ( v ω , n B p , r μ + 1 + v ω , n B p , r μ + 1 ) z B p , r μ ( u ω , n B p , r s 2 + u ω , n B p , r s 2 + v ω , n B p , r s 2 + v ω , n B p , r s 2 ) ( w B p , r μ + z B p , r μ ) . f 2 ( u ω , n , v ω , n ) f 2 ( u ω , n , v ω , n ) B p , r μ x w B p , r μ 1 ( u ω , n B p , r μ + 1 2 + u ω , n B p , r μ + 1 2 ) + x z B p , r μ 1 ( u ω , n B p , r μ + 1 2 + v ω , n B p , r μ + 1 2 + v ω , n B p , r μ + 1 2 ) + x w B p , r μ 1 v ω , n B p , r μ + 1 2 ( u ω , n B p , r s 2 + u ω , n B p , r s 2 + v ω , n B p , r s 2 + v ω , n B p , r s 2 ) ( w B p , r μ + z B p , r μ ) .
Similarly,
[ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x v ω , n B p , r μ ( u ω , n B p , r s + u ω , n B p , r s + v ω , n B p , r s + v ω , n B p , r s ) ( w B p , r μ + z B p , r μ ) v ω , n B p , r s . g 1 ( u ω , n , v ω , n ) g 1 ( u ω , n , v ω , n ) B p , r μ ( u ω , n B p , r s 2 + u ω , n B p , r s 2 + v ω , n B p , r s 2 + v ω , n B p , r s 2 ) ( w B p , r μ + z B p , r μ ) . g 2 ( u ω , n , v ω , n ) g 2 ( u ω , n , v ω , n ) B p , r μ ( u ω , n B p , r s 2 + u ω , n B p , r s 2 + v ω , n B p , r s 2 + v ω , n B p , r s 2 ) ( w B p , r μ + z B p , r μ ) .
By substituting the above estimates into (13) and (14), respectively, in view of the fact that
u ω , n , u ω , n , v ω , n , v ω , n B p , r s 1 ,
we obtain
w B p , r μ + z B p , r μ n 2 s + μ + 1 2 + 0 t ( w ( τ ) B p , r μ + z ( τ ) B p , r μ ) d τ .
It thus follows from the Gronwall inequality that (11) holds.
Next, we prove (12).
Applying Lemma 2 to the first equation in (9) yields
u ω , n ( t ) B p , r 2 s μ u ω , n ( 0 ) B p , r 2 s μ + 0 t ( f 1 ( u ω , n , v ω , n ) B p , r 2 s μ + f 2 ( u ω , n , v ω , n ) B p , r 2 s μ ) d τ + 0 t ( u ω , n B p , r 2 s μ x [ ( u ω , n ) 2 + ( v ω , n ) 2 ] L + x [ ( u ω , n ) 2 + ( v ω , n ) 2 ] B p , r 2 s μ x u ω , n L ) d τ .
By applying Lemma 1(4)(i) and the embedding theorem, in view of the fact that u ω , n , v ω , n 1 , we find that
f 1 ( u ω , n , v ω , n ) B p , r 2 s μ u ω , n ( x u ω , n ) 2 B p , r 2 s μ 1 + x u ω , n v ω , n x v ω , n B p , r 2 s μ 1 + u ω , n 3 B p , r 2 s μ 1 + u ω , n ( v ω , n ) 2 B p , r 2 s μ 1 + u ω , n ( x v ω , n ) 2 B p , r 2 s μ 1 u ω , n L ( x u ω , n ) 2 B p , r 2 s μ 1 + u ω , n B p , r 2 s μ 1 ( x u ω , n ) 2 L + x u ω , n L v ω , n x v ω , n B p , r 2 s μ 1 + x u ω , n B p , r 2 s μ 1 v ω , n x v ω , n L + u ω , n L ( u ω , n ) 2 B p , r 2 s μ 1 + u ω , n B p , r 2 s μ 1 u ω , n L 2 + u ω , n L ( v ω , n ) 2 B p , r 2 s μ 1 + u ω , n B p , r 2 s μ 1 ( v ω , n ) 2 L + u ω , n L ( x v ω , n ) 2 B p , r 2 s μ 1 + u ω , n B p , r 2 s μ 1 ( x v ω , n ) 2 L u ω , n L x u ω , n L x u ω , n B p , r 2 s μ 1 + ( x u ω , n ) 2 L u ω , n B p , r 2 s μ 1 + x u ω , n L ( v ω , n L x v ω , n B p , r 2 s μ 1 + v ω , n B p , r 2 s μ 1 x v ω , n L ) + x u ω , n B p , r 2 s μ 1 v ω , n L x v ω , n L + u ω , n L 2 u ω , n B p , r 2 s μ 1 + u ω , n L v ω , n L v ω , n B p , r 2 s μ 1 + v ω , n L 2 u ω , n B p , r 2 s μ 1 + u ω , n L x v ω , n L x v ω , n B p , r 2 s μ 1 + x v ω , n L 2 u ω , n B p , r 2 s μ 1 u ω , n B p , r 2 s μ + v ω , n B p , r 2 s μ .
In a similar way, one obtains
f 2 ( u ω , n , v ω , n ) B p , r 2 s μ u ω , n B p , r 2 s μ + v ω , n B p , r 2 s μ ,
and
u ω , n B p , r 2 s μ x ( u ω , n 2 + v ω , n 2 ) L + x u ω , n L x ( u ω , n 2 + v ω , n 2 ) B p , r 2 s μ 1 u ω , n B p , r 2 s μ + v ω , n B p , r 2 s μ .
Substituting the above estimates into (15) yields
u ω , n ( t ) B p , r 2 s μ u ω , n ( 0 ) B p , r 2 s μ + 0 t ( u ω , n ( τ ) B p , r 2 s μ + v ω , n ( τ ) B p , r 2 s μ ) d τ .
Similarly,
v ω , n ( t ) B p , r 2 s μ v ω , n ( 0 ) B p , r 2 s μ + 0 t ( u ω , n ( τ ) B p , r 2 s μ + v ω , n ( τ ) B p , r 2 s μ ) d τ .
Adding (16) and (17) together yields
u ω , n ( t ) B p , r 2 s μ + v ω , n ( t ) B p , r 2 s μ u ω , n ( 0 ) B p , r 2 s μ + v ω , n ( 0 ) B p , r 2 s μ + 0 t ( u ω , n ( τ ) B p , r 2 s μ + v ω , n ( τ ) B p , r 2 s μ ) d τ .
An application of the Gronwall inequality implies that
u ω , n ( t ) B p , r 2 s μ + v ω , n ( t ) B p , r 2 s μ u ω , n ( 0 ) B p , r 2 s μ + v ω , n ( 0 ) B p , r 2 s μ n s μ , 0 t T 0 .
Moreover, by the definition of the approximate solutions ( u ω , n ( t ) , v ω , n ( t ) ) , we have
u ω , n ( t ) B p , r 2 s μ , v ω , n ( t ) B p , r 2 s μ = ω n 1 2 + n s cos ( n x ω t ) B p , r 2 s μ n s μ .
Therefore,
w ( t ) B p , r 2 s μ u ω , n ( t ) B p , r 2 s μ + u ω , n ( t ) B p , r 2 s μ n s μ , z ( t ) B p , r 2 s μ v ω , n ( t ) B p , r 2 s μ + v ω , n ( t ) B p , r 2 s μ n s μ .
which completes the proof of Lemma 9.
Now, we are ready to prove Theorem 1. Let ω = 0 , 1 2 . It follows from Lemma 6 that ( u 0 , n ( t ) , v 0 , n ( t ) ) , ( u 1 2 , n ( t ) , v 1 2 , n ( t ) ) are the unique solutions to problem (3) with initial data ( u 0 , n ( 0 ) , v 0 , n ( 0 ) ) , ( u 1 2 , n ( 0 ) , v 1 2 , n ( 0 ) ) , respectively. It can be deduced from Lemmas 8 and 9 and the complex interpolation formula in Lemma 1(6) that
w ( t ) B p , r s w ( t ) B p , r 2 s μ 1 2 w ( t ) B p , r μ 1 2 n s μ 2 n s + μ 2 + 1 4 n 1 2 s 4 n 1 2 ,
z ( t ) B p , r s z ( t ) B p , r 2 s μ 1 2 z ( t ) B p , r μ 1 2 n s μ 2 n s + μ 2 + 1 4 n 1 2 .
In view of Lemma 6 and the fact that u ω , n ( t ) = ω n 1 2 + n s cos ( n x ω t ) , v ω , n ( t ) = ω n 1 2 + n s cos ( n x ω t ) , we find that
u 0 , n ( t ) B p , r s + u 1 2 , n ( t ) B p , r s + v 0 , n ( t ) B p , r s + v 1 2 , n ( t ) B p , r s 1 , u 1 2 , n ( 0 ) u 0 , n ( 0 ) B p , r s = v 1 2 , n ( 0 ) v 0 , n ( 0 ) B p , r s n 1 2 .
Since
u 1 2 , n ( t ) u 0 , n ( t ) B p , r s = 1 2 n 1 2 + n s cos ( n x t 2 ) n s cos n x B p , r s ( n s sin ( n x t 4 ) B p , r s | sin t 4 | n 1 2 ) | sin t 4 | n 1 2 .
We obtain from (18)–(20) that, for 0 t T 0 ,
lim inf n u 1 2 , n ( t ) u 0 , n ( t ) B p , r s lim inf n ( u 1 2 , n ( t ) u 0 , n ( t ) B p , r s u 1 2 , n ( t ) u 1 2 , n ( t ) B p , r s u 0 , n ( t ) u 0 , n ( t ) B p , r s ) lim inf n ( | sin t 4 | n 1 2 n 1 2 ) | sin t 4 | .
The proof of Theorem 1 is complete. □

