A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation
Abstract
:1. Introduction
2. Statement of the Geophysical Problem
3. Methodology
3.1. Discretization Scheme in the Spatial Domain
3.2. Chebyshev Differentiation Matrix in the Spatial Domain
3.3. CPS-FDTD Algorithm for 2D Acoustic Wave Equation
4. Numerical Experiments
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A. MATLAB Program for 2D Acoustic Modelling
References
- Cordova, L.J.; Rojas, O.; Otero, B.; Castillo, J. Compact finite difference modeling of 2-D acoustic wave propagation. J. Comput. Appl. Math. 2016, 295, 83–91. [Google Scholar] [CrossRef]
- Liao, W.; Yong, P.; Dastour, H.; Huang, J. Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media. Appl. Math. Comput. 2018, 321, 385–400. [Google Scholar] [CrossRef]
- Solano-Feo, F.; Guevara-Jordan, J.M.; Rojas, O.; Otero, B.; Rodriguez, R. A new mimetic scheme for the acoustic wave equation. J. Comput. Appl. Math. 2016, 295, 2–12. [Google Scholar] [CrossRef]
- Malkoti, A.; Vedanti, N.; Tiwari, R.K. A highly efficient implicit finite difference scheme for acoustic wave propagation. J. Appl. Geophys. 2019, 161, 204–215. [Google Scholar] [CrossRef]
- Wang, E.; Liu, Y.; Sen, M.K. Effective finite-difference modelling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils. Geophys. J. Int. 2016, 206, 1933–1958. [Google Scholar] [CrossRef]
- Lei, W.; Liu, Y.; Li, G.; Zhu, S.; Chen, G.; Li, C. 2D frequency-domain finite-difference acoustic wave modeling using optimized perfectly matched layers. Geophysics 2023, 88, F1–F13. [Google Scholar] [CrossRef]
- Xu, W.; Gao, J. Adaptive 9-point frequency-domain finite difference scheme for wavefield modeling of 2D acoustic wave equation. J. Geophys. Eng. 2018, 15, 1432–1445. [Google Scholar] [CrossRef]
- Aimakov, N.; Tanner, G.; Chronopoulos, D. A wave finite element approach for modelling wave transmission through laminated plate junctions. Sci. Rep. 2022, 1852, 937–951. [Google Scholar] [CrossRef]
- Gao, K.; Fu, S.; Chung, E.T. A high-order multiscale finite-element method for time-domain acoustic-wave modeling. J. Comput. Phys. 2018, 360, 120–136. [Google Scholar] [CrossRef]
- Hermann, V.; Kaser, M.; Castro, C.E. Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method. Geophys. J. Int. 2011, 184, 746–758. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Galis, M.; Chaljub, E.; Etienne, V. 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio. Geophys. J. Int. 2011, 187, 1645–1667. [Google Scholar] [CrossRef]
- Reboul, S.; Perrey-Debain, E.; Zerbib, N.; Moreau, S. A 2D frequency-domain finite element formulation for solving the wave equation in the presence of rotating obstacles. Wave Motion 2023, 121, 103171. [Google Scholar] [CrossRef]
- Fornberg, B. The pseudospectral method: Comparisons with finite difference for the elastic wave equation. Geophysics 1987, 52, 483–501. [Google Scholar] [CrossRef]
- Liu, Q.H. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Treeby, B.E.; Wise, E.S.; Kuklis, F.; Jaros, J.; Cox, B.T. Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method. J. Acoust. Soc. Am. 2020, 148, 2288–2300. [Google Scholar] [CrossRef] [PubMed]
- Komatitsch, D.; Tromp, J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 1999, 139, 806–822. [Google Scholar] [CrossRef]
- Komatitsch, D.; Tromp, J. Spectral-element simulations of global seismic wave propagation. Geophys. J. Int. 2002, 149, 390–412. [Google Scholar] [CrossRef]
- Zhu, C.; Qin, G.; Zhang, J. Implicit Chebyshev spectral element method for acoustics wave equations. Finite Elem. Anal. Des. 2011, 47, 184–194. [Google Scholar] [CrossRef]
- Zou, P.; Cheng, J. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media. Geophys. Prospect. 2018, 66, 47–61. [Google Scholar] [CrossRef]
- Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Kosloff, D.D.; Baysal, E. Forward modeling by a Fourier method. Geophysics 1982, 47, 1402–1412. [Google Scholar] [CrossRef]
- Tong, X.; Sun, Y.; Guo, R. A Chebyshev pseudo-spectral approach for simulating magnetotelluric TM-mode responses on 2D structures. J. Appl. Geophys. 2020, 179, 104085. [Google Scholar] [CrossRef]
- Raggio, G. A pseudo spectral Chebyshev scheme for forward acoustic modeling. ZAMM J. Appl. Math. Mech. 1986, 66, 545–553. [Google Scholar] [CrossRef]
- Eisinberg, A.; Fedele, G. Discrete orthogonal polynomials on Gauss-Lobatto Chebyshev nodes. J. Approx. Theory 2007, 144, 238–246. [Google Scholar] [CrossRef]
- Odeyemi, T.; Mohammadian, A.; Seidou, O. Application of the Chebyshev pseudospectral method to van der Waals fluids. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3499–3507. [Google Scholar] [CrossRef]
- Baltensperger, R.; Berrut, J.P. The errors in calculating the pseudospectral differentiation matrices for Chebyshev-Gauss_Lobatto points. Comput. Math. Appl. 1999, 37, 41–48. [Google Scholar] [CrossRef]
- Jiwari, R.; Pandit, S.; Mittal, R.C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl. Math. Comput. 2012, 218, 7279–7294. [Google Scholar] [CrossRef]
- Kumar, V.; Jiwari, R.; Gupta, R.K. Numerical simulation of two dimensional quasilinear hyperbolic equations by polynomial differential quadrature method. Eng. Comput. 2013, 30, 892–909. [Google Scholar] [CrossRef]
- Pandit, S.; Kunar, M.; Tiwari, S. Numerical Simulation of Second-Order One Dimensional Hyperbolic Telegraph Equation. Comput. Phys. Commun. 2015, 187, 83–90. [Google Scholar] [CrossRef]
- Gao, Y.; Song, H.; Zhang, J.; Yao, Z. Comparison of artificial absorbing boundaries for acoustic wave equation modelling. Explor. Geophys. 2017, 48, 76–93. [Google Scholar] [CrossRef]
- Liu, Y.; Sen, M.K. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics 2010, 75, A1–A6. [Google Scholar] [CrossRef]
- Narayannan, T.V.; Yoder, P.D. Perfectly matched layer boundary conditions for quantum phase space transport. Phys. Lett. A 2007, 367, 288–290. [Google Scholar] [CrossRef]
- Clayton, R.; Engquist, B. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am. 1977, 67, 1529–1540. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, X.; Sun, Y. A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation. Mathematics 2024, 12, 117. https://doi.org/10.3390/math12010117
Tong X, Sun Y. A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation. Mathematics. 2024; 12(1):117. https://doi.org/10.3390/math12010117
Chicago/Turabian StyleTong, Xiaozhong, and Ya Sun. 2024. "A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation" Mathematics 12, no. 1: 117. https://doi.org/10.3390/math12010117
APA StyleTong, X., & Sun, Y. (2024). A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation. Mathematics, 12(1), 117. https://doi.org/10.3390/math12010117