Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems
Abstract
:1. Introduction
- The proposed work designs the Gaussian mutation (GM) scheme, which acts on the current positions of slime mould. The proposed scheme can efficiently boost the local search capability of the optimal position of slime mould and avoid falling into the local optima;
- The greedy selection approach is used for selection purposes to make sure that the slime mould with better fitness enters the next generation, ensures the algorithm’s convergence speed, and preserves population diversity;
- The proposed strategy is verified by using 13 unconstrained and constrained optimization problems and CEC2022 benchmark functions. Furthermore, the comparison of the SMA-GM with the original SMA and with some well-established optimization algorithms has been shown, and the constrained engineering problem is solved through SMA-GM;
- The experimental results, along with the Wilcoxon rank sum test as a statistical test, demonstrate the advantages and the superior performance of the proposed SMA-GM algorithm. The findings prove that the GM approach effectively improves the classical SMA’s search efficiency.
2. Related Work
3. Preliminary
3.1. Slime Mould Algorithm
Algorithm 1: Pseudocode of SMA |
Begin
|
Calculate the fitness of all slime mould |
Calculate the W by Equation (4) |
For |
Equation (6) |
End for |
|
End |
3.2. Gaussian Mutation
4. Proposed Methodology
Algorithm 2: Pseudocode of the SMA-GM algorithm |
Begin
|
Calculate the W by Equation (4) and a by Equation (11) |
For |
Equation (6) |
Update the position of the slime mould and the optimal position as |
Gaussian mutation mechanism |
by Equation (12) |
Update optimal solution to |
Replace the parent slime with the generated mutant slimes if its fitness is found to be better. |
End If |
End For |
|
End |
5. Experimental Setup and Results
5.1. Unconstrained Benchmark Functions
5.1.1. Exploration and Exploitation Analysis
5.1.2. Convergence and Scalability Analysis
5.1.3. Diversity Analysis
5.2. Constrained Handling Technique
5.3. Results and Discussion on Constrained Functions
5.4. Results and Discussions on CEC2022 Benchmark Functions
5.5. Wilcoxon Rank Sum Test
6. Constrained Engineering Design Problem
6.1. Optimal Design of an Industrial Refrigeration System
- Minimize
6.2. Optimal Operation of an Alkylation Unit
- Maximize
6.3. Welded Beam Design
- Consider
6.4. Tension/Compression Spring Design Problem
- Consider
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 39–43. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Mirrashid, M.; Naderpour, H. Transit search: An optimization algorithm based on exoplanet exploration. Results Control Optim. 2022, 7, 100127. [Google Scholar] [CrossRef]
- Schlüter, M.; Gerdts, M. The oracle penalty method. J. Glob. Optim. 2010, 47, 293–325. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime Mould Algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Yuan, L.; Ji, J.; Liu, X.; Liu, T.; Chen, H.; Chen, D. An Improved Elite Slime Mould Algorithm for Engineering Design. CMES-Comput. Model. Eng. Sci. 2023, 137, 415–454. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Abraham, A. An entropy minimization based multilevel colour thresholding technique for analysis of breast thermograms using equilibrium slime mould algorithm. Appl. Soft Comput. 2021, 113, 107955. [Google Scholar] [CrossRef]
- Houssein, E.H.; Mahdy, M.A.; Blondin, M.J.; Shebl, D.; Mohamed, W.M. Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 2021, 174, 114689. [Google Scholar] [CrossRef]
- Yu, C.; Heidari, A.A.; Xue, X.; Zhang, L.; Chen, H.; Chen, W. Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst. Appl. 2021, 181, 115082. [Google Scholar] [CrossRef]
- Chauhan, S.; Vashishtha, G.; Kumar, A. A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem. J. Supercomput. 2022, 78, 6234–6274. [Google Scholar] [CrossRef]
- Juan, Z.; Zheng-Ming, G.; Wu, S. The improved slime mould algorithm with Levy flight. J. Phys. Conf. Ser. 2020, 1617, 012033. [Google Scholar]
- Abualigah, L.; Diabat, A.; Elaziz, M.A. Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 1163–1202. [Google Scholar] [CrossRef]
