Next Article in Journal
Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions
Previous Article in Journal
A New Method of Identifying the Aerodynamic Dipole Sound Source in the Near Wall Flow
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Analytic Study of Coupled Burgers’ Equation

by
Clemente Cesarano
1,*,
Youssouf Massoun
2,*,
Abderrezak Said
3,4 and
Mohamed Elamine Talbi
5
1
Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy
2
Department of Mathematics, Faculty of Sciences, University of Algiers, 2 Street Didouche Mourad, Algiers 16000, Algeria
3
Department of Mathematics, Faculty of Sciences, Djilali Bounaama University of Khemis Miliana, Khemis Miliana 44225, Algeria
4
Laboratory of Nonlinear Partial Differential Equations and History of Mathematics, ENS Kouba, Kouba 16308, Algeria
5
Department of Mathematics, Faculty of Sciences, University of Saad-Dahlab Blida1, Blida 09000, Algeria
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(9), 2071; https://doi.org/10.3390/math11092071
Submission received: 20 March 2023 / Revised: 19 April 2023 / Accepted: 21 April 2023 / Published: 27 April 2023
(This article belongs to the Section Difference and Differential Equations)

Abstract

:
In this paper, we construct an analytical solution of the coupled Burgers’ equation, using the homotopy analysis method, which is a semi-analytical method, the approximate solution obtained by this method is convergent for different values of the convergence control parameter , the optimal value of corresponding with the minimum error to be determined by the residual. The results obtained by the present method are compared with other obtained solutions by different numerical methods.
MSC:
65-04; 55-04; 55-08; 34A25

1. Introduction

The coupled Burgers’ equation is one of the most famous differential equations used and interpreted for various phenomena in engineering and applied science, such as the status of quantum particles, shock waves, and acoustic transmission and traffic flow [1]; however, because most partial and ordinary differential equations are not easy to solve, many researchers have tried to find approximation solutions with the best value of error to guarantee the convergence of the series solutions, such as the Adomian decomposition method, variational iteration method, perturbation method, and so on.
The homotopy analysis method is one of the most important methods used for solving all types of differential equations. It was created by Shijun Liao in his Ph.D. in 1992 at Shanghai university. The philosophy of this method is based on homotopy theory, and it constructs a deformation between a family of equations, starting with an equation that has a known solution, and determined by a proposed equation that has an unknown solution.
In this paper, we investigate the effectiveness and accuracy of the homotopy analysis method [2] applied to the coupled Burgers’ equation:
u t α 1 2 u x 2 + β 1 , 1 u x + β 1 , 2 u v x = 0 t [ 0 , T ] , x [ a , b ] v t α 2 2 v x 2 + β 2 , 2 v x + β 2 , 1 u v x = 0 t [ 0 , T ] , x [ a , b ]
with the initial conditions:
u ( x , 0 ) = ϕ 1 ( x ) x [ a , b ] v ( x , 0 ) = ϕ 2 ( x ) x [ a , b ]
and the boundary conditions:
u ( a , t ) = ψ 1 ( t ) u ( b , t ) = ψ 2 ( t ) x [ a , b ] v ( a , t ) = ψ 3 ( t ) v ( b , t ) = ψ 4 ( t ) x [ a , b ]
where α 1 and α 2 are the positive viscosity parameters, and β 1 , 1 , β 1 , 2 , β 2 , 1 , and β 2 , 2 are the constants of the Stokes velocity.
In recent years, many methods have been used for solving the coupled Burgers’ equation, such as the modified variational iteration algorithm by C. Cesarano [3], the Chebyshev spectral collocation method by Hassan [4], the Chebyshev–Legendre Pseudo-Spectral method by Rashid [5]. Ahmed used Variational Iteration Algorithm-I with an Auxiliary Parameter for this Equation [6] and while the Pseudo-Spectral method by Darvishi’s preconditioning [7] have also been used.