3.2. Non-Uniform Dependence in the Critical Besov Space

In this part, we will prove the non-uniform dependence of the solution to the initial data in the critical periodic Besov space B 2 , 1 3 2 ( T ) × B 2 , 1 3 2 ( T ) . Since now s = 3 2 , the approximate solutions can be rewritten as
u ω , n = ω n 1 2 + n 3 2 cos ( n x ω t ) , v ω , n = ω n 1 2 + n 3 2 cos ( n x ω t ) ,
where ω = 0 , 1 2 , n Z , n 1 .
However, for critical case ( s , p , r ) = ( 3 2 , 2 , 1 ) , we now consider that there are no estimates for solutions in B p , r s 1 ; therefore, we carry out the estimates in B 2 , 1 2 .
First, as discussed in Section 3.1, we substitute the approximate solution ( u ω , n , v ω , n ) into (5) and compute the error estimates.
E 1 ( t ) B 2 , 1 2 n 5 2 sin ( 2 n x 2 ω t ) B 2 , 1 2 + n 7 2 ( sin ( 2 n x 2 ω t ) L cos ( n x ω t ) B 2 , 1 2 + sin ( 2 n x 2 ω t ) B 2 , 1 2 cos ( n x ω t ) L ) n 5 2 n 1 2 + n 7 2 n 1 2 n 2 + n 3 n 2 . E 2 ( t ) B 2 , 1 2 n 1 2 sin ( 2 n x 2 ω t ) B 2 , 1 2 + n 3 2 ( sin ( n x ω t cos ( 2 n x 2 ω t ) ) B 2 , 1 2 + sin ( 2 n x 2 ω t ) cos ( n x ω t ) B 2 , 1 2 ) + n 1 2 sin ( 2 n x 2 ω t ) sin ( n x ω t ) B 2 , 1 2 n 1 2 n 3 2 + n 3 2 n 3 2 + n 1 2 n 3 2 n 2 . E 3 ( t ) B 2 , 1 2 n 3 2 sin 3 ( n x ω t ) B 2 , 3 2 n 3 2 n 3 2 n 3 .
Therefore, we obtain E ( t ) B 2 , 1 2 n 2 . Similarly we can find F ( t ) B 2 , 1 2 n 2 . The following lemma is a direct consequence of the above discussions:
Lemma 10.
Let ( s , p , r ) = ( 3 2 , 2 , 1 ) , n Z , n 1 . We have
E ( t ) B 2 , 1 2 , F ( t ) B 2 , 1 2 n 2 , 0 t T 3 .
Similar to the above discussions of the non-critical case, let ( u ω , n ( t ) , v ω , n ( t ) ) be solutions to the Cauchy problem (3) with initial data ( u ω , n ( 0 ) , v ω , n ( 0 ) ) = ( u ω , n ( 0 ) , v ω , n ( 0 ) ) . Thus, ( u ω , n ( t ) , v ω , n ( t ) ) solves the following problem:
t u ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x u ω , n + f 1 ( u ω , n , v ω , n ) + f 2 ( u ω , n , v ω , n ) = 0 , t > 0 , x T , t v ω , n + [ ( u ω , n ) 2 + ( v ω , n ) 2 ] x v ω , n + g 1 ( u ω , n , v ω , n ) + g 2 ( u ω , n , v ω , n ) = 0 , t > 0 , x T , u ω , n ( 0 ) = u ω , n ( 0 ) = w n 1 2 + n 3 2 cos n x , x T , v ω , n ( 0 ) = v ω , n ( 0 ) = w n 1 2 + n 3 2 cos n x , x T ,
where f 1 , f 2 , g 1 , g 2 are as stated in (5).
From Lemma 5, we obtain
u ω , n ( 0 ) B 2 , 1 3 2 = v ω , n ( 0 ) B 2 , 1 3 2 = ω n 1 2 + n 3 2 cos n x B 2 , 1 3 2 n 1 2 + n 3 2 cos n x B 2 , 1 3 2 1 .
Due to Lemma 7 and the discussions in reference [47], we obtain the existence and uniqueness of solution, and the maximal existence time can be estimated as
T 2 > T 3 = 1 8 C ( u ω , n ( 0 ) B 2 , 1 3 2 2 + v ω , n ( 0 ) B 2 , 1 3 2 2 ) 1 .
Next, we estimate the difference between approximate and actual solutions.
Let w = u ω , n u ω , n , z = v ω , n v ω , n ; then, ( w , z ) also satisfies (10), and the difference between approximate and actual solutions are estimated as follows:
Lemma 11.
Let ( s , p , r ) = ( 3 2 , 2 , 1 ) , n Z , n 1 ; then, we have
w ( t ) B 2 , 1 2 , z ( t ) B 2 , 1 2 n 2 e C t , 0 t T 3 ,
w ( t ) B 2 , 1 5 2 , z ( t ) B 2 , 1 5 2 n . 0 t T 3 .
Proof. 
Applying Lemma 2 to the first equation in (10) yields
w ( t ) B 2 , 1 2 exp { C 0 t x [ ( u ω , n ) 2 + ( v ω , n ) 2 ] B 2 , 1 2 d τ } × ( 0 t [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x u ω , n B 2 , 1 2 + E ( τ ) B 2 , 1 2 ) d τ + 0 t f 1 ( u ω , n , v ω , n ) f 1 ( u ω , n , v ω , n ) B 2 , 1 2 d τ + 0 t f 2 ( u ω , n , v ω , n ) f 2 ( u ω , n , v ω , n ) B 2 , 1 2 d τ ) .
By applying Lemmas 1(4)(ii) and 3, one obtains
x [ ( u ω , n ) 2 + ( v ω , n ) 2 ] B 2 , 1 2 ( u ω , n ) 2 + ( v ω , n ) 2 B 2 , 1 2 u ω , n B 2 , 1 3 2 2 + v ω , n B 2 , 1 3 2 2 1 . [ ( u ω , n + u ω , n ) w + ( v ω , n + v ω , n ) z ] x u ω , n B 2 , 1 2 ( u ω , n B 2 , 1 3 2 + u ω , n B 2 , 1 3 2 + v ω , n B 2 , 1 3 2 + v ω , n B 2 , 1 3 2 ) ( w B 2 , 1 1 2 + z B 2 , 1 1 2 ) u ω , n B 2 , 1 3 2 , f 1 ( u ω , n , v ω , n ) f 1 ( u ω , n , v ω , n ) B 2 , 1 2 ( u ω , n B 2 , 1 3 2 2 + u ω , n B 2 , 1 3 2 2 + v ω , n B 2 , 1 3 2 2 + v ω , n B 2 , 1 3 2 2 ) ( w B 2 , 1 1 2 + z B 2 , 1 1 2 ) , f 2 ( u ω , n , v ω , n ) f 2 ( u ω , n , v ω , n ) B 2 , 1 2 ( u ω , n B 2 , 1 3 2 2 + u ω , n B 2 , 1 3 2 2 + v ω , n B 2 , 1 3 2 2 + v ω , n B 2 , 1 3 2 2 ) ( w B 2 , 1 1 2 + z B 2 , 1 1 2 ) .
The joint application of Lemmas 7 and 10 yields
w ( t ) B 2 , 1 2 n 2 + 0 t ( w ( τ ) B 2 , 1 1 2 + z ( τ ) B 2 , 1 1 2 ) d τ .
Notice that w B 2 , 1 3 2 + z B 2 , 1 3 2 M . By Lemma 4,
w ( t ) B 2 , 1 2 n 2 + 0 t ( w ( τ ) B 2 , 1 2 ln ( e + M w B 2 , 1 2 ) + z ( τ ) B 2 , 1 2 ln ( e + M z B 2 , 1 2 ) ) d τ .
Similarly, we can derive
z ( t ) B 2 , 1 2 n 2 + 0 t ( w ( τ ) B 2 , 1 2 ln ( e + M w B 2 , 1 2 ) + z ( τ ) B 2 , 1 2 ln ( e + M z B 2 , 1 2 ) ) d τ .
Adding (25) and (26) together, in view of the fact that the function x ln ( e + M x ) is nondecreasing, we have
w ( t ) B 2 , 1 2 + z ( t ) B 2 , 1 2 n 2 + 0 t ( w ( t ) B 2 , 1 2 + z ( t ) B 2 , 1 2 ) ln ( e + M w ( τ ) B 2 , 1 2 + z ( τ ) B 2 , 1 2 ) d τ .
Using the fact that ln ( e + x M ) ( 1 ln x M ) ln ( e + 1 ) , x ( 0 , M ] , the above estimate reduces to
w ( t ) B 2 , 1 2 + z ( t ) B 2 , 1 2 M n 2 M + 0 t ( w ( t ) B 2 , 1 2 + z ( t ) B 2 , 1 2 M ( 1 ln w ( t ) B 2 , 1 2 + z ( t ) B 2 , 1 2 M ) ) d τ .
Thanks to Lemma 4, we deduce that
w ( t ) B 2 , 1 2 + z ( t ) B 2 , 1 2 n 2 exp ( C t ) ,
which completes the proof of (22). The proof of (23) is similar to (22), so we omit it here.
Finally, applying Lemmas 11 and 1(7), it follows that
w ( t ) B 2 , 1 3 2 w ( t ) B 2 , 1 2 1 2 w ( t ) B 2 , 5 2 1 2 w ( t ) B 2 , 1 2 1 2 w ( t ) B 2 , 1 5 2 1 2 n 1 2 exp ( C t ) 2 .
Choosing T 3 to ensure that
exp ( C t ) > 3 4 , 0 t T 3 < T 2 ,
we can derive
w ( t ) B 2 , 1 3 2 , z ( t ) B 2 , 1 3 2 n 1 4 , 0 t T 3 .
The rest of the proof is very similar to Theorem 1. This completes the proof of Theorem 2. □

4. Non-Uniform Dependence in the Non-Periodic Case

In this section, we will investigate the non-uniform dependence of the solution for Equation (5) on the real line. Since all function spaces are over R , we drop R in our notations of function spaces for simplicity if there is no ambiguity here. The techniques employed here are different with the periodic case. This section is divided into two subsections, which investigate the non-uniform dependence in supercritical Besov spaces B p , r s × B p , r s , where s > max { 3 2 , 1 + 1 p } , 1 p , 1 r < , and critical Besov spaces B p , r s × B p , r s with s = 1 + 1 p , 1 p 2 , r = 1 , respectively.

