Locality-Constraint Discriminative Nonnegative Representation for Pattern Classification
Abstract
:1. Introduction
- We present the LDNR model, which extends the NRC framework by introducing a competitive representation term that quantifies both the discriminative information and locality constraint of samples, ultimately improving the performance of the classification model.
- We employ the ADMM to address the LDNR problem and detail an iterative solution procedure.
- Extensive comparative experiments are conducted on various pattern classification datasets, and the findings demonstrate the competitiveness of the LDNR.
2. Related Works
2.1. The NRC
2.2. The LDMR
3. Locality-Constraint Discriminative Nonnegative Representation Method
3.1. Motivation
3.2. Representation
3.3. Optimization
- Update variable with regular and :
- Update variable with regular and :
- Update variable :
Algorithm 1 Solve LDNR problem via the use of ADMM. |
Input: Query sample , training samples , , , , T;
Output: Representation vector . |
3.4. Convergence Analysis
3.5. Classification
Algorithm 2 LDNR-based classifier. |
Input: Query sample , training samples ;
Output: . |
3.6. Complexity Analysis
4. Experiments
4.1. Experimental Settings
4.2. Small-Scale Datasets
4.2.1. Experiments on AR Dataset
4.2.2. Experiments on USPS Dataset
4.3. Large-Scale Datasets with BOW-SIFT Feature
4.3.1. Bow-Sift Feature
4.3.2. Experiments on CUB-200-2011 Dataset
4.3.3. Experiments on Oxford 102 Flowers Dataset
4.4. Large-Scale Datasets with VGG16 Feature
4.4.1. Vgg16 Feature
4.4.2. Experiments on Aircraft Dataset
4.4.3. Experiments on Cars Dataset
4.5. Parameters Analysis
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, J.; Wen, W.; Liao, J. A Novel Concept-Cognitive Learning Method for Bird Song Classification. Mathematics 2023, 11, 4298. [Google Scholar] [CrossRef]
- Cheng, C.S.; Chen, P.W.; Hsieh, Y.C.; Wu, Y.T. Multivariate Process Control Chart Pattern Classification Using Multi-Channel Deep Convolutional Neural Networks. Mathematics 2023, 11, 3291. [Google Scholar] [CrossRef]
- Erjiang, E.; Yu, M.; Tian, X.; Tao, Y. Dynamic Model Selection Based on Demand Pattern Classification in Retail Sales Forecasting. Mathematics 2022, 10, 3179. [Google Scholar]
- Ma, Z.; Li, Z.; Zhan, Y. Deep Large-Margin Rank Loss for Multi-Label Image Classification. Mathematics 2022, 10, 4584. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Feng, X. Sparse representation or collaborative representation: Which helps face recognition? In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–12 November 2011; pp. 471–478. [Google Scholar]
- Timofte, R.; Van Gool, L. Weighted collaborative representation and classification of images. In Proceedings of the 21st International Conference on Pattern Recognition, Tsukuba, Japan, 11–15 November 2012; pp. 1606–1610. [Google Scholar]
- Lee, K.C.; Ho, J.; Kriegman, D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 684–698. [Google Scholar] [PubMed]
- Chi, Y.; Porikli, F. Classification and Boosting with Multiple Collaborative Representations. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhang, L.; Zuo, W.; Feng, X. A Probabilistic Collaborative Representation Based Approach for Pattern Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2950–2959. [Google Scholar]
- Xu, J.; An, W.; Zhang, L.; Zhang, D. Sparse, collaborative, or nonnegative representation: Which helps pattern classification? Pattern Recognit. 2019, 88, 679–688. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.; Wang, L.; Yi, Z.; Yuan, Y.; Ou, W.; Mao, Q. Weighted discriminative collaborative competitive representation for robust image classification. Neural Netw. 2020, 125, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, Y.P.; Tang, Y.Y.; Chen, H.; Zou, C.; Li, L. Generalized and Discriminative Collaborative Representation for Multiclass Classification. IEEE Trans. Cybern. 2022, 52, 2675–2686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, H.; Qian, Y.; Chen, C.; Zhou, X. Locality-Constrained Discriminative Matrix Regression for Robust Face Identification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, M.; Shao, L.; Zuo, W.; Meng, D.; Zhang, L.; Zhang, D. Scaled Simplex Representation for Subspace Clustering. IEEE Trans. Cybern. 2021, 51, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zeng, S.; Zhang, B. Kernel nonnegative representation-based classifier. Appl. Intell. 2022, 52, 2269–2289. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Martinez, A.; Benavente, R. The AR Face Database; CVC Technical Report 24; UAB: Barcelona, Spain, 1998. [Google Scholar]
