Gauss Quadrature Method for System of Absolute Value Equations
Abstract
:1. Introduction
2. Gauss Quadrature Method
Algorithm 1: Gauss Quadrature Method (GQM) |
1: Select |
2: For k, calculate |
3: Using Step 2, calculate |
4: If , then stop. If not, move on to Step 2. |
3. Analysis of Convergence
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rohn, J. A theorem of the alternatives for the equation Ax+Bx=b. Linear Multilinear Algebr. 2004, 52, 421–426. [Google Scholar] [CrossRef]
- Khan, A.; Iqbal, J.; Akgul, A.; Ali, R.; Du, Y.; Hussain, A.; Nisar, K.S.; Vijayakumar, V. A Newton-type technique for solving absolute value equations. Alex. Eng. J. 2023, 64, 291–296. [Google Scholar] [CrossRef]
- Feng, J.M.; Liu, S.Y. An improved generalized Newton method for absolute value equations. SpringerPlus 2016, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.M.; Liu, S.Y. A new two-step iterative method for solving absolute value equations. J. Inequalities Appl. 2019, 2019, 39. [Google Scholar] [CrossRef]
- Shi, L.; Iqbal, J.; Arif, M.; Khan, A. A two-step Newton-type method for solving system of absolute value equations. Math. Probl. Eng. 2020, 2020, 2798080. [Google Scholar] [CrossRef]
- Noor, M.A.; Iqbal, J.; Khattri, S.; Al-Said, E. A new iterative method for solving absolute value equations. Inter. J. Phys. Sci. 2011, 6, 1793–1797. [Google Scholar]
- Noor, M.A.; Iqbal, J.; Noor, K.I.; Al-Said, E. On an iterative method for solving absolute value equations. Optim. Lett. 2012, 6, 1027–1033. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Iqbal, J.; Arif, M.; Khan, A.; Gasimov, Y.M.; Chinram, R. A new application of Gauss Quadrature method for solving systems of nonlinear equations. Symmetry 2021, 13, 432. [Google Scholar] [CrossRef]
- Ali, R. Numerical solution of the absolute value equation using modified iteration methods. Comput. Math. Methods 2022, 2022, 2828457. [Google Scholar] [CrossRef]
- Ali, R.; Khan, I.; Ali, A.; Mohamed, A. Two new generalized iteration methods for solving absolute value equations using M-matrix. AIMS Math. 2022, 7, 8176–8187. [Google Scholar] [CrossRef]
- Huang, B.; Li, W. A modified SOR-like method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 2022, 400, 113745. [Google Scholar] [CrossRef]
- Liang, Y.; Li, C. Modified Picard-like method for solving absolute value equations. Mathematics 2023, 11, 848. [Google Scholar] [CrossRef]
- Mangasarian, O.L.; Meyer, R.R. Absolute value equations. Lin. Alg. Appl. 2006, 419, 359–367. [Google Scholar] [CrossRef]
- Mangasarian, O.L. A generalized Newton method for absolute value equations. Optim. Lett. 2009, 3, 101–108. [Google Scholar] [CrossRef]
- Noor, M.A.; Iqbal, J.; Al-Said, E. Residual iterative method for solving absolute value equations. In Abstract and Applied Analysis; Hindawi: London, UK, 2012. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Yu, Z.; Li, L.; Yuan, Y. A modified multivariate spectral gradient algorithm for solving absolute value equations. Appl. Math. Lett. 2021, 21, 107461. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, D.; Yuan, Y. On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations. Symmetry 2023, 15, 589. [Google Scholar] [CrossRef]