4.1. Non-Uniform Dependence in Supercritical Besov Spaces

We will study the non-uniform dependence of Equation (5) in supercritical Besov spaces; or, in other words, we prove Theorem 3 in this subsection.
For this purpose, we introduce a pair of even, real-valued and non-negative cut-off functions ϕ ^ , ψ ^ C 0 ( R ) [48] satisfying
ϕ ^ ( x ) , ψ ^ ( x ) = 1 , i f | x | 1 4 , 0 , i f | x | 1 2 .
It can be deduced from the inversion of the Fourier formula that
ϕ ( x ) = 1 2 π R e i x ξ ϕ ^ ( ξ ) d ξ , ψ ( x ) = 1 2 π R e i x ξ ψ ^ ( ξ ) d ξ . x ϕ ( x ) = 1 2 π R i ξ e i x ξ ϕ ^ ( ξ ) d ξ , x ψ ( x ) = 1 2 π R i ξ e i x ξ ψ ^ ( ξ ) d ξ .
Therefore, the Fubini theorem indicates that:
ϕ L = sup x R 1 2 π | R cos ( x ξ ) ϕ ^ ( ξ ) d ξ | R ϕ ^ ( ξ ) d ξ C , ϕ ( 0 ) = 1 2 π R ϕ ^ ( ξ ) d ξ . ψ L = sup x R 1 2 π | R cos ( x ξ ) ψ ^ ( ξ ) d ξ | R ψ ^ ( ξ ) d ξ C , ψ ( 0 ) = 1 2 π R ψ ^ ( ξ ) d ξ .
Define the high-frequency functions
f n 1 = 2 n s ϕ ( x ) sin ( 33 24 2 n x ) , f n 2 = 2 n s ψ ( x ) sin ( 33 24 2 n x ) , n 1 ,
and the low-frequency functions
g n 1 = 33 24 2 n 2 ϕ ( x ) , g n 2 = 33 24 2 n 2 ψ ( x ) , n 1 .
It is easy to verify that ( f n 1 , f n 2 ) lies in B p , r s ( R ) × B p , r s ( R ) , and so does ( f n 1 + g n 1 , f n 2 + g n 2 ) .
Let ( u 0 , n , v 0 , n ) = ( f n 1 , f n 2 ) and ( u ˜ 0 , n , v ˜ 0 , n ) = ( f n 1 + g n 1 , f n 2 + g n 2 ) ; then, we have the following lemmas.
Lemma 12 ([48]).
Let s R and 1 p , 1 r < ; then, for any θ R , we have the following estimates:
u 0 , n , v 0 , n L p 2 n s , x u 0 , n , x v 0 , n L p 2 n ( 1 s ) ,
u 0 , n , v 0 , n B p , r θ 2 n ( θ s ) .
Lemma 13 ([48]).
Let s R and 1 p , 1 r < ; then,
g n 1 , g n 2 L p 2 n 2 , x g n 1 , x g n 2 L p 2 n 2 ,
g n 1 , g n 2 B p , r s 2 n 2 s .
Lemma 14 ([49]).
Let s R and 1 p , 1 r < ; then, for any θ 1 2 , we have
u ˜ 0 , n , v ˜ 0 , n B p , r s 1 2 n 2 , u ˜ 0 , n , v ˜ 0 , n B p , r s + θ 2 n θ .
Let ( u n , v n ) be the solution of Equation (5) with the initial data ( u 0 , n , v 0 , n ) ; then, we have the following estimates:
Proposition 1.
Let s R and 1 p , r < , and suppose that ( s , p , r ) meets the requirements in Theorem 3; then, for k = 1 , 1 , we have
u n , v n B p , r s + k 2 k n ,
u n u 0 , n , v n v 0 , n B p , r s 2 n 2 ( s 1 ) .
Proof. 
It can be deduced from (28) that
u 0 , n , v 0 , n B p , r s + k 2 k n , k = 1 , 0 , 1 .
From Lemma 6, there exists a T = T ( u 0 , n , v 0 , n ) such that (5) (with initial data ( u 0 , n , v 0 , n ) ) has a unique solution ( u n , v n ) E p , r s ( T ) × E p , r s ( T ) and T 1 . Moreover,
u n L T ( B p , r s ) + v n L T ( B p , r s ) u 0 , n B p , r s + v 0 , n B p , r s .
Similar to the discussions in [47], we obtain, for k = 1 , 1 ,
u n ( t ) B p , r s + k + v n ( t ) B p , r s + k u 0 , n B p , r s + k + v 0 , n B p , r s + k + 0 t ( u n ( τ ) B p , r s + k + v n ( τ ) B p , r s + k ) 3 d τ .
By applying the Gronwall lemma and (34), we have, for all t [ 0 , T ] ,
u n ( t ) B p , r s 1 + v n ( t ) B p , r s 1 2 n , u n ( t ) B p , r s + 1 + v n ( t ) B p , r s + 1 2 n .
Let σ = u n u 0 , n , τ = v n v 0 , n ; then, we can derive from (5) that ( σ , τ ) solves the following problem:
σ t + ( u n 2 + v n 2 ) x σ = [ ( u n 2 + v n 2 ) ( u 0 , n 2 + v 0 , n 2 ) ] x u 0 , n [ f 1 ( u n , v n ) f 1 ( u 0 , n , v 0 , n ) ] [ f 2 ( u n , v n ) f 2 ( u 0 , n , v 0 , n ) ] f 1 ( u 0 , n , v 0 , n ) f 2 ( u 0 , n , v 0 , n ) ( u 0 , n 2 + v 0 , n 2 ) x u 0 , n , τ t + ( u n 2 + v n 2 ) x τ = [ ( u n 2 + v n 2 ) ( u 0 , n 2 + v 0 , n 2 ) ] x v 0 , n [ g 1 ( u n , v n ) g 1 ( u 0 , n , v 0 , n ) ] [ g 2 ( u n , v n ) g 2 ( u 0 , n , v 0 , n ) ] g 1 ( u 0 , n , v 0 , n ) g 2 ( u 0 , n , v 0 , n ) ( u 0 , n 2 + v 0 , n 2 ) x v 0 , n , σ ( 0 , x ) = 0 , τ ( 0 , x ) = 0 .
Applying Lemma 2 to the first equation of (36) yields
σ B p , r s 1 0 t x ( u n 2 + v n 2 ) B p , r s 1 σ B p , r s 1 + 0 t [ ( u n 2 + v n 2 ) ( u 0 , n 2 + v 0 , n 2 ) ] x u 0 , n B p , r s 1 d τ + 0 t f 1 ( u n , v n ) f 1 ( u 0 , n , v 0 , n ) B p , r s 1 d τ + 0 t f 2 ( u n , v n ) f 2 ( u 0 , n , v 0 , n ) B p , r s 1 d τ + 0 t ( f 1 ( u 0 , n , v 0 , n ) B p , r s 1 + f 2 ( u 0 , n , v 0 , n ) B p , r s 1 + ( u 0 , n 2 + v 0 , n 2 ) x u 0 , n B p , r s 1 ) d τ .
In view of the fact that B p , r s 1 is a Banach algebra when s > max { 1 + 1 p , 3 2 } , by applying Lemma 1(4)(ii), one obtains
[ ( u n 2 + v n 2 ) ( u 0 , n 2 + v 0 , n 2 ) ] x u 0 , n B p , r s 1 ( u n u 0 , n B p , r s 1 u n + u 0 , n B p , r s 1 + v n v 0 , n B p , r s 1 v n + v 0 , n B p , r s 1 ) x u 0 , n B p , r s 1 ( u n u 0 , n B p , r s 1 + v n v 0 , n B p , r s 1 ) ( u n B p , r s 2 + u 0 , n B p , r s 2 + v n B p , r s 2 + v 0 , n B p , r s 2 ) . f 1 ( u n , v n ) f 1 ( u 0 , n , v 0 , n ) B p , r s 1 ( u n u 0 , n B p , r s 1 + v n v 0 , n B p , r s 1 ) ( u n B p , r s 2 + u 0 , n B p , r s 2 + v n B p , r s 2 + v 0 , n B p , r s 2 ) . f 2 ( u n , v n ) f 2 ( u 0 , n , v 0 , n ) B p , r s 1 ( u n u 0 , n B p , r s 1 + v n v 0 , n B p , r s 1 ) ( u n B p , r s 2 + u 0 , n B p , r s 2 + v n B p , r s 2 + v 0 , n B p , r s 2 ) .
It follows that, by utilizing the fact that B p , r s 1 is a Banach algebra,
f 11 ( u 0 , n , v 0 , n ) B p , r s 1 ( u 0 , n ) 3 B p , r s 2 u 0 , n B p , r s 2 u 0 , n L u 0 , n B p , r s 1 2 n ( s + 3 ) , f 12 ( u 0 , n , v 0 , n ) B p , r s 1 u 0 , n ( v 0 , n ) 2 B p , r s 2 u 0 , n B p , r s 2 v 0 , n L | v 0 , n B p , r s 1 2 n ( s + 3 ) , f 13 ( u 0 , n , v 0 , n ) B p , r s 1 u 0 , n ( x u 0 , n ) 2 B p , r s 2 u 0 , n B p , r s 2 x u 0 , n L x u 0 , n B p , r s 1 2 n ( s + 1 ) .
Similarly,
f 14 ( u 0 , n , v 0 , n ) B p , r s 1 x ( u 0 , n ) v 0 , n x ( v 0 , n ) B p , r s 2 2 n ( s + 1 ) , f 15 ( u 0 , n , v 0 , n ) B p , r s 1 u 0 , n ( x ( v 0 , n ) ) 2 B p , r s 2 2 n ( s + 1 ) .
It can also be deduced that
f 21 ( u 0 , n , v 0 , n ) B p , r s 1 ( x u 0 , n ) 3 B p , r s 2 u 0 , n B p , r s 1 x u 0 , n L x u 0 , n B p , r s 1 2 n s .
Similarly,
f 22 ( u 0 , n , v 0 , n ) B p , r s 1 2 n s . ( u 0 , n 2 + v 0 , n 2 ) x u 0 , n B p , r s 1 x u 0 , n B p , r s 1 ( u 0 , n L + u 0 , n B p , r s 1 + v 0 , n L + v 0 , n B p , r s 1 ) 2 n ( s + 1 ) .
Substituting all of the above estimates back into (37), we find that
σ B p , r s 1 = u n u 0 , n B p , r s 1 2 n s .
In a similar manner, we obtain
τ B p , r s 1 = v n v 0 , n B p , r s 1 2 n s .
The application of the interpolation inequality yields
u n u 0 , n B p , r s + v n v 0 , n B p , r s ( u n u 0 , n B p , r s 1 + v n v 0 , n B p , r s 1 ) 1 2 ( u n u 0 , n B p , r s + 1 + v n v 0 , n B p , r s + 1 ) 1 2 2 n s 2 · 2 n 2 = 2 n 2 ( s 1 ) .
