On Extended Lr-Norm-Based Derivatives to Intuitionistic Fuzzy Sets
Abstract
:1. Introduction
2. Preliminaries
- where AP, BP: U → [0, 1],
- AP () is the membership function of u,
- BP () is the non-membership function of ,
- and the condition 0 ≤ AP () + BP () ≤ 1 holds true.
- Atanassov’s intuitionistic fuzzy set is the generalization of Zadeh’s fuzzy set. Then, Zadeh’s fuzzy set can be written as P = {(, AP (), 0) | ∈ U}, where the non-membership function BP () = 0.
- IF(U) will be used to denote the set of all intuitionistic fuzzy sets in U.
- 1.
- P is a normal set, i.e., ∃ ∈ , such that AP () = 1 (hence, BP () = 0).
- 2.
- P (0) and (1) are bounded sets in .
- 3.
- AP: → [0, 1] is upper semi-continuous: ∀ k ∈ [0, 1], the set {: ∈ , AP () < k} is open.
- 4.
- BP: → [0, 1] is lower semi-continuous: ∀ k ∈ [0, 1], the set {: ∈ , BP () > k} is open.
- 5.
- The membership function AP is quasi-concave:
- AP ( + (1 − ) ) ≥ min {AP (), AP ()}, ∀ , ∈ , ∈ [0, 1].
- 6.
- The non-membership function BP is quasi-convex:
- BP ( + (1 − ) ) ≤ max {BP (), BP ()}, ∀ , ∈ , ∈ [0, 1].
- (i)
- P+ Q = D ⇔ D(α) = P(α) + Q(α) and D*(β) = P*(β) + Q*(β).
- (ii)
- c(P) = D ⇔ D(α) = cP(α) and D*(β) = cP*(β).
- 1(P, Q) = sup{dH(P(α), Q(α)): α ∈ [0, 1]}
- 2(P, Q) = sup{dH(P*(β) + Q*(β)): β ∈ [0, 1]},
- defines a metric on IFN (). Hence, (IFN (), ) is a metric space.
- The Hukuhara difference of P and Q, if it exists, is given by
- The generalized Hukuhara difference of P and Q, if it exists, is given by
- i)
- ii)
- iii)
- iv)
- Xα = {: ∈ , AX () ≥ α}, for 0 < α ≤ 1, and X0 = , for α = 0 is bounded.
- The distance is defined as
- i)
- ii)
- iii)
- iv)
3. Proposed Definitions
- 1(P, Q) =
- 2(P, Q) =
- (P, Q) =
- (i)
- (P
- (ii)
- (c P, , c ∈
- (iii)
- (P .
- (iv)
- ((P, 0), for
- (v)
- P Q iff P() Q(), ∈ [0, 1] iff ; and ; ∈ [0, 1].
- (1)
- is right-hand upper Intuitionistic fuzzy -differentiable (IF-differentiable) if there exists ∈ IFN () such that
- (2)
- is right-hand lower Intuitionistic fuzzy -differentiable (IF-differentiable) if there exists ∈ IFN () such that
- i)
- ii)
- iii)
- iv)
- (i)
- is upper IF-differentiable and .
- (ii)
- (u) (u), for all ∈ .
- Then, s. t. for
- (ii) Let be upper IF-differentiable.
- Then, s. t. for .
- (i)
- If and are lower IF-differentiable, then Theorem 5 holds.
- (ii)
- Also, if is upper IF-differentiable and is lower IF-differentiable, then and are IF-differentiable, and Theorem 5 still holds.
4. Intuitionistic Fuzzy Cauchy Problem
5. Conclusions
- In future, we plan a device method to solve non-linear intuitionistic fuzzy differential equations.