- Örnek, B.N.; Aydemir, S.B.; Düzenli, T.; Özak, B. A novel version of slime mould algorithm for global optimization and realworld engineering problems: Enhanced slime mould algorithm. Math. Comput. Simul. 2022, 198, 253–288. [Google Scholar] [CrossRef]
- Yu, C.; Cai, Z.; Ye, X.; Wang, M.; Zhao, X.; Liang, G.; Li, C. Quantum-like mutation-induced dragonfly-inspired optimization approach. Math. Comput. Simul. 2020, 178, 259–289. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Yu, C.; Heidari, A.A.; Li, S.; Chen, H.; Li, C. Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Syst. Appl. 2020, 141, 112976. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Luo, J.; Xu, Y.; Zhang, X. An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine. Appl. Soft Comput. 2020, 86, 105884. [Google Scholar] [CrossRef]
- Luo, J.; Chen, H.; Xu, Y.; Huang, H.; Zhao, X. An improved grasshopper optimization algorithm with application to financial stress prediction. Appl. Math. Model. 2018, 64, 654–668. [Google Scholar] [CrossRef]
- Wu, S.; Heidari, A.A.; Zhang, S.; Kuang, F.; Chen, H. Gaussian bare-bone slime mould algorithm: Performance optimization and case studies on truss structures. Artif. Intell. Rev. 2023, 56, 9051–9087. [Google Scholar] [CrossRef]
- Bäck, T.; Schwefel, H.P. An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1993, 1, 1–23. [Google Scholar] [CrossRef]
- Ma, C.; Huang, H.; Fan, Q.; Wei, J.; Du, Y.; Gao, W. Grey wolf optimizer based on Aquila exploration method. Expert Syst. Appl. 2022, 205, 117629. [Google Scholar] [CrossRef]
- Preeti; Kaur, R.; Singh, D. Dimension learning based chimp optimizer for energy efficient wireless sensor networks. Sci. Rep. 2022, 12, 14968. [Google Scholar] [CrossRef] [PubMed]
- Qtaish, A.; Albashish, D.; Braik, M.; Alshammari, M.T.; Alreshidi, A.; Alreshidi, E.J. Memory-based Sand Cat Swarm Optimization for Feature Selection in Medical Diagnosis. Electronics 2023, 12, 2042. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, C.; Li, S.; Guo, X.; Yang, C. Manta ray foraging and Gaussian mutation-based elephant herding optimization for global optimization. Eng. Comput. 2023, 39, 1085–1125. [Google Scholar] [CrossRef]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Runarsson, T.P.; Yao, X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 2000, 4, 284–294. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Sallam, K.M.; Chakrabortty, R.K. Light spectrum optimizer: A novel physics-inspired metaheuristic optimization algorithm. Mathematics 2022, 10, 3466. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Azizi, M.; Talatahari, S.; Giaralis, A. Optimization of engineering design problems using atomic orbital search algorithm. IEEE Access 2021, 9, 102497–102519. [Google Scholar] [CrossRef]
- Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 2020, 56, 100693. [Google Scholar] [CrossRef]
Algorithm | Parameters |
---|---|
Common | Population size = 30 Maximum iterations = 1000 Number of independent runs = 30 |
SMA | z = 0.03 |
GWO | a = [2, 0] |
MFO | b = 1, t = [−1, 1], a ∈ [−1, 2] |
WOA | a1 = [2, 0]; a2 = [−2, −1]; b = 1 |
AGWO | B = 0.8, a = 2(nonlinear reduction from 2 to 0) |
IChoA | m = chaotic vector, C3 = 1, C4 = 2, l = 2.5 (nonlinear reduction from 2.5 to 0) |
Function | Dim | Range | |
---|---|---|---|
Func. | Dim | Metric | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|---|---|
F1 | 30 | Mean | 0.0000E+00 | 0.0000E+00 | 1.1420e-58 | 3.6667e+03 | 1.2910E-150 | 1.3156E-287 | 1.6126E-21 |
Std | 0.0000E+00 | 0.0000E+00 | 4.6065E-58 | 5.5605E+03 | 6.3122E-150 | 0.0000E+00 | 4.1464E-21 | ||
60 | Mean | 0.0000E+00 | 0.0000E+00 | 2.7410E-39 | 9.1879E+03 | 1.6816E-150 | 6.1214E-230 | 1.8770E-10 | |
Std | 0.0000E+00 | 0.0000E+00 | 4.2922E-39 | 1.0502E+04 | 4.8997E-150 | 0.0000E+00 | 6.4058E-10 | ||
200 | Mean | 0.0000E+00 | 1.9669E-305 | 3.9434E-20 | 1.9153E+05 | 7.1770E-147 | 5.3730E-69 | 8.7000E-02 | |
Std | 0.0000E+00 | 0.0000E+00 | 3.6218E-20 | 1.8886E+04 | 2.8695E-146 | 2.9429E-68 | 1.1720E-01 | ||
F2 | 30 | Mean | 7.6334E-200 | 2.6217E-191 | 8.8027E-35 | 3.2667E+01 | 7.6231E-100 | 2.9271E-163 | 1.3916E-14 |