The proof of Proposition 1 is complete. □
For the purpose of deducing the non-uniform dependence of the solution on the initial data, we will show that, for the constructed initial data ( u ˜ 0 , n , v ˜ 0 , n ) with a small perturbation, the corresponding solution ( u ˜ n , v ˜ n ) can no longer approximate the exact solution.
Proposition 2.
Under the assumptions of Theorem 3, we have
u ˜ n u ˜ 0 , n t u 0 n B p , r s + v ˜ n v ˜ 0 , n t v 0 n B p , r s t 2 + 2 n 2 ,
where u 0 n = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n , v 0 n = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x v ˜ 0 , n .
Proof. 
It follows from (31) that
u ˜ n B p , r s + k + v ˜ n B p , r s + k u ˜ 0 , n B p , r s + k + v ˜ 0 , n B p , r s + k 2 k n , k 1 2 , 2 n 2 , k = 1 .
Since u 0 n = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n , we can deduce that
u 0 n B p , r s 1 = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n B p , r s 1 ( u ˜ 0 , n B p , r s 1 2 + v ˜ 0 , n B p , r s 1 2 ) x u ˜ 0 , n B p , r s 1 2 n . u 0 n B p , r s + σ = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n B p , r s + σ u ˜ 0 , n L 2 x u ˜ 0 , n B p , r s + σ + u ˜ 0 , n L u ˜ 0 , n B p , r s + σ x u ˜ 0 , n L
( 2 n 2 ) 2 · 2 n ( σ + 1 ) + 2 n 2 2 n σ 2 n 2 2 n σ ,
where σ 1 2 .
In a similar manner, we have
v 0 n B p , r s 1 2 n , v 0 n B p , r s + σ 2 n σ .
Let ξ n = u ˜ n u ˜ 0 , n t u 0 n , η n = v ˜ n v ˜ 0 , n t v 0 n ; then, we know from (5) that ( ξ n , η n ) solves the following problem:
t ξ n + ( u ˜ n 2 + v ˜ n 2 ) x ξ n = t ( u ˜ n + u ˜ 0 , n ) u 0 n x u ˜ 0 , n t ( v ˜ n + v ˜ 0 , n ) v 0 n x u ˜ 0 , n ξ n ( u ˜ n + u ˜ 0 , n ) x u ˜ 0 , n η n ( v ˜ n + v ˜ 0 , n ) x u ˜ 0 , n f 1 ( u ˜ n , v ˜ n ) f 2 ( u ˜ n , v ˜ n ) t ( u ˜ n 2 + v ˜ n 2 ) x u 0 n , t η n + ( u ˜ n 2 + v ˜ n 2 ) x η n = t ( u ˜ n + u ˜ 0 , n ) u 0 n x v ˜ 0 , n t ( v ˜ n + v ˜ 0 , n ) v 0 n x v ˜ 0 , n ξ n ( u ˜ n + u ˜ 0 , n ) x v ˜ 0 , n η n ( v ˜ n + v ˜ 0 , n ) x v ˜ 0 , n g 1 ( u ˜ n , v ˜ n ) g 2 ( u ˜ n , v ˜ n ) t ( u ˜ n 2 + v ˜ n 2 ) x v 0 n , ξ n ( 0 , x ) = η n ( 0 , x ) = 0 .
By applying Lemma 2 to the first and second solution component in (42), one obtains
ξ n ( t ) B p , r s e C V ( t ) { 0 t τ ( u ˜ n + u ˜ 0 , n ) u 0 n x u ˜ 0 , n + τ ( v ˜ n + v ˜ 0 , n ) v 0 n x u ˜ 0 , n B p , r s d τ + 0 t ξ n ( u ˜ n + u ˜ 0 , n ) x u ˜ 0 , n + η n ( v ˜ n + v ˜ 0 , n ) x u ˜ 0 , n B p , r s d τ
+ 0 t f 1 ( u ˜ n , v ˜ n ) + f 2 ( u ˜ n , v ˜ n ) B p , r s d τ + 0 t τ ( u ˜ n 2 + v ˜ n 2 ) x u 0 n B p , r s d τ } , η n ( t ) B p , r s e C V ( t ) { 0 t τ ( u ˜ n + u ˜ 0 , n ) u 0 n x v ˜ 0 , n + τ ( v ˜ n + v ˜ 0 , n ) v 0 n x v ˜ 0 , n B p , r s d τ + 0 t ξ n ( u ˜ n + u ˜ 0 , n ) x v ˜ 0 , n + η n ( v ˜ n + v ˜ 0 , n ) x v ˜ 0 , n B p , r s d τ
+ 0 t g 1 ( u ˜ n , v ˜ n ) + g 2 ( u ˜ n , v ˜ n ) B p , r s d τ + 0 t τ ( u ˜ n 2 + v ˜ n 2 ) x v 0 n B p , r s d τ } ,
where V ( t ) = 0 t x ( u ˜ n 2 + v ˜ n 2 ) ( t ) B p , r s 1 d t , and
f 1 ( u ˜ n , v ˜ n ) = x ( 1 x 2 ) 1 ( u ˜ n 3 ) x ( 1 x 2 ) 1 ( u ˜ n v ˜ n 2 ) 3 2 x ( 1 x 2 ) 1 ( u ˜ n ( x u ˜ n ) 2 ) x ( 1 x 2 ) 1 ( x u ˜ n v ˜ n x v ˜ n ) 1 2 x ( 1 x 2 ) 1 ( u ˜ n ( x v ˜ n ) 2 ) A 1 + A 2 + A 3 + A 4 + A 5 . f 2 ( u ˜ n , v ˜ n ) = 1 2 ( 1 x 2 ) 1 ( ( x u ˜ n ) 3 ) 1 2 ( 1 x 2 ) 1 ( x u ˜ n ( x v ˜ n ) 2 ) A 6 + A 7 .
In order to facilitate the computation, we decompose A i ( i = 3 t o 7 ) as follows:
A 3 ( u ˜ n , v ˜ n ) = 3 2 x ( 1 x 2 ) 1 ( u ˜ n ( x u ˜ n ) 2 ) = 3 2 x ( 1 x 2 ) 1 ( u ˜ n x ( u ˜ n + u ˜ 0 , n ) x ξ n ) 3 2 τ x ( 1 x 2 ) 1 ( u ˜ n x ( u ˜ n + u ˜ 0 , n ) x u 0 n ) 3 2 x ( 1 x 2 ) 1 ( u ˜ n ( x u ˜ 0 , n ) 2 ) , A 4 ( u ˜ n , v ˜ n ) = x ( 1 x 2 ) 1 ( x u ˜ n v ˜ n x v ˜ n ) = x ( 1 x 2 ) 1 ( v ˜ n x v ˜ n x ξ n ) τ x ( 1 x 2 ) 1 ( v ˜ n x v ˜ n x u 0 n ) x ( 1 x 2 ) 1 ( x u ˜ 0 , n v ˜ n x v ˜ n ) , A 5 ( u ˜ n , v ˜ n ) = 1 2 x ( 1 x 2 ) 1 ( u ˜ n ( x v ˜ n ) 2 ) = 1 2 x ( 1 x 2 ) 1 ( u ˜ n x ( v ˜ n + v ˜ 0 , n ) x η n ) 1 2 τ x ( 1 x 2 ) 1 ( u ˜ n x ( v ˜ n + v ˜ 0 , n ) x v 0 n ) 1 2 x ( 1 x 2 ) 1 ( u ˜ n ( x v ˜ 0 , n ) 2 ) , A 6 ( u ˜ n , v ˜ n ) = 1 2 ( 1 x 2 ) 1 ( ( x u ˜ n ) 3 ) = 1 2 ( 1 x 2 ) 1 ( x u ˜ n x ( u ˜ n + u ˜ 0 , n ) x ξ n ) 1 2 τ ( 1 x 2 ) 1 ( x u ˜ n x ( u ˜ n + u ˜ 0 , n ) x u 0 n ) 1 2 ( x u ˜ n ( x u ˜ 0 , n ) 2 ) , A 7 ( u ˜ n , v ˜ n ) = 1 2 ( 1 x 2 ) 1 ( x u ˜ n ( x v ˜ n ) 2 ) = 1 2 ( 1 x 2 ) 1 ( x u ˜ n x ( v ˜ n + v ˜ 0 , n ) x η n ) 1 2 τ ( 1 x 2 ) 1 ( x u ˜ n x ( v ˜ n + v ˜ 0 , n ) x v 0 n ) 1 2 τ ( 1 x 2 ) 1 ( x u ˜ n ( x v ˜ 0 , n ) 2 ) .
For the purpose of convenience, we list the estimates of the simple terms that will be used later.
x u ˜ n L , x v ˜ n L 2 n 2 , u ˜ n B p , r s 1 , v ˜ n B p , r s 1 2 n 2 , u ˜ n B p , r s , v ˜ n B p , r s 1 , u ˜ n B p , r s + 1 , v ˜ n B p , r s + 1 2 n , u ˜ 0 , n L , v ˜ 0 , n L 2 n 2 , x u ˜ 0 , n L , x v ˜ 0 , n L 2 n 2 , u ˜ 0 , n B p , r s 1 , v ˜ 0 , n B p , r s 1 2 n 2 , u ˜ 0 , n B p , r s , v ˜ 0 , n B p , r s 1 , u ˜ 0 , n B p , r s + 1 , v ˜ 0 , n B p , r s + 1 2 n , u 0 n L , v 0 n L 2 3 2 n , x u 0 n L , x v 0 n L 2 n , u 0 n B p , r s 1 , v 0 n B p , r s 1 2 n , u 0 n B p , r s , v 0 n B p , r s 1 , u 0 n B p , r s + 1 , v 0 n B p , r s + 1 2 n .
Next, we estimate every integrant on the right-hand side of (43):
τ ( u ˜ n + u ˜ 0 , n ) u 0 n x u ˜ 0 , n B p , r s τ ( u ˜ n + u ˜ 0 , n B p , r s u 0 n L x v ˜ 0 , n L + u ˜ n + u ˜ 0 , n L ( u 0 n B p , r s x v ˜ 0 , n L + u 0 n L v ˜ 0 , n B p , r s + 1 ) ) τ · 2 3 2 n · 2 n 2 + τ · 2 n 2 · 2 n 2 + τ · 2 n 2 · 2 3 2 n · 2 n 2 n τ .
Similarly,
τ ( v ˜ n + v ˜ 0 , n ) v 0 n x u ˜ 0 , n B p , r s 2 n τ .
and
ξ n ( u ˜ n + u ˜ 0 , n ) x u ˜ 0 , n B p , r s ξ n B p , r s u ˜ n + u ˜ 0 , n L x u ˜ 0 , n L + ξ n L u ˜ n + u ˜ 0 , n B p , r s x u ˜ 0 , n L + ξ n L u ˜ n + u ˜ 0 , n L x u ˜ 0 , n B p , r s ξ n B p , r s u ˜ n + u ˜ 0 , n L x u ˜ 0 , n L + ξ n B p , r s 1 ( u ˜ n + u ˜ 0 , n B p , r s x u ˜ 0 , n L + u ˜ n + u ˜ 0 , n L u ˜ 0 , n B p , r s + 1 ) ξ n B p , r s · 2 n 2 · 2 n 2 + ξ n B p , r s 1 ( 2 n 2 + 2 n 2 · 2 n ) 2 n ξ n B p , r s + 2 n 2 ξ n B p , r s 1 ,
η n ( v ˜ n + v ˜ 0 , n ) x u ˜ 0 , n B p , r s 2 n η n B p , r s + 2 n 2 η n B p , r s 1 .
For terms A i ( i = 1 to 7 ) , we estimate them as follows:
A 1 ( u ˜ n , v ˜ n ) B p , r s u ˜ n B p , r s 1 3 2 3 2 n ,
A 2 ( u ˜ n , v ˜ n ) B p , r s u ˜ n B p , r s 1 v ˜ n B p , r s 1 2 2 n 2 ( 2 n 2 ) 2 = 2 3 2 n , A 3 ( u ˜ n , v ˜ n ) B p , r s u ˜ n x ( u ˜ n + u ˜ 0 , n ) x ξ n B p , r s 1 + τ u ˜ n x ( u ˜ n + u ˜ 0 , n ) x u 0 n B p , r s 1 + u ˜ n ( x u ˜ 0 , n ) 2 B p , r s 1 u ˜ n B p , r s 1 u ˜ n + u ˜ 0 , n B p , r s ξ n B p , r s + τ u ˜ n B p , r s 1 u ˜ n + u ˜ 0 , n B p , r s u 0 n B p , r s + u ˜ n B p , r s 1 u ˜ 0 , n B p , r s 1 2