2. The Homotopy Analysis Method

We briefly give some basic ideas of the homotopy analysis method. Let us consider:
L u ( x , t ) + N u ( x , t ) = f ( x , t ) ,
where L and N are the linear and non-linear operators, respectively, and f ( x , t ) is the source term. The operator N is given as [8,9,10]
N [ ϕ ( x , t , q ) ] = R ϕ ( x , t , q ) + N ϕ ( x , t , q ) f ( x , t )
where ϕ ( x , t , q ) is the real function of x and t, namely q [ 0 , 1 ] , and the zero-order deformation constructed by Liao [9,10] is
( 1 q ) L [ ϕ ( x , t , q ) u x , 0 ( t ) ] = q H ( x , t ) N [ ϕ ( x , t , q ) ]
where is the non-zero auxiliary parameter, the auxiliary function H ( x , t ) 0 , u 0 ( x , t ) is the initial guess of u ( x , t ) , and ϕ ( x , t , q ) is an unknown function, which is obviously ϕ ( x , t , 0 ) = u 0 ( x , t ) and ϕ ( x , t , 1 ) = u ( x , t ) . We expand ϕ ( x , t , q ) in the Taylor series with respect to q and t,
ϕ ( x , t , q ) = i = 0 n u i ( x , t ) q i
where
u i ( x , t ) = 1 m ! m ϕ ( x , t , q ) q m | q = 0
by differentiating (6) m times with respect q, and taking q = 0 , we obtain the m-th order deformation equation
L [ u m ( x , t ) χ m u m 1 ( x , t ) ] = H ( x , t ) R m ( u m 1 ( x , t ) )
Applying L 1 in (8), we obtain:
u m ( x , t ) = χ m u m 1 ( x , t ) + L 1 [ R m ( u m 1 ( x , t ) ) ]
we mention that we choose here L 1 as the Riemann integral operator L 1 , where
χ m = 0 , m 1 1 , m > 1
We mention that u ( x , t ) is written as a series
u ( x , t ) = i = 0 u i ( x , t )

3. Convergence Analysis

Theorem 1 
([11,12,13,14,15,16]). If the series solutions i = 0 n u i ( x , t ) are convergent, where u m is governed by Equation (7), then they must be solutions of (1).
Proof. 
Suppose that i = 0 n u i ( x , t ) is convergent, i.e., lim n u n ( x , t ) = 0 . From Equation (8), we obtain:
H m = 1 R m = lim k m = 0 k L [ u m χ m u m 1 ] = L [ lim k m = 0 k [ u m χ m u m 1 ] ] = L [ lim k u k ]
where L is a Laplace operator. Since lim k u k = 0 , H 0 and 0 , this implies m = 1 K m = 0 . Now, expand N [ Φ ( x , t , q ) ] about q = 0 , then set q = 1 ,
N [ Φ ( x , t , 1 ) ] = 0 ,
we can see that u ( x , t ) = Φ ( x , t , 1 ) = i = 0 u i ( x , t ) solves Equation (1). □
Theorem 2 
([11]). Let the solution component u 0 ( x , t ) , u 1 ( x , t ) , u 2 ( x , t ) , . . . be defined as (9). The series solution m = 0 u m ( x , t ) defined in (10) converges if there exist 0 < γ < 1 , such that u m + 1 ( x , t ) γ u m ( x , t ) , m > m 0 for some m 0 N .
Proof. 
Let ( T n ) n N be a sequence, and define as T n = u 0 + u 1 + . . . + u n . For every p , q N , p > q m 0 , we have
T p T q ( T p T p 1 ) + ( T p 1 T p 2 ) + . . . + ( T q + 1 T q ) γ p m 0 u m 0 + γ p m 0 1 u m 0 + . . . + γ q m 0 + 1 u m 0 ( γ p m 0 + γ p m 0 1 + . . . + γ q m 0 + 1 ) u m 0 γ q m 0 + 1 γ p q 1 γ u m 0
Because of 0 < γ < 1 , we obtain
lim p , q T p T q = 0
So, ( T n ) is a Cauchy sequence in R , which implies the convergence of ( T n ) , so the series solution u i ( x , t ) converges. □

