Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations
Abstract
:1. Introduction and Mathematical Preliminaries
2. Fuzzy MLHUS Stability
3. Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morsi, N.N. On fuzzy pseudo-normed vector spaces. Fuzzy Sets Syst. 1988, 27, 351–372. [Google Scholar] [CrossRef]
- Jäger, G.; Shi, F. LM-fuzzy metric spaces and convergence. Mat. Vesn. 2019, 71, 31–44. [Google Scholar]
- Pourpasha, M.; Rassias, T.M.; Saadati, R.; Vaezpour, S. The stability of some differential equations. Math. Probl. Eng. 2011, 2011, 128479. [Google Scholar] [CrossRef]
- Ali, A.; Gupta, V.; Abdeljawad, T.; Shah, K.; Jarad, F. Mathematical analysis of nonlocal implicit impulsive problem under Caputo fractional boundary conditions. Math. Probl. Eng. 2020, 2020, 7681479. [Google Scholar] [CrossRef]
- Naimi, A.; Tellab, B.; Altayeb, Y.; Moumen, A. Generalized Ulam–Hyers–Rassias Stability Results of Solution for Nonlinear Fractional Differential Problem with Boundary Conditions. Math. Probl. Eng. 2021, 2021, 7150739. [Google Scholar] [CrossRef]
- Vu, H.; Van Hoa, N. Hyers–Ulam stability of random functional differential equation involving fractional-order derivative. Comput. Appl. Math. 2022, 41, 204. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R. Best approximation of a nonlinear fractional Volterra integro-differential equation in matrix MB-space. Adv. Differ. Equ. 2021, 2021, 118. [Google Scholar] [CrossRef]
- Younis, M.; Bahuguna, D. A unique approach to graph-based metric spaces with an application to rocket ascension. Comput. Appl. Math. 2023, 42, 44. [Google Scholar] [CrossRef]
- Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Springer: Dordrecht, The Netherlands, 2001; Volume 536. [Google Scholar]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Du, W.S.; Karapınar, E.; He, Z. Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory. Mathematics 2018, 6, 117. [Google Scholar] [CrossRef]
- Romaguera, S.; Tirado, P. Characterizing complete fuzzy metric spaces via fixed point results. Mathematics 2020, 8, 273. [Google Scholar] [CrossRef]
- Rakić, D.; Došenović, T.; Mitrović, Z.D.; de la Sen, M.; Radenović, S. Some fixed point theorems of Ćirić type in fuzzy metric spaces. Mathematics 2020, 8, 297. [Google Scholar] [CrossRef]
- Rassias, J.; Murali, R.; Selvan, A.P. Mittag-Leffler-Hyers-Ulam Stability of Linear Differential Equations using Fourier Transforms. J. Comput. Anal. Appl. 2021, 29, 68–85. [Google Scholar]
- Narayanan, G.; Ali, M.S.; Rajchakit, G.; Jirawattanapanit, A.; Priya, B. Stability analysis for Nabla discrete fractional-order of Glucose–Insulin Regulatory System on diabetes mellitus with Mittag-Leffler kernel. Biomed. Signal Process. Control. 2023, 80, 104295. [Google Scholar] [CrossRef]
- Eghbali, N.; Kalvandi, V. A Fixed Point Approach to the Mittag-Leffler-Hyers-Ulam Stability of Differential Equations y(x)= F(x,y(x)). Appl. Math. E-Notes 2018, 18, 34–42. [Google Scholar]
- Eghbali, N.; Kalvandi, V.; Rassias, J.M. A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation. Open Math. 2016, 14, 237–246. [Google Scholar] [CrossRef]
- Huang, H.; Carić, B.; Došenović, T.; Rakić, D.; Brdar, M. Fixed-Point Theorems in Fuzzy Metric Spaces via Fuzzy F-Contraction. Mathematics 2021, 9, 641. [Google Scholar] [CrossRef]
- Agilan, P.; Almazah, M.M.; Julietraja, K.; Alsinai, A. Classical and Fixed Point Approach to the Stability Analysis of a Bilateral Symmetric Additive Functional Equation in Fuzzy and Random Normed Spaces. Mathematics 2023, 11, 681. [Google Scholar] [CrossRef]
- Sadeghi, G.; Nazarianpoor, M.; Rassias, J.M. Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces. Iran. J. Fuzzy Syst. 2018, 15, 13–30. [Google Scholar]
- Nadaban, S.; Bînzar, T.; Pater, F. Some fixed point theorems for ϕ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 2017, 10, 5668–5676. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T. Stability of Functional Equations in Several Variables; Springer Science & Business Media: New York, NY, USA, 2012; Volume 34. [Google Scholar]
- Aderyani, S.R.; Saadati, R.; Allahviranloo, T. Existence, uniqueness and matrix-valued fuzzy Mittag–Leffler–Hypergeometric–Wright stability for P-Hilfer fractional differential equations in matrix-valued fuzzy Banach space. Comput. Appl. Math. 2022, 41, 234. [Google Scholar] [CrossRef]
- Chaharpashlou, R.; Saadati, R.; Atangana, A. Ulam–Hyers–Rassias stability for nonlinear Ψ-Hilfer stochastic fractional differential equation with uncertainty. Adv. Differ. Equ. 2020, 2020, 339. [Google Scholar] [CrossRef]
- Mihet, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef]
- Miheţ, D.; Saadati, R. On the stability of some functional equations in Menger φ-normed spaces. Math. Slovaca 2014, 64, 209–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaharpashlou, R.; Saadati, R.; Lopes, A.M. Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations. Mathematics 2023, 11, 2154. https://doi.org/10.3390/math11092154
Chaharpashlou R, Saadati R, Lopes AM. Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations. Mathematics. 2023; 11(9):2154. https://doi.org/10.3390/math11092154
Chicago/Turabian StyleChaharpashlou, Reza, Reza Saadati, and António M. Lopes. 2023. "Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations" Mathematics 11, no. 9: 2154. https://doi.org/10.3390/math11092154
APA StyleChaharpashlou, R., Saadati, R., & Lopes, A. M. (2023). Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations. Mathematics, 11(9), 2154. https://doi.org/10.3390/math11092154