ξ n B p , r s + τ · 2 n 2 + 2 3 2 n , A 4 ( u ˜ n , v ˜ n ) B p , r s v ˜ n x v ˜ n x ξ n B p , r s 1 + τ v ˜ n x v ˜ n x u 0 n B p , r s 1 + x u ˜ 0 , n v ˜ n x v ˜ n B p , r s 1 ξ n B p , r s + τ ( u ˜ n L v ˜ n B p , r s u 0 n B p , r s + v ˜ n B p , r s 1 x v ˜ n L u 0 n B p , r s + v ˜ n B p , r s 1 v ˜ n B p , r s x u 0 n L ) + x u ˜ 0 , n L v ˜ n B p , r s 1 v ˜ n B p , r s + x u ˜ 0 , n B p , r s 1 v ˜ n L v ˜ n B p , r s + x u ˜ 0 , n B p , r s 1 v ˜ n B p , r s 1 x v ˜ n L ξ n B p , r s + τ ( 2 n 2 + 2 n 2 · 2 n 2 + 2 n 2 · 2 n 2 ) + 2 n 2 · 2 n 2 + 2 n 2 + 2 n 2 · 2 n 2
ξ n B p , r s + τ · 2 n 2 + 2 n 2 ,
A 5 ( u ˜ n , v ˜ n ) B p , r s u ˜ n x ( v ˜ n + v ˜ 0 , n ) x η n B p , r s 1 + τ u ˜ n x ( v ˜ n + v ˜ 0 , n ) x v 0 n B p , r s 1 + u ˜ n ( x v ˜ 0 , n ) 2 B p , r s 1
η n B p , r s + τ · 2 n 2 + 2 n 2 , A 6 ( u ˜ n , v ˜ n ) B p , r s x u ˜ n x ( u ˜ n + u ˜ 0 , n ) x ξ n B p , r s 2 + τ x u ˜ n x ( u ˜ n + u ˜ 0 , n ) x u 0 n B p , r s 2
ξ n B p , r s + 2 n τ + 2 3 2 n , A 7 ( u ˜ n , v ˜ n ) B p , r s x u ˜ n x ( v ˜ n + v ˜ 0 , n ) x η n B p , r s 2 + τ x u ˜ n x ( v ˜ n + v ˜ 0 , n ) x v 0 n B p , r s 2 + x u ˜ n ( x v ˜ 0 , n ) 2 B p , r s 2 η n B p , r s + τ x u ˜ n B p , r s 1 x ( v ˜ n + v ˜ 0 , n ) B p , r s 1 x v 0 n B p , r s 2 + x u ˜ n B p , r s 2 x v ˜ 0 , n B p , r s 1 2
η n B p , r s + 2 3 2 n τ + 2 3 2 n ,
and
τ ( u ˜ n 2 + v ˜ n 2 ) x u 0 n B p , r s τ ( u ˜ n B p , r s 2 + v ˜ n B p , r s 2 ) x u 0 n L + τ ( u ˜ n L 2 + v ˜ n L 2 ) u 0 n B p , r s + 1 2 n τ + τ τ .
Collecting all of the estimates from (45)–(56) and plugging all of them back into (43), we obtain
ξ n B p , r s 0 t ( ξ n B p , r s + η n B p , r s ) d τ + 0 t 2 n 2 ( ξ n B p , r s 1 + η n B p , r s 1 ) d τ + t 2 + 2 n 2 .
Similarly, we find that
η n B p , r s 0 t ( ξ n B p , r s + η n B p , r s ) d τ + 0 t 2 n 2 ( ξ n B p , r s 1 + η n B p , r s 1 ) d τ + t 2 + 2 n 2 .
Adding (57) and (58) together, we find that
ξ n B p , r s + η n B p , r s 0 t ( ξ n B p , r s + η n B p , r s ) d τ + 0 t 2 n 2 ( ξ n B p , r s 1 + η n B p , r s 1 ) d τ + t 2 + 2 n 2 .
We will now measure the B p , r s 1 × B p , r s 1 norm of ( ξ n , η n ) . For this purpose, we list the following estimates:
τ ( u ˜ n + u ˜ 0 , n ) u 0 n x u ˜ 0 , n B p , r s 1 τ ( 2 n 2 · 2 3 2 n · 2 n 2 + 2 n 2 ( 2 n · 2 n 2 + 2 3 2 n ) ) 2 2 n τ .
Similarly, we can derive
τ ( v ˜ n + v ˜ 0 , n ) u 0 n x v ˜ 0 , n B p , r s 1 2 2 n τ ,
ξ n ( u ˜ n + u ˜ 0 , n ) x u ˜ 0 , n B p , r s 1 2 n ξ n B p , r s 1 + ξ n L ( 2 n 2 · 2 n 2 + 2 n 2 · 2 n 2 ) 2 n ξ n B p , r s 1 ,
and
η n ( v ˜ n + v ˜ 0 , n ) x u ˜ 0 , n B p , r s 1 2 n η n B p , r s 1 ,
A 1 ( u ˜ n , v ˜ n ) B p , r s 1 , A 2 ( u ˜ n , v ˜ n ) B p , r s 1 2 3 2 n .
Further, we have
A 3 ( u ˜ n , v ˜ n ) B p , r s 1 ξ n B p , r s 1 + τ ( 2 n 2 · 2 n 2 · 2 n ) + 2 n 2 · 2 n
ξ n B p , r s 1 + 2 2 n τ + 2 3 2 n , A 4 ( u ˜ n , v ˜ n ) B p , r s 1 ξ n B p , r s 1 + τ ( 2 n 2 · 2 n 2 · 2 n + 2 n 2 · 2 n 2 · 2 n + 2 n 2 · 2 n 2 · 2 n + 2 n 2 · 2 n 2 · 2 n 2 + 2 n 2 · 2 n 2 · 2 n 2 + 2 n 2 · 2 n 2 · 2 n 2 )
ξ n B p , r s 1 + 2 3 2 n τ ,
A 5 ( u ˜ n , v ˜ n ) B p , r s 1 η n B p , r s 1 + 2 2 n τ + 2 n ,
A 6 ( u ˜ n , v ˜ n ) B p , r s 1 ξ n B p , r s 1 + 2 2 n τ + 2 3 2 n ,
A 7 ( u ˜ n , v ˜ n ) B p , r s 1 η n B p , r s 1 + 2 2 n τ + 2 3 2 n ,
and
τ ( u ˜ n 2 + v ˜ n 2 ) x u 0 n B p , r s 1 τ ( u ˜ n B p , r s 1 2 + v ˜ n B p , r s 1 2 ) x u 0 n L + τ ( u ˜ n L 2 + v ˜ n L 2 ) u 0 n B p , r s 2 n · 2 n · τ + 2 n · τ 2 n τ .
Collecting all of the estimates from (60)–(70), we obtain
ξ n B p , r s 1 0 t ( ξ n B p , r s 1 + η n B p , r s 1 ) d τ + 2 n t 2 + 2 n .
Therefore,
ξ n B p , r s 1 + η n B p , r s 1 0 t ( ξ n B p , r s 1 + η n B p , r s 1 ) d τ + 2 n t 2 + 2 n ,
which implies that
ξ n B p , r s 1 + η n B p , r s 1 2 n t 2 + 2 n .
Thus, (72) together with (57) imply that
ξ n B p , r s + η n B p , r s t 2 + 2 n 2 .
The proof of Proposition 2 is complete. □
Proof of Theorem 3.
Thanks to (30), we have
lim n u ˜ 0 , n u 0 , n B p , r s = lim n 2 n 2 ϕ ( x ) B p , r s = 0 , lim n v ˜ 0 , n v 0 , n B p , r s = lim n 2 n 2 ψ ( x ) B p , r s = 0 .
Moreover, in view of the definition v ˜ n = η n + v ˜ 0 , n + t v 0 n , v ˜ 0 , n = v 0 , n + g n 2 , it follows from Propositions 1 and 2 that
v ˜ n v n B p , r s = η n + v 0 n + g n 2 + v 0 , n v n B p , r s t v 0 n B p , r s η n B p , r s g n 2 B p , r s v 0 , n v n B p , r s t v 0 n B p , r s t 2 2 n 2 2 n 2 2 n 2 ( s 1 ) t v 0 n B p , r s t 2 2 n 2 2 n 2 ( s 1 ) .
By definition,
v 0 n = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x v ˜ 0 , n = [ ( f n 1 ) 2 + 2 f n 1 g n 1 + ( g n 1 ) 2 ] ( x f n 1 + x g n 1 ) [ ( f n 2 ) 2 + 2 f n 2 g n 2 + ( g n 2 ) 2 ] ( x f n 1 + x g n 1 ) I 1 + I 2 ,
where I 1 = [ ( f n 1 ) 2 + 2 f n 1 g n 1 + ( g n 1 ) 2 ] ( x f n 1 + x g n 1 ) , I 2 = [ ( f n 2 ) 2 + 2 f n 2 g n 2 + ( g n 2 ) 2 ] ( x f n 1 + x g n 1 ) .
For every term in I 2 , we have the following estimates:
( f n 2 ) 2 x f n 1 B p , r s
f n 2 L 2 x f n 1 B p , r s + f n 2 B p , r s 2 x f n 1 L 2 n s · 2 n + 2 n ( 1 s ) 2 n ( 1 s ) . ( f n 2 ) 2 x g n 1 B p , r s
f n 2 L 2 x g n 1 B p , r s + f n 2 B p , r s 2 x g n 1 L 2 n s · 2 n 2 + 2 n 2 2 n 2 . 2 f n 2 g n 2 x f n 1 B p , r s f n 2 L g n 2 x f n 1 B p , r s + f n 2 B p , r s g n 2 x f n 1 L f n 2 L g n 2 L x f n 1 B p , r s + f n 2 L g n 2 B p , r s x f n 1 L + f n 2 B p , r s g n 2 L x f n 1 L
2 n s · 2 n 2 · 2 n 2 + 2 n s · 2 n 2 · 2 n 2 + 2 n 2 · 2 n 2 2 n n s + 2 n n s + 2 n 2 n . 2 f n 2 g n 2 x g n 1 B p , r s
2 n s · 2 n 2 · 2 n 2 s 1 + 2 n s · 2 n 2 · 2 n 2 + 2 n 2 · 2 n 2 2 n . ( g n 2 ) 2 x g n 1 B p , r s
g n 2 L 2 x g n 2 B p , r s + g n 2 B p , r s 2 x g n 2 L 2 3 2 n .
Note that
supp ( g n 2 ) 2 x f n 1 ^ { ξ R : 33 24 2 n 3 2 ξ 33 24 2 n + 3 2 } ,
and we have Δ j ( ( g n 2 ) 2 x f n 1 ) = 0 ( j n ) , Δ n ( ( g n 2 ) 2 x f n 1 ) = ( g n 2 ) 2 x f n 1 . Furthermore, direct calculations and the application of Riemann theorem show that, as n ,
( g n 2 ) 2 x f n 1 B p , r s = 2 n s ( g n 2 ) 2 x f n 1 L p = 2 n ( 24 33 ) 2 ϕ ( x ) ψ ( x ) sin ( 33 24 2 n x ) + 24 33 ϕ 2 ( x ) ψ ( x ) cos ( 33 24 2 n x ) L p 24 33 ϕ 2 ( x ) ψ ( x ) cos ( 33 24 2 n x ) L p 2 n 24 33 ( 0 t | cos x | p d x π ) 1 p ϕ 3 ( x ) L p C 1 .
In view of the estimates from (74)–(79), letting n in (73) yields, for sufficiently small t,
lim inf n v ˜ n v n B p , r s t ( g n 2 ) 2 x f n 1 B p , r s 2 n 2 t t 2 2 n 2 2 n 2 ( s 1 ) t .
Similarly, we can prove that
lim inf n u ˜ n u n B p , r s t .
The proof of Theorem 3 is complete. □