4. Application

4.1. Test Example 1

Let us consider the coupled Burgers’ Equation (1) with α 1 = α 2 = 1 and β 1 , 1 = β 2 , 2 = 2
u t α 1 2 u x 2 2 u x + β 1 , 2 u v x = 0 t [ 0 , T ] , x [ 10 , 10 ] v t α 2 2 v x 2 2 v x + β 2 , 1 u v x = 0 t [ 0 , T ] , x [ 10 , 10 ]
with:
u ( x , 0 ) = K ( 1 tanh ( B ( x ) ) ) v ( x , 0 ) = K 2 β 2 , 1 1 2 β 1 , 2 1 tanh ( B ( x ) ) ,
the exact solution of (12) is
u ( x , 0 ) = K ( 1 tanh ( B ( x 2 B t ) ) ) v ( x , 0 ) = K 2 β 2 , 1 1 2 β 1 , 2 1 tanh ( B ( x 2 B t ) ) ,
The zero-order deformation equation is:
( 1 q ) L i [ ϕ i ( x , t , q ) u i , 0 ( x , t ) ] = q N i [ ϕ i ( x , t , q ) ] , i { 1 , 2 }
where L i = ϕ i t , and
N 1 [ ϕ 1 ( x , t , q ) , ϕ 2 ( x , t , q ) ] = ϕ 1 ( x , t , q ) t 2 ϕ 1 ( x , t , q ) x 2 2 ϕ 1 ( x , t , q ) x + β 1 , 2 ϕ 1 ( x , t , q ) ϕ 2 ( x , t , q ) x N 2 [ ϕ 1 ( x , t , q ) , ϕ 2 ( x , t , q ) ] = ϕ 2 ( x , t , q ) t 2 ϕ 2 ( x , t , q ) x 2 2 ϕ 2 ( x , t , q ) x + β 2 , 1 ϕ 1 ( x , t , q ) ϕ 2 ( x , t , q ) x
The corresponding m-th order deformation equation for (15) becomes:
u m ( x , t ) = χ m u m 1 ( x , t ) + L 1 [ R 1 , m ( u m 1 ( x , t ) , v m 1 ( x , t ) ) ] v m ( x , t ) = χ m v m 1 ( x , t ) + L 1 [ R 2 , m ( u m 1 ( x , t ) , v m 1 ( x , t ) ) ]
where
R 1 , m = u m 1 ( x , t ) t 2 u m 1 ( x , t ) x 2 2 u m 1 ( x , t , q ) x + β 1 , 2 i = 0 m 1 u i ( x , t ) x v m 1 i ( x , t ) + v m 1 i ( x , t ) x u i ( x , t ) R 2 , m = v m 1 ( x , t ) t 2 v m 1 ( x , t ) x 2 2 v m 1 ( x , t ) x + β 2 , 1 i = 0 m 1 u i ( x , t ) x v m 1 i ( x , t ) + v m 1 i ( x , t ) x u i ( x , t )
Choosing from (14),
u ( x , 0 ) = K ( 1 tanh ( B ( x 2 B t ) ) ) v ( x , 0 ) = K 2 β 2 , 1 1 2 β 1 , 2 1 tanh ( B ( x 2 B t ) ) ,
we obtain for β 1 , 2 = 0.1 , and β 2 , 1 = 0.3 :
u 1 ( x , t ) = . t sec h 2 ( 0.00625 x ) ( 7.03125 × 10 6 tanh ( 0.00625 x ) ) u 2 ( x , t ) = . t . sec h 2 ( 0.00625 x ) t ( 1.733 × 10 9 tanh ( 0.00625 x ) 8.739 × 10 8 ) sec h 2 ( 0.00625 x ) 0.000622 0.00062 1.18408 × 10 9 t . tanh 3 ( 0.0062 x ) + 1.7478 × 10 7 t tanh 2 ( 0.00625 x ) + ( 7.754162 × 10 6 t + 7.031249 × 10 6 + 7.031249 × 10 6 ) tanh ( 0.00625 x ) u 3 ( x , t ) = . t sec h 2 ( 0.00625 x ) t 2 2 ( 5.6642 × 10 13 tanh ( 0.00625 x ) 2.1527 × 10 11 ) sec h 4 ( 0.00625 x ) 0.000622656 ( 1 . + 1 . ) 2 tanh ( 0.00625 x ) + ( 0.0000140625 0.0000155083 t ) + ( 7.03125 × 10 6 0.0000155083 t ) 2 + 7.03125 × 10 6 + . . . .
and
v 1 ( x , t ) = t ( 0.0000132813 tanh ( 0.00625 x ) 0.000617969 ) sec h 2 ( 0.00625 x ) v 2 ( x , t ) = t sec h 2 ( 0.00625 x ) t ( 3.9795 × 10 9 tanh ( 0.00625 x ) 1.6451 × 10 7 ) sec h 2 ( 0.0062 x ) 0.000617969 + ( 7.6375 × 10 6 t + 0.0000132813 + 0.0000132813 ) 2.942 × 10 9 t tanh 3 ( 0.00625 x ) + 3.29 × 10 7 t tanh 2 ( 0.00625 x ) + tanh ( 0.0062 x ) v 3 ( x , t ) = t sec h 2 ( 0.00625 x ) t 2 2 sec h 4 ( 0.00625 x ) 0.000617969 ( 1 . + 1 . ) 2 1.4290 × 10 12 tanh ( 0.00625 x ) 4.9323 × 10 11 + ( ( 0.0000265625 0.000015275 t ) + 0.0000132813 2 + ( 0.0000132813 0.000015275 t ) tanh ( 0.00625 x ) + t ( ( 6.5806 × 10 7 6.2926 × 10 8 t ) + 6.5806 × 10 7 ) tanh 2 ( 0.00625 x ) + . . .