- Hull, J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 550–554. [Google Scholar] [CrossRef]
- Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-UCSD Birds-200-2011 Dataset; Technical Report; California Institute of Technology: Pasadena, CA, USA, 2011. [Google Scholar]
- Nilsback, M.E.; Zisserman, A. Automated Flower Classification over a Large Number of Classes. In Proceedings of the Sixth Indian Conference on Computer Vision, Graphics & Image Processing, Bhubaneswar, India, 16–19 December 2008; pp. 722–729. [Google Scholar]
- Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.B.; Vedaldi, A. Fine-Grained Visual Classification of Aircraft. arXiv 2013, arXiv:1306.5151. [Google Scholar]
- Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3D Object Representations for Fine-Grained Categorization. In Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 1–8 December 2013; pp. 554–561. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Chai, Y.; Lempitsky, V.; Zisserman, A. Symbiotic Segmentation and Part Localization for Fine-Grained Categorization. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 321–328. [Google Scholar]
- Gosselin, P.H.; Murray, N.; Jégou, H.; Perronnin, F. Revisiting the Fisher vector for fine-grained classification. Pattern Recognit. Lett. 2014, 49, 92–98. [Google Scholar] [CrossRef]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-Grained Visual Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1449–1457. [Google Scholar]
- Vedaldi, A.; Fulkerson, B. Vlfeat: An Open and Portable Library of Computer Vision Algorithms. In Proceedings of the 18th ACM International Conference on Multimedia, Firenze, Italy, 25–29 October 2010; pp. 1469–1472. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Lazebnik, S.; Schmid, C.; Ponce, J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; pp. 2169–2178. [Google Scholar]
Notations | Definitions |
---|---|
C | number of classes |
n | number of training samples |
m | dimension of feature |
number of samples for the i-th class | |
representation vector | |
representation vector for the i-th class | |
given query sample | |
training sample matrix | |
training samples for the i-th class |
Dimensions | NSC [8] | SVM [25] | SRC [5] | CRC [6] | CROC [9] | ProCRC [10] | NRC [11] | DRC [14] | LDNR |
---|---|---|---|---|---|---|---|---|---|
54 | 70.7 | 81.6 | 82.1 | 80.3 | 82.0 | 81.4 | 85.2 | 80.6 | 85.8 |
120 | 75.5 | 89.3 | 88.3 | 90.0 | 90.8 | 90.7 | 91.3 | 90.1 | 91.4 |
300 | 76.1 | 91.6 | 90.3 | 93.7 | 93.7 | 93.7 | 93.3 | 93.8 | 94.3 |
Images | [8] | SVM [25] | SRC [5] | CRC [6] | CROC [9] | ProCRC [10] | NRC [11] | DRC [14] | LDNR |
---|---|---|---|---|---|---|---|---|---|
50 | 91.2 | 91.6 | 91.4 | 89.2 | 91.9 | 90.9 | 91.2 | 87.8 | 92.1 |
100 | 92.2 | 92.5 | 93.1 | 90.6 | 91.3 | 91.9 | 92.4 | 89.3 | 93.2 |
200 | 92.8 | 93.1 | 94.2 | 91.4 | 91.7 | 92.2 | 93.2 | 90.4 | 94.0 |
Dataset | Softmax | NSC [8] | SRC [5] | CRC [6] | CROC [9] | ProCRC [10] | NRC [11] | DRC [14] | LDNR |
---|---|---|---|---|---|---|---|---|---|
CUB-200-2011 | 8.2 | 8.4 | 7.7 | 9.4 | 9.1 | 9.9 | 9.9 | 7.8 | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Song, H.; Yin, H.; Zhang, Y.; Zhang, G. Locality-Constraint Discriminative Nonnegative Representation for Pattern Classification. Mathematics 2024, 12, 52. https://doi.org/10.3390/math12010052
Li Z, Song H, Yin H, Zhang Y, Zhang G. Locality-Constraint Discriminative Nonnegative Representation for Pattern Classification. Mathematics. 2024; 12(1):52. https://doi.org/10.3390/math12010052
Chicago/Turabian StyleLi, Ziqi, Hongcheng Song, Hefeng Yin, Yonghong Zhang, and Guangyong Zhang. 2024. "Locality-Constraint Discriminative Nonnegative Representation for Pattern Classification" Mathematics 12, no. 1: 52. https://doi.org/10.3390/math12010052
APA StyleLi, Z., Song, H., Yin, H., Zhang, Y., & Zhang, G. (2024). Locality-Constraint Discriminative Nonnegative Representation for Pattern Classification. Mathematics, 12(1), 52. https://doi.org/10.3390/math12010052