Std | 0.0000E+00 | 0.0000E+00 | 7.7522E-35 | 2.0160E+01 | 4.1689E-99 | 0.0000E+00 | 2.1687E-14 | ||
60 | Mean | 1.4896E-194 | 1.4056E-174 | 1.2233E-23 | 8.6110E+01 | 4.2500E-103 | 6.7393E-128 | 2.0968E-08 | |
Std | 0.0000E+00 | 0.0000E+00 | 6.6131E-24 | 4.0701E+01 | 1.8355E-102 | 2.5883E-127 | 2.3717E-08 | ||
200 | Mean | 8.4895E-177 | 2.7465E-158 | 1.4618E-12 | 5.6387E+02 | 8.7032E-102 | 2.2380E-47 | 5.7000E-03 | |
Std | 0.0000E+00 | 1.5043E-157 | 4.2765E-13 | 6.2588E+01 | 3.0302E-101 | 1.2258E-46 | 3.3000E-03 | ||
F3 | 30 | Mean | 0.0000E+00 | 0.0000E+00 | 6.0647E-15 | 1.7087E+04 | 2.2457E+04 | 1.6522E-167 | 2.7398E+00 |
Std | 0.0000E+00 | 0.0000E+00 | 1.8196E-14 | 1.0410E+04 | 1.1010E+04 | 0.0000E+00 | 5.1045E+00 | ||
60 | Mean | 0.0000E+00 | 0.0000E+00 | 6.5304E-04 | 7.5837E+04 | 2.2594E+05 | 4.8340E-123 | 8.2193E+03 | |
Std | 0.0000E+00 | 0.0000E+00 | 1.6000E-03 | 3.1531E+04 | 4.4994E+04 | 2.6440E-122 | 5.9416E+03 | ||
200 | Mean | 0.0000E+00 | 6.3250e-320 | 3.4423E+03 | 6.9143E+05 | 4.2199E+06 | 1.3011E-32 | 3.4075E+05 | |
Std | 0.0000E+00 | 0.0000E+00 | 2.8117E+03 | 1.5015E+05 | 1.0616E+06 | 7.1244E-32 | 1.1396E+05 | ||
F4 | 30 | Mean | 4.6331E-210 | 4.0835E-198 | 1.3767E-14 | 6.5007E+01 | 3.8088E+01 | 4.6986E-125 | 2.7000E-03 |
Std | 0.0000E+00 | 0.0000E+00 | 1.3959E-14 | 1.1037E+01 | 2.8905E+01 | 1.9603E-124 | 5.0000E-03 | ||
60 | Mean | 6.1647E-202 | 2.7375E-183 | 8.5570E-08 | 8.6026E+01 | 6.3206E+01 | 3.3964E-111 | 3.9345E+00 | |
Std | 0.0000E+00 | 0.0000E+00 | 9.8672E-08 | 3.7970E+00 | 2.7820E+01 | 1.4692E-110 | 3.6291E+00 | ||
200 | Mean | 9.1750E-189 | 1.8162E-142 | 8.8706E+00 | 9.7009E+01 | 7.6502E+01 | 2.7230E-98 | 5.3073E+00 | |
Std | 0.0000E+00 | 9.9477E-142 | 4.6248E+00 | 9.2640E-01 | 2.6037E+01 | 4.1843E-98 | 1.0233E+01 | ||
F5 | 30 | Mean | 2.5590E-01 | 3.7879E+00 | 2.6922E+01 | 5.3298E+06 | 2.7265E+01 | 2.7589E+01 | 2.5520E+01 |
Std | 2.3510E-01 | 9.3190E+00 | 6.6630E-01 | 2.0255E+07 | 6.0040E-01 | 7.3900E-01 | 9.8440E-01 | ||
60 | Mean | 2.2271E+00 | 5.8131E+00 | 5.7298E+01 | 1.1389E+07 | 5.7782E+01 | 5.7853E+01 | 5.7956E+01 | |
Std | 1.9501E+00 | 1.4323E+01 | 9.2360E-01 | 2.6454E+07 | 6.0090E-01 | 6.2410E-01 | 9.9190E-01 | ||
200 | Mean | 1.3377E+01 | 4.1798E+01 | 1.9763E+02 | 5.9481E+08 | 1.9743E+02 | 1.9852E+02 | 5.1980E+02 | |
Std | 1.5351E+01 | 5.3705E+01 | 6.9930E-01 | 1.0827E+08 | 3.2160E-01 | 2.9500E-01 | 9.1577E+02 | ||
F6 | 30 | Mean | 9.7570E-04 | 9.3449E-04 | 7.0830E-01 | 1.6700E+03 | 5.9300E-02 | 3.0459E+00 | 7.5000E-03 |
Std | 3.7960E-04 | 5.0173E-04 | 4.0930E-01 | 3.7984E+03 | 6.8300E-02 | 4.4440E-01 | 6.5000E-03 | ||
60 | Mean | 2.0600E-02 | 2.7500E-02 | 3.5305E+00 | 1.0899E+04 | 6.4480E-01 | 9.1116E+00 | 3.3529E+00 | |
Std | 1.6900E-02 | 1.5600E-02 | 6.9670E-01 | 9.7755E+03 | 3.1760E-01 | 4.0690E-01 | 6.9030E-01 | ||
200 | Mean | 9.0740E-01 | 2.1431E+00 | 2.7871E+01 | 1.8316E+05 | 6.8375E+00 | 4.3473E+01 | 3.7212E+01 | |
Std | 1.0581E+00 | 2.5638E+00 | 1.0950E+00 | 2.4172E+04 | 1.8806E+00 | 4.7210E-01 | 2.3697E+00 | ||
F7 | 30 | Mean | 8.7485E-05 | 9.6302E-05 | 8.7230E-04 | 2.2649E+00 | 1.6000E-03 | 1.1749E-04 | 1.6000E-03 |
Std | 7.1310E-05 | 8.6358E-05 | 3.6967E-04 | 4.1453E+00 | 1.4000E-03 | 9.1413E-05 | 9.8050E-04 | ||
60 | Mean | 8.8723E-05 | 1.3046E-04 | 1.7000E-03 | 4.4999E+01 | 2.8000E-03 | 1.7075E-04 | 5.0000E-03 | |
Std | 8.8346E-05 | 1.0644E-04 | 6.1596E-04 | 4.5085E+01 | 3.0000E-03 | 1.3568E-04 | 3.2000E-03 | ||
200 | Mean | 1.5401E-04 | 2.3170E-04 | 4.4000E-03 | 1.9388E+03 | 2.1000E-03 | 7.4743E-04 | 7.6600E-02 | |
Std | 1.4408E-04 | 1.6692E-04 | 1.5000E-03 | 4.7091E+02 | 2.6000E-03 | 5.3142E-04 | 7.5000E-02 | ||
F8 | 30 | Mean | −1.2569E+04 | −1.2569E+04 | −6.0789E+03 | −8.6141E+03 | −1.1297E+04 | −3.3244E+03 | −7.7426E+03 |
Std | 6.3400E−02 | 1.0400E-01 | 8.0426E+02 | 1.1705E+03 | 1.5114E+03 | 3.8411E+02 | 9.0124E+02 | ||
60 | Mean | −2.5138E+04 | −2.5138E+04 | −1.0625E+04 | −1.5298E+04 | −2.2263E+04 | −4.4142E+03 | −1.0631E+04 | |
Std | 1.1267E+00 | 1.0520E+00 | 1.0626E+03 | 1.4798E+03 | 3.2644E+03 | 7.2947E+02 | 1.7171E+03 | ||
200 | Mean | −8.3789E+04 | −8.3786E+04 | −2.9174E+04 | −4.0031E+04 | −7.6030E+04 | −8.1330E+03 | −2.5357E+04 | |