4.2. Test Example 2

Let us consider the coupled Burgers’ Equation (1) with α 1 = α 2 = 1 and β 1 , 1 = β 2 , 2 = 2 , β 1 , 2 = β 2 , 1 = 2.5
u t 2 u x 2 2 u x + 2.5 u v x = 0 t > 0 , x [ 20 , 20 ] v t 2 v x 2 2 v x + 2.5 u v x = 0 t > 0 , x [ 20 , 20 ]
with:
u ( x , 0 ) = K 1 tanh ( 3 2 K ( x ) ) v ( x , 0 ) = K 1 tanh ( 3 2 K ( x ) ) ,
the exact solution of (17) is
u ( x , t ) = K 1 tanh ( 3 2 K ( x 3 K t ) ) v ( x , t ) = K 1 tanh ( 3 2 K ( x 3 K t ) ) ,
The zero-order deformation equation is:
( 1 q ) L i [ ϕ i ( x , t , q ) u i , 0 ( x , t ) ] = q N i [ ϕ i ( x , t , q ) ] , i { 1 , 2 }
where L i = ϕ i t , and
N 1 [ ϕ 1 ( x , t , q ) , ϕ 2 ( x , t , q ) ] = ϕ 1 ( x , t , q ) t 2 ϕ 1 ( x , t , q ) x 2 2 ϕ 1 ( x , t , q ) x + 2.5 ϕ 1 ( x , t , q ) ϕ 2 ( x , t , q ) x N 2 [ ϕ 1 ( x , t , q ) , ϕ 2 ( x , t , q ) ] = ϕ 2 ( x , t , q ) t 2 ϕ 2 ( x , t , q ) x 2 2 ϕ 2 ( x , t , q ) x + 2.5 ϕ 1 ( x , t , q ) ϕ 2 ( x , t , q ) x
The m-th order deformation equation for (20) becomes:
u m ( x , t ) = χ m u m 1 ( x , t ) + L 1 [ R 1 , m ( u m 1 ( x , t ) , v m 1 ( x , t ) ) ] v m ( x , t ) = χ m v m 1 ( x , t ) + L 1 [ R 2 , m ( u m 1 ( x , t ) , v m 1 ( x , t ) ) ]
where
R 1 , m = u m 1 ( x , t ) t 2 u m 1 ( x , t ) x 2 2 u m 1 ( x , t , q ) x + 2.5 i = 0 m 1 u i ( x , t ) x v m 1 i ( x , t ) + v m 1 i ( x , t ) x u i ( x , t ) R 2 , m = v m 1 ( x , t ) t 2 v m 1 ( x , t ) x 2 2 v m 1 ( x , t ) x + 2.5 i = 0 m 1 u i ( x , t ) x v m 1 i ( x , t ) + v m 1 i ( x , t ) x u i ( x , t ) .
Choosing from (18),
u 0 ( x , t ) = K 1 tanh ( 3 2 K ( x ) ) v 0 ( x , t ) = K 1 tanh ( 3 2 K ( x ) ) ,
we successfully obtain:
u 1 ( x , t ) = t ( 0.0000944531 tanh ( 0.001875 x ) 0.00028125 ) sec h 2 ( 0.001875 x ) u 2 ( x , t ) = t sec h 2 ( 0.001875 x ) t ( 8.9878 × 10 8 tanh ( 0.001875 x ) 2.6565 × 10 7 ) sec h 2 ( 0.001875 x ) 0.0003 0.00028125 8.9214 × 10 8 t tanh 3 ( 0.001875 x ) + 5.313 × 10 7 t tanh 2 ( 0.001875 x ) + ( 7.9102 × 10 7 t + 0.0000944 + 0.0000944 ) tanh ( 0.001875 x ) .
and
v 1 ( x , t ) = t ( 0.0000944531 tanh ( 0.001875 x ) 0.00028125 ) sec h 2 ( 0.001875 x ) v 2 ( x , t ) = t sec h 2 ( 0.001875 x ) t ( 8.9878 × 10 8 tanh ( 0.001875 x ) 2.6565 × 10 7 ) sec h 2 ( 0.001875 x ) 0.00028125 0.00028125 8.92139 × 10 8 t tanh 3 ( 0.001875 x ) + 5.312 × 10 7 t tanh 2 ( 0.001875 x ) 7.9102 × 10 7 t + 0.00009 + 0.000094 ) × tanh ( 0.0018 x ) .

