Algebraic, Analytic, and Computational Number Theory and Its Applications
Acknowledgments
Conflicts of Interest
List of Contributions
- Andrica, D.; Bagdasar, O. On Generalized Lucas Pseudoprimality of Level k. Mathematics 2021, 9, 838. https://doi.org/10.3390/math9080838.
- Trojovská, E.; Trojovský, P. On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers. Mathematics 2021, 9, 962. https://doi.org/10.3390/math9090962.
- Aiewcharoen, B.; Boonklurb, R.; Konglawan, N. Global and Local Behavior of the System of Piecewise Linear Difference Equations and , Where . Mathematics 2021, 9, 1390. https://doi.org/10.3390/math9121390.
- Minculete, N.; Savin, D. Some Properties of Euler’s Function and of the Function and Their Generalizations in Algebraic Number Fields. Mathematics 2021, 9, 1710. https://doi.org/10.3390/math9151710.
- Daengsaen, J.; Leeratanavalee, S. Regularities in Ordered n–Ary Semihypergroups. Mathematics 2021, 9, 1857. https://doi.org/10.3390/math9161857.
- Ding, W.; Liu, H.; Zhang, D. New Zero-Density Results for Automorphic L–Functions of . Mathematics 2021, 9, 2061. https://doi.org/10.3390/math9172061.
- Terzioğlu, N.; Kızılateş, C.; Du, W.-S. New Properties and Identities for Fibonacci Finite Operator Quaternions. Mathematics 2022, 10, 1719. https://doi.org/10.3390/math10101719.
- Piciu, D.; Savin, D. Residuated Lattices with Noetherian Spectrum. Mathematics 2022, 10, 1831. https://doi.org/10.3390/math10111831.
- Laurinčikas, A.; Macaitienė, R. A Generalized Bohr–Jessen Type Theorem for the Epstein Zeta-Function. Mathematics 2022, 10, 2042. https://doi.org/10.3390/math10122042.
- Kim, K.-S. Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields. Mathematics 2022, 10, 2488. https://doi.org/10.3390/math10142488.
- Vijayarangan, A.; Narayanan, V.; Natarajan, V.; Raghavendran, S. Novel Authentication Protocols Based on Quadratic Diophantine Equations. Mathematics 2022, 10, 3136. https://doi.org/10.3390/math10173136.
- Wang, Y.; Binyamin, M.A.; Amin, I.; Aslam, A.; Rao, Y. On the Classification of Telescopic Numerical Semigroups of Some Fixed Multiplicity. Mathematics 2022, 10, 3871. https://doi.org/10.3390/math10203871.
- Azak, A.Z. Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions. Mathematics 2022, 10, 4655. https://doi.org/10.3390/math10244655.
- Altassan, A.; Alan, M. Almost Repdigit k-Fibonacci Numbers with an Application of the k-Generalized Fibonacci Sequence. Mathematics 2023, 11, 455. https://doi.org/10.3390/math11020455.
- Dubickas, A. Density of Some Special Sequences Modulo 1. Mathematics 2023, 11, 1727. https://doi.org/10.3390/math11071727.
- Srichan, T. A Bound for a Sum of Products of Two Characters and Its Application. Mathematics 2023, 11, 2507. https://doi.org/10.3390/math11112507.
- Nur, M.; Bahri, M.; Islamiyati, A.; Batkunde, H. A New Semi-Inner Product and -Angle in the Space of p-Summable Sequences. Mathematics 2023, 11, 3139. https://doi.org/10.3390/math11143139.
- Andrica, D.; Bagdasar, O. Remarks on the Coefficients of Inverse Cyclotomic Polynomials. Mathematics 2023, 11, 3622. https://doi.org/10.3390/math11173622.
- El Fadil, L. On Indices of Septic Number Fields Defined by Trinomials . Mathematics 2023, 11, 4441. https://doi.org/10.3390/math11214441.
- Cheddour, Z.; Chillali, A.; Mouhib, A. Generalized Fibonacci Sequences for Elliptic Curve Cryptography. Mathematics 2023, 11, 4656. https://doi.org/10.3390/math11224656.