4.2. Non-Uniform Dependence in Critical Besov Spaces

We will investigate the non-uniform dependence property in the non-periodic critical Besov spaces B p , 1 1 + 1 p ( R ) × B p , 1 1 + 1 p ( R ) with 1 p 2 ; or, in other words, we prove Theorem 4 in this subsection.
For the purpose of proving the main result, we list the following lemma.
Lemma 15.
Let ζ ( u , v ) = ( u 2 + v 2 ) x u f 1 ( u , v ) f 2 ( u , v ) ; then, we have the following estimates:
ζ ( u , v ) L ( u L + v L + u x L ) ( u L 2 + v L 2 + u x L 2 + v x L 2 ) . ζ ( u , v ) B p , 1 1 + 1 p ( u L 2 + v L 2 ) u B p , 1 2 + 1 p + ( u B p , 1 1 + 1 p + v B p , 1 1 + 1 p + u B p , 1 2 + 1 p )
× ( u B p , 1 1 + 1 p 2 + v B p , 1 1 + 1 p 2 + u B p , 1 2 + 1 p 2 + v B p , 1 2 + 1 p 2 ) . ζ ( u , v ) B p , 1 2 + 1 p ( u L 2 + v L 2 ) u B p , 1 3 + 1 p + ( u B p , 1 2 + 1 p + v B p , 1 2 + 1 p + u B p , 1 3 + 1 p )
× ( u B p , 1 2 + 1 p 2 + v B p , 1 2 + 1 p 2 + u B p , 1 3 + 1 p 2 + v B p , 1 3 + 1 p 2 ) .
The proof of Lemma 15 is straightforward, so we omit it here.
From Lemma 7 and the product property, the following result is obvious:
f 1 ( u , v ) f 1 ( u 0 , v 0 ) B p , 1 1 + 1 p + f 2 ( u , v ) f 2 ( u 0 , v 0 ) B p , 1 1 + 1 p u u 0 B p , 1 1 + 1 p + v v 0 B p , 1 1 + 1 p .
Denote X ˜ 0 , n Y = u ˜ 0 , n Y + v ˜ 0 , n Y . The following proposition is crucial for proving the main theorem in this part.
Proposition 3.
Assume that ( s , p , r ) is as stated in Theorem 4. ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p × B p , 1 1 + 1 p , and ( u ˜ n , v ˜ n ) is the solution to Equation (5) with initial data ( u ˜ 0 , n , v ˜ 0 , n ) ; then, we have
u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p + v ˜ n v ˜ 0 , n t ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p P ( u ˜ 0 , n , v ˜ 0 , n ) t 2 + Q ( u ˜ 0 , n , v ˜ 0 , n ) t 3 .
where
ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n f 1 ( u ˜ 0 , n , v ˜ 0 , n ) f 2 ( u ˜ 0 , n , v ˜ 0 , n ) , ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) = ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x v ˜ 0 , n g 1 ( u ˜ 0 , n , v ˜ 0 , n ) g 2 ( u ˜ 0 , n , v ˜ 0 , n ) , P ( u ˜ 0 , n , v ˜ 0 , n ) = C 0 C 2 + C 3 + C 1 C 2 2 + C 0 3 C 4 + C 5 , Q ( u ˜ 0 , n , v ˜ 0 , n ) = C 1 C 2 + C 0 2 C 1 C 4 , C 0 = X ˜ 0 , n L , C 1 = ( X ˜ 0 , n L + x X ˜ 0 , n L ) 3 , C 2 = X ˜ 0 , n B p , 1 2 + 1 p , C 3 = ( X ˜ 0 , n B p , 1 1 + 1 p + X ˜ 0 , n B p , 1 2 + 1 p ) 3 , C 4 = X ˜ 0 , n B p , 1 3 + 1 p , and C 5 = ( X ˜ 0 , n B p , 1 2 + 1 p + X ˜ 0 , n B p , 1 3 + 1 p ) 3 .
Proof. 
In view of Lemmas 6 and 7, for any initial data ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 θ × B p , 1 θ , θ 1 + 1 p , there exists a unique solution ( u ˜ n , v ˜ n ) C ( [ 0 , T ] ; B p , 1 θ ) × C ( [ 0 , T ] ; B p , 1 θ ) , and it satisfies the following estimate:
u ˜ n L T ( B p , 1 θ ) + v ˜ n L T ( B p , 1 θ ) u ˜ 0 , n B p , 1 θ + v ˜ 0 , n B p , 1 θ 1 .
By the embedding theorem C ( [ 0 , T ] ; B p , 1 1 + 1 p ) C ( [ 0 , T ] ; C 0 , 1 ) , we have
u ˜ n ( t ) u ˜ 0 , n ( t ) = 0 t τ u ˜ n d τ , v ˜ n ( t ) v ˜ 0 , n ( t ) = 0 t τ v ˜ n d τ .
Let U n = u ˜ n u ˜ 0 , n , V n = v ˜ n v ˜ 0 , n ; then, we shall prove that ( U n , V n ) solves the following problem:
t U n + ( u ˜ n 2 + v ˜ n 2 ) x u ˜ n + f 1 ( u n ˜ , v n ˜ ) + f 2 ( u n ˜ , v n ˜ ) = 0 , t V n + ( u ˜ n 2 + v ˜ n 2 ) x v ˜ n + g 1 ( u n ˜ , v n ˜ ) + g 2 ( u n ˜ , v n ˜ ) = 0 , U n ( 0 , x ) = V n ( 0 , x ) = 0 .
In view of Equations (5), (80) and (85), we obtain
U n ( t ) L 0 t τ u ˜ n L d τ 0 t ζ ( u ˜ n , v ˜ n ) L d τ ( u ˜ n L + v ˜ n L + x u ˜ n L ) ( u ˜ n L 2 + v ˜ n L 2 + x u ˜ n L 2 + x u ˜ n L 2 ) t .
In a similar manner, one can derive
V n ( t ) L 0 t τ u ˜ n L d τ 0 t ζ ( u ˜ n , v ˜ n ) L d τ ( u ˜ n L + v ˜ n L + x v ˜ n L ) ( u ˜ n L 2 + v ˜ n L 2 + x u ˜ n L 2 + x u ˜ n L 2 ) t .
Adding (87) and (88) together yields
U n ( t ) L + V n ( t ) L ( u ˜ n L + v ˜ n L + x u ˜ n L + x v ˜ n L ) ( u ˜ n L 2 + v ˜ n L 2 + x u ˜ n L 2 + x v ˜ n L 2 ) t ( u ˜ n L + v ˜ n L + x u ˜ n L + x v ˜ n L ) 3 t ( u ˜ 0 , n L + v ˜ 0 , n L + x u ˜ 0 , n L + x v ˜ 0 , n L ) 3 t = C 1 t .
Therefore, we have
u ˜ n ( t ) L + v ˜ n ( t ) L u ˜ 0 , n L + v ˜ 0 , n L + C 1 t .
It can be deduced from (81) and (84) that
U n ( t ) B p , 1 1 + 1 p + V n ( t ) B p , 1 1 + 1 p 0 t τ u ˜ n B p , 1 1 + 1 p + τ v ˜ n B p , 1 1 + 1 p d τ 0 t ( u ˜ n L 2 + v ˜ n L 2 ) ( u ˜ n B p , 1 2 + 1 p + v ˜ n B p , 1 2 + 1 p ) + 0 t ( u ˜ n B p , 1 1 + 1 p + v ˜ n B p , 1 1 + 1 p + u ˜ n B p , 1 2 + 1 p + v ˜ n B p , 1 2 + 1 p ) × ( u ˜ n B p , 1 1 + 1 p 2 + v ˜ n B p , 1 1 + 1 p 2 + u ˜ n B p , 1 2 + 1 p 2 + v ˜ n B p , 1 2 + 1 p 2 ) d τ [ u ˜ 0 , n L + v ˜ 0 , n L + ( u ˜ 0 , n L + v ˜ 0 , n L + x u ˜ 0 , n L + x v ˜ 0 , n L ) 3 t ] × ( u ˜ 0 , n B p , 1 2 + 1 p + v ˜ 0 , n B p , 1 2 + 1 p ) t + ( u ˜ 0 , n B p , 1 1 + 1 p + v ˜ 0 , n B p , 1 1 + 1 p + u ˜ 0 , n B p , 1 2 + 1 p + v ˜ 0 , n B p , 1 2 + 1 p ) 3 t ( C 0 + C 1 t ) C 2 t + C 3 t .
In addition, it can be derived from (82) and (84) that
U n ( t ) B p , 1 2 + 1 p + V n ( t ) B p , 1 2 + 1 p 0 t τ u ˜ n B p , 1 2 + 1 p + τ v ˜ n B p , 1 2 + 1 p d τ 0 t ( u ˜ n L 2 + v ˜ n L 2 ) ( u ˜ n B p , 1 3 + 1 p + v ˜ n B p , 1 3 + 1 p ) d τ + 0 t ( u ˜ n B p , 1 2 + 1 p + v ˜ n B p , 1 2 + 1 p + u ˜ n B p , 1 3 + 1 p + v ˜ n B p , 1 3 + 1 p ) × ( u ˜ n B p , 1 2 + 1 p 2 + v ˜ n B p , 1 2 + 1 p 2 + u ˜ n B p , 1 3 + 1 p 2 + v ˜ n B p , 1 3 + 1 p 2 ) d τ [ u ˜ 0 , n L + v ˜ 0 , n L + ( u ˜ 0 , n L + v ˜ 0 , n L + x u ˜ 0 , n L + x v ˜ 0 , n L ) 3 t ] × ( u ˜ 0 , n B p , 1 3 + 1 p + v ˜ 0 , n B p , 1 3 + 1 p ) t + ( u ˜ 0 , n B p , 1 2 + 1 p + v ˜ 0 , n B p , 1 2 + 1 p + u ˜ 0 , n B p , 1 3 + 1 p + v ˜ 0 , n B p , 1 3 + 1 p ) 3 t ( C 0 + C 1 t ) C 4 t + C 5 t .
Since
u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) = 0 t ( τ u ˜ ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) ) d τ , v ˜ n v ˜ 0 , n t ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) = 0 t ( τ v ˜ ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) ) d τ ,