Std | 1.0139E+01 | 1.8694E+01 | 4.6872E+03 | 3.7644E+03 | 9.5686E+03 | 9.2865E+02 | 2.6464E+03 | ||
F9 | 30 | Mean | 0.0000E+00 | 0.0000E+00 | 2.4930E-01 | 1.6683E+02 | 0.0000E+00 | 0.0000E+00 | 1.9671E+01 |
Std | 0.0000E+00 | 0.0000E+00 | 7.7990E-01 | 4.2543E+01 | 0.0000E+00 | 0.0000E+00 | 1.7795E+01 | ||
60 | Mean | 0.0000E+00 | 0.0000E+00 | 1.1348E+00 | 3.7428E+02 | 0.0000E+00 | 0.0000E+00 | 2.3614E+01 | |
Std | 0.0000E+00 | 0.0000E+00 | 2.5719E+00 | 7.2331E+01 | 0.0000E+00 | 0.0000E+00 | 2.8944E+01 | ||
200 | Mean | 0.0000E+00 | 0.0000E+00 | 1.5482E+00 | 1.9325E+03 | 1.5158E-14 | 0.0000E+00 | 4.1362E+01 | |
Std | 0.0000E+00 | 0.0000E+00 | 3.4541E+00 | 1.0024E+02 | 8.3025E-14 | 0.0000E+00 | 3.1214E+01 | ||
F10 | 30 | Mean | 8.8818E-16 | 8.8818E-16 | 1.5573E-14 | 1.4131E+01 | 3.7303E-15 | 4.6777E-15 | 2.4759E-12 |
Std | 0.0000E+00 | 0.0000E+00 | 2.5945E-15 | 8.0236E+00 | 2.8605E-15 | 9.0135E-16 | 7.7754E-12 | ||
60 | Mean | 8.8818E-16 | 8.8818E-16 | 4.2218E-14 | 1.9587E+01 | 3.7303E-15 | 6.3357E-15 | 2.2566E-06 | |
Std | 0.0000E+00 | 0.0000E+00 | 3.0208E-15 | 4.8200E-01 | 2.1681E-15 | 1.8027E-15 | 3.2071E-06 | ||
200 | Mean | 8.8818E-16 | 8.8818E-16 | 1.2428E-11 | 1.9942E+01 | 3.7303E-15 | 7.6383E-15 | 1.9300E-02 | |
Std | 0.0000E+00 | 0.0000E+00 | 5.1053E-12 | 1.6200E-02 | 2.5380E-15 | 1.0840E-15 | 1.3000E-02 | ||
F11 | 30 | Mean | 0.0000E+00 | 0.0000E+00 | 1.8000E-03 | 1.8086E+01 | 5.7000E-03 | 0.0000E+00 | 3.2000E-03 |
Std | 0.0000E+00 | 0.0000E+00 | 6.4000E-03 | 4.3768E+01 | 3.1100E-02 | 0.0000E+00 | 5.6000E-03 | ||
60 | Mean | 0.0000E+00 | 0.0000E+00 | 2.6000E-03 | 1.0863E+02 | 6.2000E-03 | 0.0000E+00 | 2.7000E-03 | |
Std | 0.0000E+00 | 0.0000E+00 | 6.1000E-03 | 1.0392E+02 | 2.3600E-02 | 0.0000E+00 | 7.2000E-03 | ||
200 | Mean | 0.0000E+00 | 0.0000E+00 | 2.9000E-03 | 1.6379E+03 | 0.0000E+00 | 0.0000E+00 | 4.2600E-02 | |
Std | 0.0000E+00 | 0.0000E+00 | 9.3000E-03 | 2.3127E+02 | 0.0000E+00 | 0.0000E+00 | 4.7800E-02 | ||
F12 | 30 | Mean | 8.3411E-04 | 1.3000E-03 | 3.5500E-02 | 9.0740E-01 | 4.3200E-02 | 2.2990E-01 | 8.9249E-04 |
Std | 8.5665E-04 | 1.6000E-03 | 1.9600E-02 | 1.0168E+00 | 2.0430E-01 | 6.2200E-02 | 1.4000E-03 | ||
60 | Mean | 2.1000E-03 | 2.6000E-03 | 1.2490E-01 | 2.5636E+07 | 1.1500E-02 | 5.1330E-01 | 1.9970E-01 | |
Std | 3.0000E-03 | 5.0000E-03 | 6.8700E-02 | 7.8110E+07 | 6.2000E-03 | 6.2300E-02 | 6.4100E-02 | ||
200 | Mean | 1.6000E-03 | 3.1000E-03 | 4.9390E-01 | 1.1459E+09 | 2.3900E-02 | 9.1770E-01 | 1.0377E+00 | |
Std | 3.2000E-03 | 6.8000E-03 | 3.8100E-02 | 3.5311E+08 | 9.7000E-03 | 2.3400E-02 | 1.5627E+00 | ||
F13 | 30 | Mean | 6.2781E-04 | 1.4000E-03 | 6.1850E-01 | 4.8580E-01 | 2.0330E-01 | 2.1164E+00 | 1.2368E+00 |
Std | 4.5182E-04 | 2.8000E-03 | 2.5900E-01 | 1.1769E+00 | 1.3870E-01 | 1.5080E-01 | 4.2830E-01 | ||
60 | Mean | 6.5000E-03 | 9.5000E-03 | 2.8045E+00 | 7.7544E+07 | 8.3050E-01 | 5.1814E+00 | 4.7267E+00 | |
Std | 4.7000E-03 | 1.5400E-02 | 4.1280E-01 | 1.9330E+08 | 3.8300E-01 | 1.3920E-01 | 3.0040E-01 | ||
200 | Mean | 7.9700E-02 | 1.7200E-01 | 1.5998E+01 | 2.4956E+09 | 3.9585E+00 | 1.9365E+01 | 3.0459E+01 | |
Std | 1.1340E-01 | 2.5920E-01 | 4.6650E-01 | 5.9820E+08 | 1.2726E+00 | 1.1070E-01 | 2.2853E+01 |
Func. | Objective Function | Constraints | No. of Variables | Global Best |
---|---|---|---|---|
G1 | 13 | −15 | ||
G2 | 20 | −0.803619 | ||
G3 | 20 | −1 | ||
G4 | 5 | −30 665.539 | ||
G5 | 4 | 5126.4981 | ||
G6 | 2 | −6961.81388 | ||
G7 | 10 | 24.3062091 | ||
G8 | 2 | 0.095825 | ||
G9 | 7 | 680.6300573 | ||
G10 | 8 | 7049.3307 | ||
G11 | 2 | 0.75 | ||
G12 | 3 | −1 | ||
G13 | 5 | 0.0539498 |
Func. | Metric | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|---|
G1 | Mean | −1.4834E+01 | −1.3171E+01 | −1.0193E+01 | −1.1600E+01 | −5.9204E+00 | −7.8403E+00 | −1.2915E+01 |
Std | 5.9100E−02 | 1.7645E+00 | 2.3500E+00 | 2.0443E+00 | 3.2965E+00 | 1.7856E+00 | 1.5116E+00 | |
Best | −1.5000E+01 | −1.5000E+01 | −1.4965E+01 | −1.5000E+01 | −1.4927E+01 | −1.1854E+01 | −1.4954E+01 | |
Worst | −1.4692E+01 | −9.0061E+00 | −5.9998E+00 | −9.0000E+00 | −2.0000E+00 | −5.0000E+00 | 1.5116E+00 | |
G2 | Mean | −5.3780E-01 | −4.4930E-01 | −7.0890E-01 | −4.5880E-01 | −4.2790E-01 | −5.6220E-01 | −7.7500E-01 |