- Tan, E.; Savin, D.; Yılmaz, S. A New Class of Leonardo Hybrid Numbers and Some Remarks on Leonardo Quaternions over Finite Fields. Mathematics 2023, 11, 4701. https://doi.org/10.3390/math11224701.
References
- Apostol, T. An Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Lemmermeyer, F. Reciprocity Laws, from Euler to Eisenstein; Springer: Heidelberg, Germany, 2000. [Google Scholar]
- Milne, J.S. Algebraic Number Theory, Course Notes. 2008. Available online: https://www.jmilne.org/math/CourseNotes/ANT.pdf (accessed on 1 January 2023).
- Ribenboim, P. Classical Theory of Algebraic Numbers; Springer: New York, NY, USA, 2001. [Google Scholar]
- Swinnerton-Dyer, H.P.F. A Brief Guide to Algebraic Number Theory; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kim, K.-S. Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields. Mathematics 2022, 10, 2488. [Google Scholar] [CrossRef]
- Ankeny, N.; Chowla, S. On the divisibility of the class numbers of quaddratic fields. Pac. J. Math. 1955, 5, 321–324. [Google Scholar] [CrossRef]
- Chakraborty, K.; Hoque, A.; Kishi, Y.; Pandey, P.P. Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 2018, 185, 339–348. [Google Scholar] [CrossRef]
- Cohn, J.H.E. On the class number of certain imaginary quadratic fields. Proc. Am. Math. Soc. 2002, 130, 1275–1277. [Google Scholar] [CrossRef]
- Gross, B.H.; Rohrlich, D.E. Some results on the Mordell–Weil group of the Jacobian of the Fermat curve. Invent. Math. 1978, 44, 201–224. [Google Scholar] [CrossRef]
- Ishii, K. On the divisibility of the class number of imaginary quadratic fields. Proc. Jpn. Acad. Ser. A 2011, 87, 142–143. [Google Scholar] [CrossRef]
- Murty, M.R. Exponents of class groups of quadratic fields. In Topics in Number Theory; Mathematics and Its Applications; Kluwer Academic Publishers: University Park, PA, USA; Dordrecht, The Netherlands, 1999; Volume 467, pp. 229–239. [Google Scholar]
- Soundararajan, K. Divisibility of class numbers of imaginary quaddratic fields. J. Lond. Math. Soc. 2000, 61, 681–690. [Google Scholar] [CrossRef]
- Yamamoto, Y. On unramified Galois extensions of quadratic number fields. Osaka J. Math. 1970, 7, 57–76. [Google Scholar]
- Gille, P.; Szamuely, T. Central Simple Algebras and Galois Cohomology; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Lam, T.Y. Introduction to Quadratic Forms over Fields; AMS: Providence, RI, USA, 2004.
- Voight, J. Quaternion Algebras; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Flaut, C.; Savin, D. Some examples of division symbol algebras of degree 3 and 5. Carpathian J. Math. 2015, 31, 197–204. [Google Scholar] [CrossRef]
- Savin, D. About division quaternion algebras and division symbol algebras. Carpathian J. Math. 2016, 32, 233–240. [Google Scholar] [CrossRef]
- Acciaro, V.; Savin, D.; Taous, M.; Zekhnini, A. On quaternion algebras over the composite of quadratic number fields. Glas. Mat. 2021, 56, 63–78. [Google Scholar] [CrossRef]
- Terzioğlu, N.; Kızılateş, C.; Du, W.-S. New Properties and Identities for Fibonacci Finite Operator Quaternions. Mathematics 2022, 10, 1719. [Google Scholar] [CrossRef]
- Azak, A.Z. Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions. Mathematics 2022, 10, 4655. [Google Scholar] [CrossRef]
- Tan, E.; Savin, D.; Yılmaz, S. A New Class of Leonardo Hybrid Numbers and Some Remarks on Leonardo Quaternions over Finite Fields. Mathematics 2023, 11, 4701. [Google Scholar] [CrossRef]