( u ˜ n 2 + v ˜ n 2 ) x u ˜ n ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n B p , 1 1 + 1 p u ˜ n + u ˜ 0 , n L ( x u ˜ n L U n B p , 1 1 + 1 p + x u ˜ n B p , 1 1 + 1 p U n L ) + u ˜ n + u ˜ 0 , n B p , 1 1 + 1 p x u ˜ n L U n L + v ˜ n + v ˜ 0 , n L ( x u ˜ n L V n B p , 1 1 + 1 p + x u ˜ n B p , 1 1 + 1 p V n L ) + v ˜ n + v ˜ 0 , n B p , 1 1 + 1 p x u ˜ n L V n L + u ˜ 0 , n 2 + v ˜ 0 , n 2 L x U n B p , 1 1 + 1 p + u ˜ 0 , n 2 + v ˜ 0 , n 2 L x U n L u ˜ n + u ˜ 0 , n L u ˜ n B p , 1 2 + 1 p U n L + u ˜ n + u ˜ 0 , n B p , 1 1 + 1 p x u ˜ n L U n L + u ˜ n + u ˜ 0 , n L x u ˜ n L U n B p , 1 1 + 1 p + u ˜ 0 , n 2 + v ˜ 0 , n 2 B p , 1 1 + 1 p U n B p , 1 1 + 1 p + u ˜ 0 , n 2 + v ˜ 0 , n 2 L U n B p , 1 2 + 1 p + u ˜ 0 , n 2 + v ˜ 0 , n 2 L U n B p , 1 2 + 1 p + v ˜ n + v ˜ 0 , n L u ˜ n B p , 1 2 + 1 p V n L + v ˜ n + v ˜ 0 , n B p , 1 1 + 1 p x u ˜ n L V n L + v ˜ n + v ˜ 0 , n L x u ˜ n L V n B p , 1 1 + 1 p U n B p , 1 1 + 1 p + V n B p , 1 1 + 1 p + u ˜ 0 , n B p , 1 2 + 1 p 2 U n L + ( u ˜ 0 , n L 2 + v ˜ 0 , n L 2 ) U n B p , 1 2 + 1 p ,
and, similarly,
( u ˜ n 2 + v ˜ n 2 ) x v ˜ n ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x v ˜ 0 , n B p , 1 1 + 1 p U n B p , 1 1 + 1 p + V n B p , 1 1 + 1 p + v ˜ 0 , n B p , 1 2 + 1 p 2 V n L + ( u ˜ 0 , n L 2 + v ˜ 0 , n L 2 ) V n B p , 1 2 + 1 p .
Adding (93) and (94) yields
( u ˜ n 2 + v ˜ n 2 ) x u ˜ n ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n B p , 1 1 + 1 p + ( u ˜ n 2 + v ˜ n 2 ) x v ˜ n ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x v ˜ 0 , n B p , 1 1 + 1 p U n B p , 1 1 + 1 p + V n B p , 1 1 + 1 p + ( u ˜ 0 , n B p , 1 2 + 1 p 2 + v ˜ 0 , n B p , 1 2 + 1 p 2 ) ( U n L + V n L ) + ( u ˜ 0 , n L 2 + v ˜ 0 , n L 2 ) ( U n B p , 1 2 + 1 p + V n B p , 1 2 + 1 p ) .
Equations (83), (89), (91) and (92) together with (95) imply that
u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p + v ˜ n v ˜ 0 , n t ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p 0 t τ u ˜ n ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p + τ v ˜ n ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p d τ 0 t ( u ˜ n 2 + v ˜ n 2 ) x u ˜ n ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n B p , 1 1 + 1 p d τ + 0 t f 1 ( u ˜ n , v ˜ n ) + f 2 ( u ˜ n , v ˜ n ) f 1 ( u ˜ 0 , n , v ˜ 0 , n ) f 2 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p d τ + 0 t g 1 ( u ˜ n , v ˜ n ) + g 2 ( u ˜ n , v ˜ n ) g 1 ( u ˜ 0 , n , v ˜ 0 , n ) g 2 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p d τ 0 t ( U n B p , 1 1 + 1 p + V n B p , 1 1 + 1 p ) d τ + ( u ˜ 0 , n B p , 1 2 + 1 p 2 + v ˜ 0 , n B p , 1 2 + 1 p 2 ) 0 t ( U n L + V n L ) d τ + ( u ˜ 0 , n L 2 + v ˜ 0 , n L 2 ) 0 t ( U n B p , 1 2 + 1 p + V n B p , 1 2 + 1 p ) d τ ( C 0 + C 1 t ) C 2 t 2 + C 3 t 2 + C 1 C 2 2 t 2 + C 0 2 ( C 0 + C 1 t ) C 4 t 2 + C 5 t 2 ( C 0 C 2 + C 3 + C 1 C 2 2 + C 0 3 C 4 + C 5 ) t 2 + ( C 1 C 2 + C 0 2 C 1 C 4 ) t 3 = P ( u ˜ 0 , n , v ˜ 0 , n ) t 2 + Q ( u ˜ 0 , n , v ˜ 0 , n ) t 3 .
which completes the proof of Proposition 3. □
Proof of Theorem 4.
It follows from Lemmas 12–14 and the fact that 1 p 2 that, for θ 1 + 1 p ,
u ˜ 0 , n , v ˜ 0 , n B p , 1 θ 2 ( θ 1 1 p ) n , u ˜ 0 , n , v ˜ 0 , n L 2 n 2 , x u ˜ 0 , n , x v ˜ 0 , n L 2 n 2 , u 0 , n , v 0 , n L 2 n ( 1 + 1 p ) 2 n , x u 0 , n , x v 0 , n L 2 n p 2 n , u 0 , n , v 0 , n B p , r θ 2 ( θ 1 1 p ) n .
Therefore, we can conclude that P ( u ˜ 0 , n , v ˜ 0 , n ) , Q ( u ˜ 0 , n , v ˜ 0 , n ) 1 . Thus, from Proposition 3,
u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p + v ˜ n v ˜ 0 , n t ζ 2 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p t 2 + t 3 .
Since
u ˜ n = u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) + u ˜ 0 , n t ( f 1 ( u ˜ 0 , n , v ˜ 0 , n ) + f 2 ( u ˜ 0 , n , v ˜ 0 , n ) + ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n ) , u n = u n u 0 , n t ζ 1 ( u 0 , n , v 0 , n ) + u 0 , n t ( f 1 ( u 0 , n , v 0 , n ) + f 2 ( u 0 , n , v 0 , n ) + ( u 0 , n 2 + v 0 , n 2 ) x u 0 , n ) .
Since
( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x u ˜ 0 , n ( u 0 , n 2 + v 0 , n 2 ) x u 0 , n = [ 2 f n 1 g n 1 + ( g n 1 ) 2 ] x f n 1 + [ 2 f n 2 g n 2 + ( g n 2 ) 2 ] x f n 1 ( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x g n 1 .
It follows from Lemma 13 and (96) that
( u ˜ 0 , n 2 + v ˜ 0 , n 2 ) x g n 1 B p , 1 1 + 1 p ( u ˜ 0 , n B p , 1 1 + 1 p 2 + v ˜ 0 , n B p , 1 1 + 1 p 2 ) x g n 1 B p , 1 1 + 1 p 2 n 2 ( 2 + 1 p ) 2 n 2 , 2 f n 1 g n 1 x f n 1 B p , 1 1 + 1 p f n 2 L g n 2 L x f n 1 B p , 1 1 + 1 p + f n 2 L g n 2 B p , 1 1 + 1 p x f n 1 L + f n 2 B p , 1 1 + 1 p g n 2 L x f n 1 L 2 n .
In a similar manner, one can derive
2 f n 2 g n 2 x f n 1 B p , 1 1 + 1 p 2 n .
Therefore,
u ˜ n u n B p , 1 1 + 1 p = ( u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) ) ( u n u 0 , n t ζ 1 ( u 0 , n , v 0 , n ) ) + g n 1 t ( f 1 ( u ˜ 0 , n , v 0 , n ˜ ) + f 2 ( u ˜ 0 , n , v 0 , n ˜ ) f 1 ( u 0 , n , v 0 , n ) f 2 ( u 0 , n , v 0 , n ) + 2 f n 1 g n 1 x f n 1 + 2 f n 2 g n 2 x f n 1 + ( g n 1 ) 2 x f n 1 ) B p , 1 1 + 1 p + ( g n 2 ) 2 x f n 1 ) B p , 1 1 + 1 p t ( g n 1 ) 2 x f n 1 B p , 1 1 + 1 p + t ( g n 2 ) 2 x f n 1 B p , 1 1 + 1 p u ˜ n u ˜ 0 , n t ζ 1 ( u ˜ 0 , n , v ˜ 0 , n ) B p , 1 1 + 1 p u n u 0 , n t ζ 1 ( u 0 , n , v 0 , n ) B p , 1 1 + 1 p g n 1 B p , 1 1 + 1 p t f 1 ( u ˜ 0 , n , v 0 , n ˜ ) f 1 ( u 0 , n , v 0 , n ) B p , 1 1 + 1 p t f 2 ( u ˜ 0 , n , v 0 , n ˜ ) f 2 ( u 0 , n , v 0 , n ) B p , 1 1 + 1 p f n 1 g n 1 x f n 1 B p , 1 1 + 1 p f n 2 g n 2 x f n 1 B p , 1 1 + 1 p t ( g n 1 ) 2 x f n 1 B p , 1 1 + 1 p + t ( g n 2 ) 2 x f n 1 B p , 1 1 + 1 p t 2 t 3 2 n 2 ( 1 + 1 p ) 2 n 2 t 2 n 2 t 2 n 2 n ,
which, together with (79), indicates that, for sufficiently small t,
lim inf n u ˜ n u n B p , 1 1 + 1 p t .
Similarly,
lim inf n v ˜ n v n B p , 1 1 + 1 p t .
This completes the proof of Theorem 4. □

Author Contributions

Formal analysis, S.Y.; Writing—original draft, J.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work is partially supported by Natural Science Foundation of China (No. 12171258).