4.3. Test Example 3

Let us consider the coupled Burgers’ Equation (1) with α 1 = α 2 = 1 and β 1 , 1 = β 2 , 2 = 2 , β 1 , 2 = β 2 , 1 = 1
u t 2 u x 2 2 u u x + u v x = 0 t > 0 , x [ π , π ] v t 2 v x 2 2 v v x + u v x = 0 t > 0 , x [ π , π ]
with:
u ( x , 0 ) = v ( x , 0 ) = sin ( x )
the exact solution of (22) is
u ( x , t ) = v ( x , t ) = e t sin ( x )
The m-th order deformation equation for (22) is:
u m ( x , t ) = χ m u m 1 ( x , t ) + L 1 [ R 1 , m ( u m 1 ( x , t ) , v m 1 ( x , t ) ) ] v m ( x , t ) = χ m v m 1 ( x , t ) + L 1 [ R 2 , m ( u m 1 ( x , t ) , v m 1 ( x , t ) ) ]
where
R 1 , m = u m 1 t 2 u m 1 x 2 2 i = 0 m 1 u m 1 i u i x + i = 0 m 1 u i x v m 1 i + v m 1 i x u i R 2 , m = v m 1 t 2 v m 1 x 2 2 i = 0 m 1 v m 1 i v i x + i = 0 m 1 u i x v m 1 i + v m 1 i x u i ( x , t )
Choosing from (23),
u 0 ( x , t ) = sin ( x ) v 0 ( x , t ) = sin ( x ) ,
we successfully obtain the first terms of the homotopy series solution:
u 1 ( x , t ) = t sin ( x ) u 2 ( x , t ) = 1 2 t 2 sin ( x ) + t sin ( x ) + t sin ( x ) u 3 ( x , t ) = 1 6 t t 2 + 6 t + 6 2 + 6 ( t + 2 ) + 6 sin ( x )
and
v 1 ( x , t ) = t sin ( x ) v 2 ( x , t ) = 1 2 2 t 2 sin ( x ) + 2 t sin ( x ) + t sin ( x ) v 3 ( x , t ) = 1 6 t t 2 + 6 t + 6 2 + 6 ( t + 2 ) + 6 sin ( x )
So, the HAM series solution becomes:
u ( x , t ) = 1 120 t 5 5 + 5 t 4 ( 4 + 5 ) 4 + 20 t 3 6 2 + 15 + 10 3 + 60 t 2 4 3 + 15 2 + 20 + 10 2 + . . . sin ( x ) v ( x , t ) = 1 120 t 5 5 + 5 t 4 ( 4 + 5 ) 4 + 20 t 3 6 2 + 15 + 10 3 + 60 t 2 4 3 + 15 2 + 20 + 10 2 + . . . sin ( x )
and for = 1 we obtain
u ( x , t ) = v ( x , t ) = 1 120 t 5 5 t 4 + 20 t 3 60 t 2 + 120 t 120 . . . . sin ( x ) = e t sin ( x )