- Minculete, N.; Savin, D. Some Properties of Extended Euler’s Function and Extended Dedekind’s Function. Mathematics 2020, 8, 1222. [Google Scholar] [CrossRef]
- Minculete, N.; Savin, D. Some generalizations of the functions τ and τ(e) in algebraic number fields. Expo. Math. 2021, 39, 344–353. [Google Scholar] [CrossRef]
- Suer, M.; Ilhan, S. On telescopic numerical semigroup families with embedding dimension 3. J. Sci. Technol. 2019, 12, 457–462. [Google Scholar] [CrossRef]
- Suer, M.; llhan, S. On triply generated telescopic semigroups with multiplicity 8 and 9. Bulg. Acad. Sci. 2020, 72, 315–319. [Google Scholar]
- Suer, M.; llhan, S. Telescopic numerical semigroups with multiplicity Ten and embedding dimension three. J. Univers. Math. 2022, 5, 139–148. [Google Scholar] [CrossRef]
- Jordan, J.H. Gaussian Fibonacci and Lucas Numbers. Fibonacci Quart. 1965, 3, 315–318. [Google Scholar]
- Halici, S. On Complex Fibonacci Quaternions. Am. Math. Mon. 2013, 23, 105–112. [Google Scholar] [CrossRef]
- Halici, S. On Quaternion-Gaussian Lucas Numbers. Math. Meth. Appl. Sci. 2021, 44, 7601–7606. [Google Scholar] [CrossRef]
- Halici, S.; Cerda-Morales, G. On Quaternion-Gaussian Fibonacci Numbers and Their Properties. An. Şiinţ. Univ. Ovidius Constanta 2021, 29, 71–82. [Google Scholar] [CrossRef]
- Matveev, E.M. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. Izv. Ross. Akad. Nauk Ser. Mat. 2000, 64, 125–180, Translation in Izv. Math. 2000, 64, 1217–1269. [Google Scholar] [CrossRef]
- Baker, A.; Davenport, H. The equations 3x2 − 2 = y2 and 8x2 − 7 = z2. Quart. J. Math. Oxford Ser. 1969, 20, 129–137. [Google Scholar] [CrossRef]
- Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. 1998, 49, 291–306. [Google Scholar] [CrossRef]
- Cilleruelo, J.; Kumchev, A.; Luca, F.; Rué, J.; Shparlinski, I.E. On the fractional parts of an/n. Bull. Lond. Math. Soc. 2013, 45, 249–256. [Google Scholar] [CrossRef]
- Narkiewicz, W. Elementary and Analytic Theory of Algebraic Numbers; Springer: New York, NY, USA, 2004. [Google Scholar]
- Catarino, P.; Borges, A. On Leonardo numbers. Acta Math. Univ. Comen. 2019, 89, 75–86. [Google Scholar]
- Catarino, P.; Borges, A. A note on incomplete Leonardo numbers. Integers 2020, 20, 1–7. [Google Scholar]
- Alp, Y.; Kocer, E.G. Some properties of Leonardo numbers. Konuralp J. Math. 2021, 9, 183–189. [Google Scholar]
- Tan, E.; Leung, H.H. On Leonardo p-numbers. Integers 2023, 23, A7. [Google Scholar]
- Savin, D. About Special Elements in Quaternion Algebras Over Finite Fields. Adv. Appl. Clifford Algebr. 2017, 27, 1801–1813. [Google Scholar] [CrossRef]
- Mangueira, M.C.S.; Alves, F.R.V.; Catarino, P.M.M.C. Hybrid Quaternions of Leonardo. Trends Comput. Appl. Math. 2022, 23, 51–62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, D.; Minculete, N.; Acciaro, V. Algebraic, Analytic, and Computational Number Theory and Its Applications. Mathematics 2024, 12, 10. https://doi.org/10.3390/math12010010
Savin D, Minculete N, Acciaro V. Algebraic, Analytic, and Computational Number Theory and Its Applications. Mathematics. 2024; 12(1):10. https://doi.org/10.3390/math12010010
Chicago/Turabian StyleSavin, Diana, Nicusor Minculete, and Vincenzo Acciaro. 2024. "Algebraic, Analytic, and Computational Number Theory and Its Applications" Mathematics 12, no. 1: 10. https://doi.org/10.3390/math12010010
APA StyleSavin, D., Minculete, N., & Acciaro, V. (2024). Algebraic, Analytic, and Computational Number Theory and Its Applications. Mathematics, 12(1), 10. https://doi.org/10.3390/math12010010