Std | 1.1250E-01 | 2.1100E-02 | 5.7100E-02 | 1.2080E-01 | 1.1570E-01 | 5.3500E-02 | 1.4300E-02 | |
Best | −7.7790E-01 | −5.0900E-01 | −7.9150E-01 | −6.4820E-01 | −6.1450E-01 | −7.1270E-01 | −7.9160E-01 | |
Worst | −3.0110E-01 | −4.3220E-01 | −5.8000E-01 | −2.2600E-01 | −2.5680E-01 | 5.3500E−02 | −7.3300E−01 | |
G3 | Mean | −1.0000E+00 | −9.8190E-01 | −8.9930E-01 | −9.8070E-01 | −9.8400E-02 | −9.6580E-01 | −9.9360E-01 |
Std | 2.5096E-08 | 9.9000E-03 | 4.0650E-02 | 1.0600E-02 | 1.3470E-01 | 1.2300E-02 | 1.9000E-03 | |
Best | −1.0000E+00 | −9.9100E-01 | −9.9700E-01 | −9.9610E-01 | −5.7960E-01 | −9.8630E-01 | −9.9630E-01 | |
Worst | −1.0000E+00 | −9.5580E-01 | 0.0000E+00 | −9.5730E-01 | 0.0000E+00 | −9.3630E-01 | −9.8970E-01 | |
G4 | Mean | −3.0666E+04 | −3.0666E+04 | −3.0660E+04 | −3.0662E+04 | −2.9825E+04 | −3.0652E+04 | −3.0664E+04 |
Std | 1.7000E-03 | 4.9000E-03 | 3.1921E+00 | 2.0642E+01 | 2.5829E+02 | 7.8038E+00 | 1.1844E+00 | |
Best | −3.0666E+04 | −3.0666E+04 | −3.0665E+04 | −3.0666E+04 | −3.0153E+04 | −3.0663E+04 | −3.0665E+04 | |
Worst | −3.0665E+04 | 4.9000E-03 | −3.0654E+04 | −3.0552E+04 | −2.8958E+04 | −3.0628E+04 | 1.1844E+00 | |
G5 | Mean | 5.2398E+03 | 5.3587E+03 | 5.2782E+03 | 5.4571E+03 | 5.7436E+03 | 5.2632E+03 | 5.1614E+03 |
Std | 9.6915E+01 | 2.3378E+02 | 1.0116E+02 | 2.8011E+02 | 4.1954E+02 | 4.8620E+01 | 1.1303E+01 | |
Best | 5.1265E+03 | 5.1269E+03 | 5.1289E+03 | 5.1280E+03 | 5.1701E+03 | 5.1565E+03 | 5.1401E+03 | |
Worst | 5.4664E+03 | 5.9295E+03 | 5.5960E+03 | 6.0631E+03 | 6.6413E+03 | 5.3114E+03 | 5.1869E+03 | |
G6 | Mean | −6.9618E+03 | −6.9616E+03 | −6.9179E+03 | 1.5639E+19 | 2.5558E+19 | 1.4141E+18 | −6.9588E+03 |
Std | 2.3600E-02 | 1.9630E-01 | 2.3803E+01 | 4.5209E+19 | 3.9435E+19 | 7.7453E+18 | 2.2065E+00 | |
Best | −6.9618E+03 | −6.9618E+03 | −6.9734E+03 | −6.9562E+03 | −6.9496E+03 | −6.9504E+03 | −6.9607E+03 | |
Worst | −6.9617E+03 | −6.9610E+03 | −6.8502E+03 | 2.3980E+20 | 2.0342E+20 | 4.2423E+19 | −6.9498E+03 | |
G7 | Mean | 2.5207E+01 | 2.6543E+01 | 3.7482E+01 | 1.5192E+02 | 1.3137E+02 | 3.2642E+01 | 2.6184E+01 |
Std | 4.0710E-01 | 1.8443E+00 | 2.4819E+01 | 1.8031E+02 | 1.6180E+02 | 3.9615E+02 | 4.6660E-01 | |
Best | 2.4380E+01 | 2.4390E+01 | 2.7835E+01 | 2.5275E+01 | 3.4038E+01 | 3.2642E+01 | 2.5374E+01 | |
Worst | 2.7376E+01 | 3.1575E+01 | 1.3469E+02 | 6.0889E+02 | 7.7964E+02 | 9.6900E+02 | 2.7474E+01 | |
G8 | Mean | −8.4600E-02 | 1.2524E+20 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 |
Std | 2.5600E-02 | 3.3375E+20 | 3.7948E-07 | 1.8937E-17 | 2.6006E-07 | 2.2121E-06 | 1.6094E-17 | |
Best | −9.5400E-02 | −2.1700E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | |
Worst | −2.5500E-02 | 1.6954E+21 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | −9.5800E-02 | |
G9 | Mean | 6.8080E+02 | 6.8186E+02 | 6.8640E+02 | 6.8133E+02 | 7.2166E+02 | 7.1236E+02 | 6.8088E+02 |
Std | 1.0620E-01 | 1.2547E+00 | 5.8186E+00 | 7.1000E-01 | 2.9694E+01 | 4.8318E+01 | 7.5500E-02 | |
Best | 6.8065E+02 | 6.8077E+02 | 6.8100E+02 | 6.8068E+02 | 6.8838E+02 | 6.8436E+02 | 6.8076E+02 | |
Worst | 6.8112E+02 | 6.8669E+02 | 7.0999E+02 | 6.8335E+02 | 8.2469E+02 | 9.0186E+02 | 6.8113E+02 | |
G10 | Mean | 7.8444E+03 | 8.2845E+03 | 8.0568E+03 | 9.0121E+17 | 1.0923E+19 | 8.4891E+03 | 8.1973E+03 |
Std | 3.4986E+02 | 4.5156E+02 | 4.0786E+02 | 2.1431E+18 | 2.6706E+19 | 3.5825E+02 | 3.9594E+02 | |
Best | 7.0652E+03 | 7.2193E+03 | 7.2777E+03 | 7.0684E+03 | 9.6935E+03 | 7.7745E+03 | 7.6514E+03 | |
Worst | 8.5464E+03 | 9.2693E+03 | 8.9547E+03 | 8.3416E+18 | 1.2393E+20 | 9.0926E+03 | 8.6863E+03 | |
G11 | Mean | 7.5000E-01 | 7.5000E-01 | 7.5000E-01 | 7.5070E-01 | 7.5050E-01 | 7.5010E-01 | 7.5000E-01 |
Std | 1.7737E-05 | 5.9117E-05 | 1.5477E-05 | 6.7194E-04 | 1.0000E-03 | 8.0545E-05 | 1.0865E-05 | |
Best | 7.5000E-01 | 7.5000E-01 | 7.5000E-01 | 7.5000E-01 | 7.5000E-01 | 7.5000E-01 | 7.5000E-01 | |
Worst | 7.5010E-01 | 7.5020E-01 | 7.5010E-01 | 7.5270E-01 | 7.5460E-01 | 7.5030E-01 | 7.5010E-01 | |
G12 | Mean | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 |
Std | 0.0000E+00 | 1.7076E-09 | 2.0459E-08 | 0.0000E+00 | 4.9676E-08 | 1.6854E-07 | 0.0000E+00 | |
Best | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | |
Worst | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | −1.0000E+00 | |
G13 | Mean | 9.0910E-01 | 1.1229E+00 | 1.5451E+00 | 9.7310E-01 | 7.5399E+15 | 3.4936E+15 | 2.9115E+16 |
Std | 3.5220E-01 | 6.0810E-01 | 2.4258E+00 | 4.2510E-01 | 1.7540E+16 | 5.2593E+16 | 4.6794E+16 | |
Best | 7.7400E-02 | 5.9700E-01 | 2.5760E-01 | 3.0590E-01 | 9.3930E-01 | 7.2668E+13 | 2.9424E+13 | |
Worst | 1.9110E+00 | 3.5430E+00 | 1.0792E+01 | 2.9538E+00 | 6.4159E+16 | 5.2593E+16 | 2.1279E+17 |
No. | Type | Functions | Global Optima |
---|---|---|---|
C1 | Unimodal function | Shifted and Full Rotated Zakharov Function | 300 |
C2 | Basic functions | Shifted and Full Rotated Rosenbrock’s Function | 400 |
C3 | Shifted and Full Rotated Expanded Schaffer’s f6 Function | 600 | |
C4 | Shifted and Full Rotated Non-continuous Rastrigin’s Function | 800 | |
C5 | Shifted and Rotated Levy Function | 900 | |
C6 | Hybrid functions | Hybrid Function 1 (N = 3) | 1800 |
C7 | Hybrid Function 2 (N = 6) | 2000 | |
C8 | Hybrid function 3 (N = 5) | 2200 | |
C9 | Composition Functions | Composition Function 1 (N = 5) | 2300 |
C10 | Composition Function 2 (N = 4) | 2400 | |
C11 | Composition Function 3 (N = 5) | 2600 | |
C12 | Composition Function 4 (N = 6) | 2700 | |
Search range: [−100, 100] D |
Function | Measure | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|---|
C1 | Mean | 3.0075E+02 | 3.0606E+02 | 1.5556E+04 | 3.7841E+04 | 2.6617E+04 | 1.8679E+04 | 6.3721E+03 |
Std | 1.0474E+00 | 1.1659E+01 | 5.3757E+03 | 2.2427E+04 | 8.5331E+03 | 4.6890E+03 | 2.1821E+03 | |
C2 | Mean | 4.5264E+02 | 4.6056E+02 | 5.0443E+02 | 5.5281E+02 | 5.5932E+02 | 6.7119E+02 | 4.5511E+02 |
Std | 2.6936E+01 | 3.5103E+01 | 4.6753E+01 | 1.3298E+02 | 6.3667E+01 | 1.0402E+02 | 1.1528E+01 | |
C3 | Mean | 6.0185E+02 | 6.0336E+02 | 6.2079E+02 | 6.0498E+02 | 6.6742E+02 | 6.4909E+02 | 6.0198E+02 |
Std | 1.2369E+00 | 3.2547E+00 | 1.0238E+01 | 2.8857E+00 | 1.2927E+01 | 8.6198E+00 | 3.1905E+00 | |
C4 | Mean | 8.6863E+02 | 8.7890E+02 | 8.5632E+02 | 8.9231E+02 | 9.2433E+02 | 8.9681E+02 | 9.1443E+02 |
Std | 1.7006E+01 | 2.6378E+01 | 2.0991E+01 | 2.6189E+01 | 2.9938E+01 | 1.6206E+01 | 2.5496E+01 | |
C5 | Mean | 1.4174E+03 | 1.6059E+03 | 1.1853E+03 | 2.8859E+03 | 3.7702E+03 | 2.2381E+03 | 2.1262E+03 |
Std | 4.2994E+02 | 5.2857E+02 | 2.8897E+02 | 1.0928E+03 | 1.2968E+03 | 5.3361E+02 | 6.6054E+02 | |
C6 | Mean | 1.6826E+04 | 1.6887E+04 | 1.0582E+06 | 5.3890E+06 | 1.9337E+06 | 9.3540E+06 | 2.2690E+06 |
Std | 8.1372E+03 | 7.7127E+03 | 2.7053E+06 | 1.1969E+07 | 3.8576E+06 | 1.1970E+07 | 5.6906E+06 | |
C7 | Mean | 2.0754E+03 | 2.0852E+03 | 2.0937E+03 | 2.1307E+03 | 2.2072E+03 | 2.1544E+03 | 2.0962E+03 |
Std | 3.0956E+01 | 4.5286E+01 | 4.1485E+01 | 5.5167E+01 | 7.1031E+01 | 4.5667E+01 | 2.8800E+01 | |
C8 | Mean | 2.2442E+03 | 2.2840E+03 | 2.2783E+03 | 2.2724E+03 | 2.3070E+03 | 2.2744E+03 | 2.2603E+03 |
Std | 4.2107E+01 | 7.4723E+01 | 5.9580E+01 | 6.1209E+01 | 8.4745E+01 | 6.8001E+01 | 3.8452E+01 | |
C9 | Mean | 2.4810E+03 | 2.4810E+03 | 2.5107E+03 | 2.5126E+03 | 2.5661E+03 | 2.5804E+03 | 2.4814E+03 |
Std | 1.9860E-01 | 2.1650E-01 | 2.5276E+01 | 3.3465E+01 | 4.9679E+01 | 3.0063E+01 | 2.2150E-01 | |
C10 | Mean | 2.9457E+03 | 2.9854E+03 | 3.5612E+03 | 3.9601E+03 | 4.7196E+03 | 4.8970E+03 | 3.6656E+03 |
Std | 3.1960E+02 | 3.4560E+02 | 8.7356E+02 | 9.2908E+02 | 1.3148E+03 | 1.2388E+03 | 1.6121E+03 | |
C11 | Mean | 2.9271E+03 | 2.9743E+03 | 3.5838E+03 | 4.1465E+03 | 3.6249E+03 | 4.5947E+03 | 3.0641E+03 |
Std | 1.1749E+02 | 1.1053E+02 | 3.6136E+02 | 8.5659E+02 | 6.5494E+02 | 6.5468E+02 | 1.9326E+02 | |
C12 | Mean | 2.9458E+03 | 2.9495E+03 | 2.9769E+03 | 2.9565E+03 | 3.0552E+03 | 3.0823E+03 | 3.0141E+03 |
Std | 6.5767E+00 | 8.8285E+00 | 2.4279E+01 | 1.2255E+01 | 7.2826E+01 | 6.5608E+01 | 6.6373E+01 |
Func. | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|
G1 | 2.7100E-02 | 5.5727E-10 | 8.0899E-06 | 5.3893E-10 | 3.0199E-11 | 3.8307E-05 |
G2 | 1.0300E-02 | 3.4742E-10 | 6.1000E-03 | 3.3000E-03 | 1.2541E-07 | 1.3289E-10 |
G3 | 3.0199E-11 | 2.9543E-11 | 3.0199E-11 | 3.0180E-11 | 3.0199E-11 | 3.0199E-11 |
G4 | 1.1000E-03 | 3.0199E-11 | 5.3195E-05 | 3.0199E-11 | 3.0199E-11 | 3.0199E-11 |
G5 | 2.8100E-02 | 8.0000E-03 | 1.6813E-04 | 2.0338E-09 | 8.7000E-03 | 8.5641E-04 |
G6 | 3.4971E-09 | 5.5727E-10 | 2.9822E-11 | 3.0199E-11 | 3.0199E-11 | 3.0199E-11 |
G7 | 8.1465E-05 | 3.0199E-11 | 2.3715E-10 | 3.0199E-11 | 3.0199E-11 | 1.8500E-08 |
G8 | 1.7769E-10 | 9.2340E-01 | 1.2118E-12 | 7.0100E-02 | 7.7310E-01 | 1.2118E-12 |
G9 | 8.1014E-10 | 5.4941E-11 | 2.2539E-04 | 3.0199E-11 | 3.0199E-11 | 3.8307E-05 |
G10 | 3.0939E-06 | 4.0000E-03 | 9.0595E-08 | 3.0199E-11 | 5.5329E-08 | 3.5923E-05 |
G11 | 2.8100E-02 | 1.9900E-02 | 2.1947E-08 | 1.8580E-01 | 4.8011E-07 | 3.7900E-01 |
G12 | 1.2118E-12 | 1.2118E-12 | 1.2118E-12 | 1.2118e-12 | ||
G13 | 3.1500E-02 | 2.4200E-02 | 7.9580E-01 | 1.4643E-10 | 3.0199E-11 | 3.0199E-11 |
C1 | 5.5999E-07 | 3.0199E-11 | 3.0199E-11 | 3.0199E-11 | 3.0199E-11 | 3.0199E-11 |
C2 | 3.5100E-02 | 3.3520E-08 | 2.1327E-05 | 3.4742E-10 | 3.3384E-11 | 2.9730E-01 |
C3 | 2.6100E-02 | 3.0939E-06 | 3.6897E-11 | 3.0199E-11 | 3.0199E-11 | 4.5100E-02 |
C4 | 4.5100E-02 | 8.2400E-02 | 2.8389E-04 | 1.5465E-09 | 3.8053E-07 | 1.6980E-08 |
C5 | 4.2100E-02 | 5.3700E-02 | 2.3897E-08 | 8.9934E-11 | 4.8011E-07 | 2.5974E-05 |
C6 | 7.2400E-02 | 1.6000E-03 | 9.9000E-03 | 3.0199E-11 | 3.0199E-11 | 3.0059E-04 |
C7 | 4.5100E-02 | 2.3200E-02 | 7.1988E-05 | 1.3289E-10 | 6.0720E-11 | 2.6384E-06 |
C8 | 8.0000E-03 | 7.6973E-04 | 1.4932E-04 | 2.1959E-07 | 3.4285E-04 | 5.9000E-03 |
C9 | 2.9200E-02 | 3.3384E-11 | 5.5282E-08 | 3.0199E-11 | 7.5527E-11 | 5.0757E-13 |
C10 | 3.5100E-02 | 5.8000E-03 | 8.1465E-05 | 4.4205E-06 | 3.1770E-01 | 2.1232E-06 |
C11 | 4.6800E-02 | 1.7769E-10 | 4.4440E-07 | 4.9752E-11 | 1.9460E-09 | 5.6073E-05 |
C12 | 3.6400E-02 | 2.6695E-09 | 1.9963E-05 | 3.6897E-11 | 9.5867E-18 | 4.3116E-12 |
Variable | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
0.001 | 0.001 | 0.001 | 0.001 | 0.0010253 | 0.001 | 0.0010023 | |
0.001 | 0.001 | 0.0010429 | 0.001 | 0.001026 | 0.001 | 0.0011995 | |
0.0010002 | 0.0010004 | 0.0010131 | 0.001 | 0.00573 | 0.001 | 0.0016858 | |
0.0010007 | 0.001 | 0.0010678 | 0.001 | 0.0010258 | 0.0010188 | 0.009546 | |
0.001 | 0.001 | 0.001041 | 0.001 | 0.0010253 | 0.0010128 | 0.0015728 | |
0.001 | 0.001 | 0.0023688 | 0.001 | 0.0010252 | 0.001009 | 0.0013415 | |
1.524 | 1.524 | 1.5244 | 1.524 | 1.524 | 1.5388 | 1.559 | |
1.524 | 1.5241 | 1.5249 | 1.524 | 1.5319 | 1.5249 | 1.5677 | |
5 | 5 | 4.9991 | 5 | 4.9996 | 4.9699 | 4.9931 | |
2.0002 | 2.7834 | 2.0433 | 2.1899 | 2.3719 | 2.0121 | 2.4023 | |
0.0010001 | 0.0019607 | 0.0035254 | 0.026399 | 0.012986 | 0.001 | 0.0030193 | |
0.001 | 0.0019593 | 0.0030939 | 0.026399 | 0.0010252 | 0.001 | 0.0029526 | |
0.0072936 | 0.011703 | 0.012496 | 0.034757 | 0.0010256 | 0.0065311 | 0.012581 | |
0.087553 | 0.14049 | 0.14981 | 0.41726 | 0.011957 | 0.077074 | 0.13863 | |
Optimal value | 0.032216 | 0.036524 | 0.036843 | 0.054407 | 0.2536 | 0.035847 | 0.046458 |
Constraint | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
g1 | −0.0000 | −0.0000 | 0.0000 | 0 | −0.2368 | −0.0000 | −0.0287 |
g2 | −0.0000 | 0.0006 | −0.0003 | 0 | −0.0168 | 0.2793 | −0.0420 |
g3 | −7.5614 | −7.5616 | −7.5617 | −7.5616 | −6.0062 | −0.0010 | −7.3166 |
g4 | −0.9788 | −0.9774 | −0.9899 | −0.9935 | −0.8470 | 0.0867 | −0.9864 |
g5 | −0.0002 | −0.0001 | −0.0056 | 0 | −0.4332 | −0.0000 | −0.0513 |
g6 | −0.9802 | −0.9777 | −0.9665 | −0.8329 | −0.9796 | −0.0010 | −0.9687 |
g7 | −0.9389 | −0.9389 | −0.8976 | −0.8123 | −0.8982 | −0.0010 | −0.9021 |
g8 | −0.9901 | −0.9901 | −0.9903 | −0.9901 | −0.9975 | −0.0010 | −0.9950 |
g9 | −0.9807 | −0.9807 | −0.9917 | −0.9807 | −1.0000 | −0.0010 | −0.9967 |
g10 | −0.9702 | −0.9702 | −0.9730 | −0.9702 | −0.9702 | −0.0010 | −0.9860 |
g11 | −0.0004 | 0.0000 | −0.0053 | 0 | −0.9491 | 0.0974 | −0.2135 |
g12 | −0.9440 | −0.9440 | −0.9742 | −0.9440 | −0.9963 | −0.0009 | −0.9501 |
g13 | −0.6000 | −0.6000 | −0.6000 | −0.6000 | −0.5999 | 1.9990 | −0.5964 |
g14 | −0.0010 | −0.1145 | −0.0049 | −0.6000 | 0.0003 | 0.3814 | −0.0725 |
g15 | −0.0000 | 0 | −0.1081 | 0 | 0 | −0.0001 | −0.3702 |
Variable | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
2000 | 2000 | 2000 | 2000 | 1999.9606 | 1706.8626 | 1991.0172 | |
0 | 4.8302E-18 | 0 | 0 | 0 | 0 | 1.4796E-06 | |
2571.4216 | 2473.1669 | 2457.5344 | 2820.406 | 3094.9607 | 2682.5542 | 2904.3814 | |
0 | 0 | 0 | 0 | 0 | 0 | 6.1598E-07 | |
58.139421 | 57.723041 | 57.663054 | 59.229379 | 61.102948 | 61.070298 | 61.106755 | |
1.2386014 | 0.8260777 | 0.76253731 | 2.3850848 | 4.2767875 | 4.5800474 | 3.1824157 | |
41.381011 | 40.379902 | 40.033248 | 44.584016 | 50.817011 | 50.391441 | 26.440249 | |
Optimal value | −4529.1132 | −4526.428 | −4524.7028 | −4513.7265 | −4370.0026 | −3761.7272 | 3.2702E+13 |
Constraint | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
g1 | −0.0000 | 0.0000 | −0.0054 | −0.0050 | −0.0056 | −0.0015 | −0.0035 |
g2 | −0.0053 | −0.0054 | −0.0003 | −0.0009 | −0.0001 | −0.0025 | −0.0009 |
g3 | −0.0205 | −0.0205 | −0.0221 | −0.0215 | −0.0234 | −0.0188 | −0.0102 |
g4 | −0.0000 | −0.0000 | 0.0000 | 0.0000 | 0.0000 | −0.0000 | −0.0001 |
g5 | 0.0000 | 0.0000 | 0 | 0 | 0 | 0 | 0.0000 |
g6 | −0.0000 | −0.0000 | 0 | 0 | 0 | 0 | −0.0000 |
g7 | −0.0000 | −0.0000 | −0.0000 | −0.0000 | −0.0000 | −0.0013 | −0.0009 |
g8 | −0.0000 | −0.0000 | −0.0000 | −0.0000 | −0.0000 | 0.0000 | 0.0000 |
g9 | −0.0000 | −0.0000 | −0.0000 | 0.0000 | −0.0000 | −0.0001 | −0.0000 |
g10 | −0.1030 | −0.1068 | −0.1629 | −0.1639 | −0.1631 | −0.0639 | −0.0865 |
g11 | 0.0000 | 0.0000 | 0 | 0 | 0 | 0 | 0.0000 |
g12 | −0.0000 | −0.0000 | 0 | 0 | 0 | 0 | −0.0000 |
g13 | −8.6920 | −8.5088 | −3.2088 | −4.1828 | −3.5747 | −9.9144 | −9.0460 |
g14 | −0.2092 | −0.2385 | −1.0865 | −0.9306 | −1.0279 | −0.0136 | −0.1525 |
Variable | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
0.20573 | 0.20557 | 0.20555 | 0.20612 | 0.17825 | 0.2004 | 0.2057 | |
3.4704 | 3.474 | 3.4724 | 3.4654 | 4.5602 | 3.5899 | 3.4719 | |
9.037 | 9.0366 | 9.0506 | 9.028 | 8.9823 | 9.0493 | 9.0357 | |
0.20573 | 0.20573 | 0.20572 | 0.20612 | 0.20823 | 0.20587 | 0.20577 | |
Optimum cost | 1.7249 | 1.7251 | 1.7271 | 1.7263 | 1.8302 | 1.7358 | 1.7252 |
Constraint | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
g1 | −0.0100 | 0.3094 | −34.3397 | 0 | −890.2884 | −25.7247 | 9.9250 |
g2 | −2.4395 | 5.0397 | −41.6530 | 0 | −194.3126 | 176.6754 | 10.3670 |
g3 | −0.0000 | 0.0000 | −0.0010 | 0. 0000 | −0.0300 | −0.0023 | −0.0001 |
g4 | −3.4329 | −0.0000 | −3.4279 | −3.4272 | −3.3184 | −3.4287 | −3.4325 |
g5 | −0.0807 | 0. 0000 | −0.0802 | −0.0829 | −0.0536 | −0.0795 | −0.0810 |
g6 | −0.2355 | 0.0002 | −0.2356 | −0.2355 | −0.2356 | −0.2354 | −0.2355 |
g7 | −0.1228 | 0.0001 | −39.7059 | −169.2802 | −245.6852 | −70.7822 | −24.0572 |
Variable | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
0.0514206 | 0.0503801 | 0.0517674 | 0.0523125 | 0.0526395 | 0.05 | 0.0513004 | |
0.350294 | 0.326035 | 0.358598 | 0.371903 | 0.380017 | 0.317405 | 0.347299 | |
11.6757 | 13.3437 | 11.1885 | 10.4512 | 10.0432 | 14.0373 | 11.8796 | |
Optimum weight | 0.012667 | 0.012697 | 0.012674 | 0.012672 | 0.012681 | 0.012726 | 0.012686 |
Variable | SMA-GM | SMA | GWO | MFO | WOA | AGWO | IChoA |
---|---|---|---|---|---|---|---|
0 | 0.9303 | 0.0007 | 0 | −0.0000 | 0.5120 | −0.0873 | |
0 | −0.1657 | −0.0012 | −0.0000 | 0.0040 | −0.1662 | 0.0022 | |
−4.0409 | −55.1800 | −4.0544 | −4.0828 | −4.1181 | −7.0128 | −3.6005 | |
−0.7322 | −0.8000 | −0.7265 | −0.7172 | −0.7121 | −0.8000 | −0.7486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, G.; Pal, A.; Mittal, N.; Rajiv, A.; Salgotra, R. Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems. Mathematics 2024, 12, 1470. https://doi.org/10.3390/math12101470
Thakur G, Pal A, Mittal N, Rajiv A, Salgotra R. Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems. Mathematics. 2024; 12(10):1470. https://doi.org/10.3390/math12101470
Chicago/Turabian StyleThakur, Gauri, Ashok Pal, Nitin Mittal, Asha Rajiv, and Rohit Salgotra. 2024. "Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems" Mathematics 12, no. 10: 1470. https://doi.org/10.3390/math12101470
APA StyleThakur, G., Pal, A., Mittal, N., Rajiv, A., & Salgotra, R. (2024). Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems. Mathematics, 12(10), 1470. https://doi.org/10.3390/math12101470