Method | n | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 |
---|---|---|---|---|---|---|---|
K | 24 | 25 | 25 | 25 | 25 | 25 | |
RIM | CPU | 7.084206 | 54.430295 | 150.798374 | 321.604186 | 581.212038 | 912.840059 |
RES | 7.6844× | 4.9891 × | 6.3532 × | 7.6121 × | 8.8041 × | 9.9454 × | |
K | 30 | 31 | 32 | 32 | 33 | 33 | |
MSOR-Like | CPU | 0.0067390 | 0.0095621 | 0.0215634 | 0.0541456 | 0.0570134 | 0.0791257 |
RES | 5.5241 × | 7.0154 × | 5.8684 × | 9.0198 × | 5.6562 × | 7.4395 × | |
K | 5 | 5 | 5 | 5 | 5 | 5 | |
GNM | CPU | 0.0059651 | 0.007333 | 0.0115038 | 0.0330345 | 0.0551818 | 0.0783684 |
RES | 3.1777 × | 7.8326 × | 2.6922 × | 3.7473 × | 8.3891 × | 5.8502 × | |
K | 2 | 2 | 2 | 2 | 2 | 2 | |
GQM | CPU | 0.001816 | 0.003410 | 0.018771 | 0.0326425 | 0.031539 | 0.069252 |
RES | 6.1366 × | 1.7588 × | 3.1143 × | 2.8152 × | 3.04866 × | 3.1723 × |
Method | p | 200 | 400 | 600 | 800 | 1000 |
---|---|---|---|---|---|---|
K | 3 | 3 | 3 | 4 | 4 | |
TSI | RES | 7.6320× | 9.0622 × | 1.9329 × | 4.0817 × | 7.1917 × |
CPU | 0.031619 | 0.120520 | 0.32591 | 0.83649 | 1.00485 | |
K | 3 | 3 | 3 | 4 | 4 | |
INM | RES | 2.1320 × | 6.6512 × | 3.0321 × | 2.0629 × | 8.0150 × |
CPU | 0.012851 | 0.098124 | 0.156810 | 0.638421 | 0.982314 | |
K | 2 | 2 | 2 | 2 | 2 | |
GQM | RES | 1.1623 × | 4.4280 × | 1.0412 × | 1.9101 × | 2.8061 × |
CPU | 0.012762 | 0.031733 | 0.118001 | 0.204804 | 0.273755 |
Methods | n | 1000 | 2000 | 3000 | 4000 | 5000 |
---|---|---|---|---|---|---|
K | 7 | 8 | 8 | 8 | 8 | |
MIM | RES | 6.7056× | 7.30285 × | 7.6382 × | 9.57640 × | 8.52425 × |
CPU | 0.215240 | 0.912429 | 0.916788 | 1.503518 | 4.514201 | |
K | 6 | 6 | 6 | 6 | 6 | |
GIM | RES | 3.6218 × | 5.1286 × | 6.2720 × | 7.2409 × | 8.0154 × |
CPU | 0.238352 | 0.541264 | 0.961534 | 1.453189 | 2.109724 | |
K | 2 | 2 | 2 | 2 | 2 | |
GQM | RES | 3.1871 × | 4.5462 × | 5.7779 × | 6.53641 × | 8 7.26571 × |
CPU | 0.204974 | 0.321184 | 0.462869 | 0.819503 | 1.721235 |
MMSGP | MM | GQM | |||||||
---|---|---|---|---|---|---|---|---|---|
p | K | CPU | RES | K | CPU | RES | K | CPU | RES |
2 | 24 | 0.005129 | 5.6800× | 2 | 0.029965 | 1.2079 × | 1 | 0.005161 | 0 |
4 | 37 | 0.008701 | 9.7485 × | 4 | 0.027864 | 5.5011 × | 1 | 0.007681 | 5.0242 × |
8 | 45 | 0.009217 | 5.5254 × | 6 | 0.045387 | 6.9779 × | 1 | 0.005028 | 3.4076 × |
16 | 66 | 0.012458 | 5.8865 × | 7 | 0.356930 | 2.0736 × | 1 | 0.005253 | 7.2461 × |
32 | 55 | 0.031597 | 8.2514 × | 8 | 0.033277 | 4.9218 × | 1 | 0.004498 | 2.0885 × |
64 | 86 | 0.085621 | 7.6463 × | 9 | 0.185753 | 9.0520 × | 1 | 0.007191 | 6.6775 × |
128 | 90 | 0.521056 | 6.3326 × | 9 | 0.452394 | 1.7912 × | 1 | 0.262364 | 3.2435 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Iqbal, J.; Riaz, F.; Arif, M. Gauss Quadrature Method for System of Absolute Value Equations. Mathematics 2023, 11, 2069. https://doi.org/10.3390/math11092069
Shi L, Iqbal J, Riaz F, Arif M. Gauss Quadrature Method for System of Absolute Value Equations. Mathematics. 2023; 11(9):2069. https://doi.org/10.3390/math11092069
Chicago/Turabian StyleShi, Lei, Javed Iqbal, Faiqa Riaz, and Muhammad Arif. 2023. "Gauss Quadrature Method for System of Absolute Value Equations" Mathematics 11, no. 9: 2069. https://doi.org/10.3390/math11092069