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to the editor and referees for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Li, H.; Li, Y.; Chen, Y. Bi-Hamiltonian structure of multi-component Novikov equation. J. Nonlinear Math. Phys. 2014, 21, 509–520. [Google Scholar] [CrossRef]
  2. Li, H. Two-component generalizations of the Novikov equation. J. Nonlinear Math. Phys. 2019, 26, 390–403. [Google Scholar] [CrossRef]
  3. Geng, X.; Xue, B. An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity 2009, 22, 1847–1856. [Google Scholar] [CrossRef]
  4. Qu, C.; Fu, Y. On the Cauchy problem and peakons of a two-component Novikov system. Sci. China Math. 2019, 63, 1965–1996. [Google Scholar] [CrossRef]
  5. Novikov, V. Generalizations of Camassa-Holm equation. J. Phys. A 2009, 42, 342002. [Google Scholar] [CrossRef]
  6. Hone, A.N.; Lundmark, H.; Szmigielski, J. Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm type equation. arXiv 2009, arXiv:0903.3663. [Google Scholar] [CrossRef]
  7. Hone, A.N.W.; Wang, J.P. Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 2008, 41, 372002. [Google Scholar] [CrossRef]
  8. Himonas, A.A.; Holliman, C. The Cauchy problem for the Novikov equation. Nonlinearity 2012, 25, 449–479. [Google Scholar] [CrossRef]
  9. Wu, X.; Yin, Z. Well-posedness and global existence for the Novikov equation. Ann. SCUOLA Norm. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 2012, 11, 707–727. [Google Scholar]
  10. Yan, W.; Li, Y.; Zhang, Y. The Cauchy problem for the Novikov equation. Nonlinear Differ. Equ. Appl. NoDEA 2012, 20, 1157–1169. [Google Scholar] [CrossRef]
  11. Ni, L.; Zhou, Y. Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 2011, 250, 3002–3021. [Google Scholar] [CrossRef]
  12. Wu, X.; Yin, Z. A note on the Cauchy problem of the Novikov equation. Appl. Anal. 2013, 92, 1116–1137. [Google Scholar] [CrossRef]
  13. Yan, W.; Li, Y.; Zhang, Y. The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 2012, 253, 298–318. [Google Scholar] [CrossRef]
  14. Alsaedi, A.; Ahmad, B.; Kirane, M.; Torebek, B.T. Blowing-up solutions of the time-fractional dispersive equations. Adv. Nonlinear Anal. 2021, 10, 952–971. [Google Scholar] [CrossRef]
  15. Jiang, Z.; Ni, L. Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. 2012, 385, 551–558. [Google Scholar] [CrossRef]
  16. Lai, S. Global weak solutions to the Novikov equation. J. Funct. Anal. 2013, 265, 520–544. [Google Scholar] [CrossRef]
  17. Lai, S.; Li, N.; Wu, Y. The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 2013, 399, 682–691. [Google Scholar] [CrossRef]
  18. Chen, R.M.; Lian, W.; Wang, D.; Xu, R. A Rigidity Property for the Novikov Equation and the Asymptotic Stability of Peakons. Arch. Ration. Mech. Anal. 2021, 241, 497–533. [Google Scholar] [CrossRef]
  19. Liu, X.; Liu, Y.; Qu, C. Stability of peakons for the Novikov equation. J. Math. Pures Appl. 2014, 101, 172–187. [Google Scholar] [CrossRef]
  20. Moon, B. Single peaked traveling wave solutions to a generalized m-Novikov equation. Adv. Nonlinear Anal. 2020, 10, 66–75. [Google Scholar] [CrossRef]
  21. Himonas, A.A.; Holmes, J. Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 2013, 54, 061501. [Google Scholar] [CrossRef]
  22. Popowicz, Z. Double extended cubic peakon equation. Phys. Lett. A 2015, 379, 1240–1245. [Google Scholar] [CrossRef]
  23. Luo, W.; Yin, Z. Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space. Nonlinear Anal. Theory Methods Appl. 2015, 122, 1–22. [Google Scholar] [CrossRef]
  24. Wang, H.; Fu, Y. Non-uniform dependence on initial data for the two-component Novikov system. J. Math. Phys. 2017, 58, 021502. [Google Scholar] [CrossRef]
  25. Wang, H.; Fu, Y. A note on the Cauchy problem for the periodic two-component Novikov system. Appl. Anal. 2020, 99, 1042–1065. [Google Scholar] [CrossRef]
  26. Zhou, S.; Yang, L. Persistence properties for the two-component Novikov equation in weighted Lp spaces. Appl. Anal. 2019, 98, 2105–2117. [Google Scholar] [CrossRef]
  27. Mi, Y.; Mu, C.; Tao, W. On the Cauchy Problem for the Two-Component Novikov Equation. Adv. Math. Phys. 2013, 2013, 810725. [Google Scholar] [CrossRef]
  28. Tang, H.; Liu, Z. The Cauchy problem for a two-component Novikov equation in the critical Besov space. J. Math. Anal. Appl. 2014, 423, 120–135. [Google Scholar] [CrossRef]
  29. Li, N.; Liu, Q. On bi-Hamiltonian structure of two-component Novikov equation. Phys. Lett. A 2013, 377, 257–261. [Google Scholar] [CrossRef]
  30. Chen, R.; Qiao, Z.; Zhou, S. Persistence properties and wave-breaking criteria for the Geng-Xue system. Math. Meth. Appl. Sci. 2019, 42, 6999–7010. [Google Scholar] [CrossRef]
  31. Lundmark, H.; Szmigielski, J. An Inverse Spectral Problem Related to the Geng–Xue Two-Component Peakon Equation. Mem. Am. Math. Soc. 2016, 244, 1155. [Google Scholar] [CrossRef]
  32. Lundmark, H.; Szmigielski, J. Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation. J. Integrable Syst. 2017, 2, xyw014. [Google Scholar] [CrossRef]
  33. Himonas, A.A.; Holliman, C. On well-posedness of the Degasperis-Procesi equation. Discret. Contin. Dyn. Syst. A 2011, 31, 469–488. [Google Scholar] [CrossRef]
  34. Himonas, A.A.; Kenig, C. Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 2009, 22, 201–224. [Google Scholar] [CrossRef]
  35. Yang, L.; Mu, C.; Zhou, S. Nonuniform dependence of solution to the high-order two-component b-family system. J. Evol. Equ. 2022, 22, 1–25. [Google Scholar] [CrossRef]
  36. Li, J.; Yu, Y.; Zhu, W. Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces. J. Differ. Equ. 2020, 269, 8686–8700. [Google Scholar] [CrossRef]
  37. Li, J.; Wu, X.; Yu, Y.; Zhu, W. Non-uniform Dependence on Initial Data for the Camassa–Holm Equation in the Critical Besov Space. J. Math. Fluid Mech. 2021, 23, 1–11. [Google Scholar] [CrossRef]
  38. Li, J.; Yu, Y.; Zhu, W. Non-uniform dependence for the Camassa-Holm and Novikov equations in low regularity Besov spaces. arXiv 2021, arXiv:2112.14104. [Google Scholar]
  39. Li, J.; Yu, Y.; Zhu, W. Non-uniform dependence on initial data for the Benjamin–Ono equation. Nonlinear Anal. Real World Appl. 2022, 67, 103597. [Google Scholar] [CrossRef]
  40. Zhou, S.; Zhang, S.; Mu, C. Well-posedness and non-uniform dependence for the hyperbolic Keller-Segel equation in the Besov framework. J. Differ. Eqns. 2021, 302, 662–679. [Google Scholar] [CrossRef]
  41. Holmes, J.; Thompson, R.; Tiğlay, F. Nonuniform dependence of the R-b-family system in Besov spaces. ZAMM-J. Appl. Math. Mech. 2021, 101, e202000329. [Google Scholar] [CrossRef]
  42. Wang, H.; Chong, G.; Wu, L. A note on the Cauchy problem for the two-component Novikov system. J. Evol. Equ. 2021, 21, 1809–1843. [Google Scholar] [CrossRef]
  43. Holmes, J.; Thompson, R.C. Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces. J. Differ. Equ. 2017, 263, 4355–4381. [Google Scholar] [CrossRef]
  44. Bahouri, H.; Chemin, J.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations; Springer: Berlin, Germany, 2011. [Google Scholar]
  45. Wang, H.; Jin, Y. Nonuniform dependence for the two-component Camassa–Holm-type system with higher-order nonlinearity in Besov spaces. Rocky Mt. J. Math. 2022, 52, 1801–1829. [Google Scholar]
  46. Yu, S.; Yin, X. The Cauchy problem for a generalized two-component short pulse system with high-order nonlinearities. J. Math. Anal. Appl. 2019, 475, 1427–1447. [Google Scholar] [CrossRef]
  47. Guo, M.; Wang, F.; Yu, S. Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces. Mathematics 2022, 10, 1126. [Google Scholar] [CrossRef]
  48. Guo, Y.; Tu, X. The continuous dependence and non-uniform dependence of the rotation Camassa-Holm equation in Besov spaces. arXiv 2021, arXiv:2110.14204. [Google Scholar]
  49. Wu, X.; Cao, J. Non-uniform continuous dependence on initial data for a two-component Novikov system in Besov space. arXiv 2020, arXiv:2011.10723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yu, S.; Liu, J. Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces. Mathematics 2023, 11, 2041. https://doi.org/10.3390/math11092041

AMA Style

Yu S, Liu J. Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces. Mathematics. 2023; 11(9):2041. https://doi.org/10.3390/math11092041

Chicago/Turabian Style

Yu, Shengqi, and Jie Liu. 2023. "Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces" Mathematics 11, no. 9: 2041. https://doi.org/10.3390/math11092041

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop