Solving the Matrix Exponential Function for Special Orthogonal Groups SO(n) up to n = 9 and the Exceptional Lie Group G2
Abstract
:1. Introduction
2. SO(3)
3. SO(4)
4. SO(5)
5. SO(6)
6. SO(7)
7. Exceptional Lie Group
8. SO(8)
9. SO(9)
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meißner, U.-G.; Rusetsky, A. Effective Field Theories; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Kaiser, N. Solving the matrix exponential function for the groups SU(3), SU(4) and Sp(2). Eur. Phys. J. 2022, A58, 170. [Google Scholar] [CrossRef]
- Robilotta, M.R. Chiral symmetry: An analytic SU(3) unitary matrix. Phys. Rev. D 2022, 106, 054027. [Google Scholar] [CrossRef]
- Straumann, N. Theoretical Physics; Springer: Berlin/Heidelberg, Germany, 2015; p. 64. [Google Scholar]
- Bröcker, T.; Tom Dieck, T. Representations of Compact Lie Groups; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Köcher, M. Linear Algebra and Analytical Geometry; Springer: Berlin/Heidelberg, Germany, 2003; pp. 3.4.6+8.3.9. [Google Scholar]
- van der Waerden, B.L. Algebra I; Springer: Berlin/Heidelberg, Germany, 1971; p. 64. [Google Scholar]
- Pepe, M.; Wiese, U.-J. Exceptional deconfinement in G2 gauge theories. Nucl. Phys. 2007, B768, 21. [Google Scholar] [CrossRef]
- Mass, A.; Wellegehausen, B.H. G2 gauge theories. arXiv 2012, arXiv:1210.7950. [Google Scholar]
- Lau, R.; Teper, M. SO(N) gauge theories in 2 + 1 dimensions: Glueball spectra and confinement. J. High Energy Phys. 2017, 2017, 22. [Google Scholar] [CrossRef]
- Chatterjee, S.; Jafarov, J. The 1/N expansion for SO(N) lattice gauge theory at strong coupling. arXiv 2016, arXiv:1604.04777. [Google Scholar]
- Monastyrsky, M. Topology of Gauge Fields and Condensed Matter; Plenum Press: New York, NY, USA, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, N. Solving the Matrix Exponential Function for Special Orthogonal Groups SO(n) up to n = 9 and the Exceptional Lie Group G2. Mathematics 2024, 12, 97. https://doi.org/10.3390/math12010097
Kaiser N. Solving the Matrix Exponential Function for Special Orthogonal Groups SO(n) up to n = 9 and the Exceptional Lie Group G2. Mathematics. 2024; 12(1):97. https://doi.org/10.3390/math12010097
Chicago/Turabian StyleKaiser, Norbert. 2024. "Solving the Matrix Exponential Function for Special Orthogonal Groups SO(n) up to n = 9 and the Exceptional Lie Group G2" Mathematics 12, no. 1: 97. https://doi.org/10.3390/math12010097
APA StyleKaiser, N. (2024). Solving the Matrix Exponential Function for Special Orthogonal Groups SO(n) up to n = 9 and the Exceptional Lie Group G2. Mathematics, 12(1), 97. https://doi.org/10.3390/math12010097