5. Numerical Result and Discussion

In this part, we first plot the HAM approximate solution of u and v and the exact solution for examples 1, 2 and 3 in Figure 1, Figure 2, Figure 3 and Figure 4, and the absolute error for example 1 is presented in Figure 5 for t = 1. In Figure 6, we display the error with different values of t for example 2. Figure 7 is the error of the example, and to show the efficiency and accuracy of the present algorithm, we compare the results with others obtained by different methods, as shown in the following Table 1, Table 2 and Table 3:

6. Conclusions

In this work, we successfully applied the HAM for the coupled Burgers’ equation, and we show that this method is efficient and applicable for this type of partial differential equation. We compared our results with the exact solution and NIM method, and we present graphically the HAM solution and the error.

Author Contributions

Data curation, C.C. and Y.M.; formal analysis, C.C., Y.M., A.S. and M.E.T.; funding acquisition, Y.M.; methodology, C.C. and A.S.; project administration, M.E.T.; software, M.E.T.; supervision, C.C.; visualization, A.S.; writing—original draft, Y.M. and A.S.; writing—review and editing, Y.M. and C.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

International telematic university uninettuno.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Akbar, M.A.; Ali, N.H.M.; Tanjim, T. Outset of multiple soliton solutions to the nonlinear Schrödinger equation and the coupled Burgers equation. J. Phys. Commun. 2019, 3, 095013. [Google Scholar] [CrossRef]
  2. Aziz, A.; Khani, F.; Darvishi, M.T. Homotopy Analysis Method for Variable Thermal Conductivity Heat Flux Gage with Edge Contact Resistance. Verl. Z. Naturforschung 2010, 8, 119. [Google Scholar] [CrossRef]
  3. Ahmad, H.; Khan, T.A.; Cesarano, C. Numerical solutions of coupled Burgers’ equations. Axioms 2019, 8, 119. [Google Scholar] [CrossRef]
  4. Khater, A.; Temsah, R.; Hassan, M. A Chebyshev spectral collocation method for solving Burgers’-type equations. J. Comput. Appl. Math. 2008, 222, 333–350. [Google Scholar] [CrossRef]
  5. Rashid, A.; Abbas, M.; Ismail, A.I.M.; Majid, A.A. Numerical solution of the coupled viscous Burgers equations by Chebyshev–Legendre Pseudo-Spectral method. Appl. Math. Comput. 2014, 245, 372–381. [Google Scholar] [CrossRef]
  6. Ahmad, H. Variational Iteration Algorithm-I with an Auxiliary Parameter for Solving Fokker–Planck Equation. Earthline J. Math. Sci. 2019, 2, 29–37. [Google Scholar] [CrossRef]
  7. Darvishi, M.T.; Kheybari, S.; Khani, F. A numerical solution of the Korteweg-de Vries equation by pseudospectral method using Darvishi’s preconditionings. Appl. Math. Comput. 2006, 1, 98–105. [Google Scholar] [CrossRef]
  8. Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
  9. Liao, S. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 983–997. [Google Scholar] [CrossRef]
  10. Liao, S. Homotopy Analysis Method in Non-Linear Differential Equations, 3rd ed.; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
  11. Alomari, A.K.; Drabseh, G.A.; Al-Jamal, M.F.; AlBadarneh, R.B. Numerical simulation for fractional phi-4 equation using homotopy Sumudu approach. Int. J. Simul. Process. Model. 2021, 16, 26–33. [Google Scholar] [CrossRef]
  12. Shather, A.H.; Jameel, A.F.; Anakira, N.R.; Alomari, A.K.; Saaban, A. Homotopy analysis method approximate solution for fuzzy pantograph equation. Int. J. Comput. Sci. Math. 2021, 14, 286–300. [Google Scholar] [CrossRef]
  13. Hashim, D.J.; Jameel, A.F.; YuanYing, T.; Alomari, A.K.; Anakira, N.R. Optimal homotopy asymptotic method for solving several models of first-order fuzzy fractional IVPs. Alex. Eng. J. 2022, 61, 4931–4943. [Google Scholar] [CrossRef]
  14. Aljhani, S.; Noorani, M.S.M.; Saad, K.M.; Alomari, A.K. Numerical Solutions of Certain New Models of the Time-Fractional Gray-Scott. J. Funct. Spaces 2021, 2021, 2544688. [Google Scholar] [CrossRef]
  15. Liao, S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2003–2016. [Google Scholar] [CrossRef]
  16. Saad, K.M.; AL-Shareef, E.H.; Alomari, A.K.; Baleanu, D.; Gómez-Aguilar, J.F. On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger’s equations using homotopy analysis transform method. Chin. J. Phys. 2020, 63, 149–162. [Google Scholar] [CrossRef]
Figure 1. The HAM solution (left) and exact solution (right) for u ( x , t ) example 1.
Figure 1. The HAM solution (left) and exact solution (right) for u ( x , t ) example 1.
Mathematics 11 02071 g001
Figure 2. The HAM solution (left) and exact solution (right) for v ( x , t ) example 1.
Figure 2. The HAM solution (left) and exact solution (right) for v ( x , t ) example 1.
Mathematics 11 02071 g002
Figure 3. The HAM solution of u,v and the exact solution (from left to right) of example 2.
Figure 3. The HAM solution of u,v and the exact solution (from left to right) of example 2.
Mathematics 11 02071 g003
Figure 4. The HAM solution and exact solution (from left to right) for u , v of example 3.
Figure 4. The HAM solution and exact solution (from left to right) for u , v of example 3.
Mathematics 11 02071 g004
Figure 5. The absolute error for t = 1 of example 1.
Figure 5. The absolute error for t = 1 of example 1.
Mathematics 11 02071 g005
Figure 6. The absolute error for different values of t of example 2.
Figure 6. The absolute error for different values of t of example 2.
Mathematics 11 02071 g006
Figure 7. The absolute error for example 3.
Figure 7. The absolute error for example 3.
Mathematics 11 02071 g007
Table 1. Comparison of HAM solution with the exact solution for u ( x , t ) example 1.
Table 1. Comparison of HAM solution with the exact solution for u ( x , t ) example 1.
xtExactHAMAbsolute Error
−10 0.5 0.046881 0.047189 3.0848 × 10 4
1 0.046883 0.047500 6.1714 × 10 4
5 0.046898 0.049988 3.0897 × 10 3
10 0.04691 0.05309 6.1753 × 10 3
5 0.5 0.04844 0.04874 3.0921 × 10 4
1 0.04844 0.04906 6.1848 × 10 4
5 0.04845 0.05154 3.0916 × 10 3
10 0.04847 0.05464 6.1671 × 10 3
0 0.5 0.05000 0.050311 3.0934 × 10 4
1 0.05000 0.050622 6.1863 × 10 4
5 0.05002 0.053107 3.0875 × 10 3
10 0.05004 0.056186 6.1469 × 10 3