- In future, we plan to find numerical method for the proposed derivative, applying it to intuitionistic integral theory and the fuzzy partial differential equation based on -derivative.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Goguen, J.A. L-Fuzzy Sets. J. Math. Anal. Appl. 1967, 18, 145–174. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Q. Note on Aggregating Crisp Values into Intuitionistic Fuzzy Number. Appl. Math. Model. 2016, 40, 10800–10808. [Google Scholar] [CrossRef]
- Wasques, V.F.; Esmi, E.; Barros, L.C.; Bede, B. Comparison Between Numerical Solutions of Fuzzy Initial-Value Problems via Interactive and Standard Arithmetics. In Fuzzy Techniques: Theory and Applications; Kearfott, R.B., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 1000, pp. 704–715. ISBN 978-3-030-21919-2. [Google Scholar]
- Atanassov, K.T. More on Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1989, 33, 37–45. [Google Scholar] [CrossRef]
- Atanassov, K.T. Remarks on the Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1992, 51, 117–118. [Google Scholar] [CrossRef]
- Atanassov, K.T. Operators over Interval Valued Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1994, 64, 159–174. [Google Scholar] [CrossRef]
- Azam, M.; Ali Khan, M.S.; Yang, S. A Decision-Making Approach for the Evaluation of Information Security Management under Complex Intuitionistic Fuzzy Set Environment. J. Math. 2022, 2022, 9704466. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, T.; Yang, M.-S. Frank Prioritized Aggregation Operators and WASPAS Method Based on Complex Intuitionistic Fuzzy Sets and Their Application in Multi-Attribute Decision-Making. Mathematics 2023, 11, 2058. [Google Scholar] [CrossRef]
- De, S.K.; Biswas, R.; Roy, A.R. An Application of Intuitionistic Fuzzy Sets in Medical Diagnosis. Fuzzy Sets Syst. 2001, 117, 209–213. [Google Scholar] [CrossRef]
- Rahman, K. Mathematical Calculation of the COVID-19 Disease in Pakistan by Emergency Response Modeling Based on Intuitionistic Fuzzy Decision Process. New Math. Nat. Comput. 2022, 18, 407–447. [Google Scholar] [CrossRef]
- Ali, W.; Shaheen, T.; Haq, I.U.; Toor, H.G.; Alballa, T.; Khalifa, H.A.E.-W. A Novel Interval-Valued Decision Theoretic Rough Set Model with Intuitionistic Fuzzy Numbers Based on Power Aggregation Operators and Their Application in Medical Diagnosis. Mathematics 2023, 11, 4153. [Google Scholar] [CrossRef]
- Garg, H.; Vimala, J.; Rajareega, S.; Preethi, D.; Perez-Dominguez, L. Complex Intuitionistic Fuzzy Soft SWARA-COPRAS Approach: An Application of ERP Software Selection. AIMS Math. 2022, 7, 5895–5909. [Google Scholar] [CrossRef]
- Adamu, I.M. Application of Intuitionistic Fuzzy Sets to Environmental Management. NIFS 2021, 27, 40–50. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, S.K.; Ebrahimnejad, A.; Verdegay, J.L. Multi-Objective Fully Intuitionistic Fuzzy Fixed-Charge Solid Transportation Problem. Complex Intell. Syst. 2021, 7, 1009–1023. [Google Scholar] [CrossRef]
- Acharya, A.; Mahata, A.; Sil, N.; Mahato, S.; Mukherjee, S.; Mahato, S.K.; Roy, B. A Prey-Refuge Harvesting Model Using Intuitionistic Fuzzy Sets. Decis. Anal. J. 2023, 8, 100308. [Google Scholar] [CrossRef]
- Susanto, H.P.; Sutarti, T.; Hafidah, A.S. Generating Fuzzy Interval Data and Its Application to Find the Relation Between Math Anxiety with Self Efficacy Using Correlations Analysis. J. Phys. Conf. Ser. 2019, 1254, 012084. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Yang, C.-C. The Application of Fuzzy Correlation Coefficient with Fuzzy Interval Data. Int. J. Innov. Manag. Inf. Prod. 2014, 5, 65–71. [Google Scholar]
- Yu, D.; Sheng, L.; Xu, Z. Analysis of Evolutionary Process in Intuitionistic Fuzzy Set Theory: A Dynamic Perspective. Inf. Sci. 2022, 601, 175–188. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean Membership Grades in Multicriteria Decision Making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets: Extension of topsis to multiple criteria decision making. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Garg, H. Linguistic Pythagorean Fuzzy Sets and Its Applications in Multiattribute Decision-Making Process. Int. J. Intell. Syst. 2018, 33, 1234–1263. [Google Scholar] [CrossRef]
- Zhou, Q.; Mo, H.; Deng, Y. A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis. Mathematics 2020, 8, 142. [Google Scholar] [CrossRef]
- Shahzadi, G.; Akram, M.; Al-Kenani, A.N. Decision-Making Approach under Pythagorean Fuzzy Yager Weighted Operators. Mathematics 2020, 8, 70. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Y.; Chen, R. Bibliometric Analysis on Pythagorean Fuzzy Sets during 2013–2020. IJICC 2021, 14, 104–121. [Google Scholar] [CrossRef]
- Diamond, P. Time-Dependent Differential Inclusions, Cocycle Attractors and Fuzzy Differential Equations. IEEE Trans. Fuzzy Syst. 1999, 7, 734–740. [Google Scholar] [CrossRef]
- Masuo HUKUHARA, P. Integration Des Applicaitons Mesurables Dont La Valeur Est Un Compact Convexe. Funkc. Ekvacioj 1967, 10, 205–223. [Google Scholar]
- Buckley, J.J.; Feuring, T. Fuzzy Differential Equations. Fuzzy Sets Syst. 2000, 110, 43–54. [Google Scholar] [CrossRef]
- Akin, Ö.; Bayeğ, S. System of Intuitionistic Fuzzy Differential Equations with Intuitionistic Fuzzy Initial Values. NIFS 2018, 24, 141–171. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets. Fuzzy Sets Syst. 1999, 100, 63–71. [Google Scholar] [CrossRef]
- Puri, M.L.; Ralescu, D.A. Differentials of Fuzzy Functions. J. Math. Anal. Appl. 1983, 91, 552–558. [Google Scholar] [CrossRef]
- Diamond, P. Stability and Periodicity in Fuzzy Differential Equations. IEEE Trans. Fuzzy Syst. 2000, 8, 583–590. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the Differentiability of Fuzzy-Number-Valued Functions with Applications to Fuzzy Differential Equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Stefanini, L. A Generalization of Hukuhara Difference and Division for Interval and Fuzzy Arithmetic. Fuzzy Sets Syst. 2010, 161, 1564–1584. [Google Scholar] [CrossRef]
- Bede, B.; Stefanini, L. Generalized Differentiability of Fuzzy-Valued Functions. Fuzzy Sets Syst. 2013, 230, 119–141. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for Interval-Valued Functions Using Generalized Hukuhara Derivative and Applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Prasad Mondal, S.; Kumar Roy, T. First Order Homogeneous Ordinary Differential Equation with Initial Value as Triangular Intuitionistic Fuzzy Number. J. Uncertain. Math. Sci. 2014, 2014, jums-00003. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Generalized Fuzzy Differentiability with LU-Parametric Representation. Fuzzy Sets Syst. 2014, 257, 184–203. [Google Scholar] [CrossRef]
- Akın, Ö.; Bayeğ, S. Intuitionistic Fuzzy Initial Value Problems—An Application. HJMS 2018, 48, 1682–1694. [Google Scholar] [CrossRef]
- Akın, Ö.; Bayeğ, S. Some Results on the Fundamental Concepts of Fuzzy Set Theory in Intuitionistic Fuzzy Environment by Using α and β Cuts. Filomat 2019, 33, 3123–3148. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Nieto, J.J. Differential Equations in Metric Spaces: An Introduction and an Application to Fuzzy Differential Equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2003, 10, 991–1000. [Google Scholar]
- Ben Amma, B.; Melliani, S.; Chadli, L.S. The Cauchy Problem for Intuitionistic Fuzzy Differential Equations. NIFS 2018, 24, 37–47. [Google Scholar] [CrossRef]
- Khastan, A.; Rodríguez-López, R.; Shahidi, M. New Differentiability Concepts for Set-Valued Functions and Applications to Set Differential Equations. Inf. Sci. 2021, 575, 355–378. [Google Scholar] [CrossRef]
- Khastan, A.; Rodríguez-López, R.; Shahidi, M. New Metric-Based Derivatives for Fuzzy Functions and Some of Their Properties. Fuzzy Sets Syst. 2022, 436, 32–54. [Google Scholar] [CrossRef]
- Calderón, A.P.; Zygmund, A. Local Properties of Solutions of Elliptic Partial Differential Equations. In Selected Papers of Antoni Zygmund; Hulanicki, A., Wojtaszczyk, P., Żelazko, W., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 285–339. ISBN 978-94-010-6962-5. [Google Scholar]
- Gordon, L. Perron’s Integral for Derivatives in Lr. Stud. Math. 1967, 28, 295–316. [Google Scholar] [CrossRef]
- Musial, P.M.; Sagher, Y. The L r Henstock–Kurzweil Integral. Studia Math. 2004, 160, 53–81. [Google Scholar] [CrossRef]
- Wu, C.; Gong, Z. On Henstock Integral of Fuzzy-Number-Valued Functions (I). Fuzzy Sets Syst. 2001, 120, 523–532. [Google Scholar] [CrossRef]
- Shao, Y.; Li, Y.; Gong, Z. On Lr-Norm-Based Derivatives and Fuzzy Henstock-Kurzweil Integrals with an Application. Alex. Eng. J. 2023, 67, 361–373. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaș, A.; Saeed, T. Generalized Fractional Integral Inequalities for P-Convex Fuzzy Interval-Valued Mappings. Fractal Fract. 2022, 6, 324. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Saeed, T.; Cătaș, A.; Khan, M.B.; Alshehri, A.M. Some New Fractional Inequalities for Coordinated Convexity over Convex Set Pertaining to Fuzzy-Number-Valued Settings Governed by Fractional Integrals. Fractal Fract. 2023, 7, 856. [Google Scholar] [CrossRef]
- Ettoussi, R.; Melliani, S.; Chadli, L.S. Differential Equation with Intuitionistic Fuzzy Parameters. NIFS 2017, 23, 46–61. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wungreiphi, A.S.; Mazarbhuiya, F.A.; Shenify, M. On Extended Lr-Norm-Based Derivatives to Intuitionistic Fuzzy Sets. Mathematics 2024, 12, 139. https://doi.org/10.3390/math12010139
Wungreiphi AS, Mazarbhuiya FA, Shenify M. On Extended Lr-Norm-Based Derivatives to Intuitionistic Fuzzy Sets. Mathematics. 2024; 12(1):139. https://doi.org/10.3390/math12010139
Chicago/Turabian StyleWungreiphi, A. S., Fokrul Alom Mazarbhuiya, and Mohamed Shenify. 2024. "On Extended Lr-Norm-Based Derivatives to Intuitionistic Fuzzy Sets" Mathematics 12, no. 1: 139. https://doi.org/10.3390/math12010139
APA StyleWungreiphi, A. S., Mazarbhuiya, F. A., & Shenify, M. (2024). On Extended Lr-Norm-Based Derivatives to Intuitionistic Fuzzy Sets. Mathematics, 12(1), 139. https://doi.org/10.3390/math12010139