5 0.5 0.05156 0.05162 6.1789 × 10 5
1 0.05156 0.05218 6.1756 × 10 4
5 0.05158 0.05465 3.0775 × 10 3
10 0.05160 0.05771 6.1151 × 10 3
10 0.5 0.05312 0.05343 3.07805 × 10 4
1 0.05312 0.05374 6.15303 × 10 4
5 0.05314 0.05620 3.06143 × 10 3
10 0.05315 0.05923 6.07167 × 10 3
Table 2. Comparison of HAM solution with the exact solution for v ( x , t ) example 1.
Table 2. Comparison of HAM solution with the exact solution for v ( x , t ) example 1.
xtExactHAMAbsolute Error
−10 0.5 0.02188 0.02218 3.0632 × 10 4
1 0.02188 0.02249 6.1278 × 10 4
5 0.02189 0.02496 3.0663 × 10 3
10 0.02191 0.02804 6.1248 × 10 3
5 0.5 0.02344 0.02374 3.0695 × 10 4
1 0.02344 0.02405 6.1392 × 10 4
5 0.02345 0.02652 3.0673 × 10 3
10 0.02347 0.02959 6.1149 × 10 3
0 0.5 0.02500 0.02530 3.0698 × 10 4
1 0.05000 0.050622 6.1863 × 10 4
5 0.02501 0.02808 3.0623 × 10 3
10 0.02503 0.03113 6.0932 × 10 3
5 0.5 0.02656 0.02687 3.0642 × 10 4
1 0.02656 0.02717 6.1261 × 10 4
5 0.02658 0.02963 3.0513 × 10 3
10 0.02660 0.03266 6.0599 × 10 3
10 0.5 0.02812 0.02842 3.0525 × 10 4
1 0.02812 0.02873 6.1017 × 10 4
5 0.02814 0.03117 3.0345 × 10 3
10 0.02815 0.03417 6.0153 × 10 3
Table 3. Comparison of HAM solution with the exact solution for example 2.
Table 3. Comparison of HAM solution with the exact solution for example 2.
xtExactHAM uAbsolute Error uHAM vAbsolute Error v
−10 0.5 0.09809 0.09826 1.6951 × 10 4 0.09826 1.6951 × 10 4
1 0.09806 0.09840 3.3889 × 10 4 0.09840 3.3889 × 10 4
5 0.09784 0.09953 1.6893 × 10 3 0.09953 1.6893 × 10 3
10 0.09756 0.10092 3.3657 × 10 3 0.10092 3.3657 × 10 3
−5 0.5 0.09903 0.09920 1.6911 × 10 4 0.09920 1.6911 × 10 4
1 0.09900 0.09934 3.3809 × 10 4 0.09934 3.3809 × 10 4
5 0.09878 0.10046 1.6852 × 10 3 0.10046 1.6852 × 10 3
10 0.09850 0.10185 3.3571 × 10 3 0.10185 3.3571 × 10 3
0 0.5 0.09997 0.10014 1.6868 × 10 4 0.10014 1.6868 × 10 4
1 0.09994 0.10028 3.3723 × 10 4 0.10028 3.3723 × 10 4
5 0.09971 0.1014 1.6808 × 10 3 0.1014 1.6808 × 10 3
10 0.09943 0.10278 3.3479 × 10 3 0.10278 3.3479 × 10 3
5 0.5 0.10090 0.10107 1.6822 × 10 4 0.10107 1.6822 × 10 4
1 0.10088 0.10121 3.3631 × 10 4 0.10121 3.3631 × 10 4
5 0.10065 0.10233 1.6760 × 10 3 0.10233 1.6760 × 10 3
10 0.10037 0.10371 3.3382 × 10 3 0.10371 3.3382 × 10 3
10 0.5 0.10184 0.10201 1.6773 × 10 4 0.10201 1.6773 × 10 4
1 0.10181 0.10215 3.3533 × 10 3 0.10215 3.3533 × 10 3
5 0.10159 0.10326 1.6710 × 10 3 0.10326 1.6710 × 10 3
10 0.10131 0.10464 3.3279 × 10 3 0.10464 3.3279 × 10 3
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cesarano, C.; Massoun, Y.; Said, A.; Talbi, M.E. Analytic Study of Coupled Burgers’ Equation. Mathematics 2023, 11, 2071. https://doi.org/10.3390/math11092071

AMA Style

Cesarano C, Massoun Y, Said A, Talbi ME. Analytic Study of Coupled Burgers’ Equation. Mathematics. 2023; 11(9):2071. https://doi.org/10.3390/math11092071

Chicago/Turabian Style

Cesarano, Clemente, Youssouf Massoun, Abderrezak Said, and Mohamed Elamine Talbi. 2023. "Analytic Study of Coupled Burgers’ Equation" Mathematics 11, no. 9: 2071. https://doi.org/10.3390/math11092071

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop