Chebyshev–Jensen-Type Inequalities Involving χ-Products and Their Applications in Probability Theory
Abstract
:1. Introduction
2. Basic Concepts and Classical Results
3. Discrete Chebyshev-Jensen-Type Inequalities
- (A)
- Let . According to Lemma 3, Lemma 2 is true.
- (B)
- Suppose that Lemma 2 is true when we replace m with in Lemma 2, where Now, we prove that Lemma 2 is also true as follows.
4. Continuous Chebyshev–Jensen-Type Inequalities
5. Applications in Probability Theory
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agahi, H.; Mesiar, R.; Ouyang, Y. Chebyshev type inequalities for pseudo-integrals. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2737–2743. [Google Scholar] [CrossRef]
- Wen, J.J.; Wang, W.L. Chebyshev type inequalities involving permanents and their applications. Linear Algebra Appl. 2007, 422, 295–303. [Google Scholar] [CrossRef]
- Wen, J.J.; Pećarixcx, J.E.; Han, T.Y. Weak monotonicity and Chebyshev type inequality. Math. Inequal. Appl. 2015, 18, 217–231. [Google Scholar] [CrossRef]
- Acu, A.M.; Rusu, M.D. New results concerning Chebyshev-Grüss-type inequalities via discrete oscillations. Appl. Math. Comput. 2014, 243, 585–593. [Google Scholar] [CrossRef]
- Ouyang, Y.; Mesiar, R.; Li, J. On the comonotonic-★-property for Sugeno integral. Appl. Math. Comput. 2009, 211, 450–458. [Google Scholar] [CrossRef]
- Meaux, L.M.; Seaman, J.W.J.; Boullion, T.L. Calculation of multivariate Chebyshev-type inequalities. Comput. Math. Appl. 1990, 20, 55–60. [Google Scholar] [CrossRef]
- Daraby, B. Investigation of a Stolarsky type inequality for integrals in pseudo-analysis. Fract. Calc. Appl. Anal. 2010, 13, 467–473. [Google Scholar]
- Yewale, B.R.; Pachpatte, D.B. Some new Chebyshev type inequalities via extended generalized fractional integral operator. J. Fract. Calc. Appl. 2021, 12, 11–19. [Google Scholar]
- Wagene, A. Chebyshevs algebraic inequality and comparative statics under uncertainty. Math. Soc. Sci. 2006, 52, 217–221. [Google Scholar] [CrossRef]
- Anastassiou, G. Chebyshev-Grüss type inequalities on RN over spherical shells and balls. Appl. Math. Lett. 2008, 21, 119–127. [Google Scholar] [CrossRef]
- Yewale, B.R.; Pachpatte, D.B.; Aljaaidi, T.A. Chebyshev-type inequalities involving (k,ψ)-proportional fractional integral operators. J. Funct. Spaces 2022, 2022, 3966177. [Google Scholar] [CrossRef]
- Borovkov, A.A.; Logachov, A.V.; Mogulskii, A.A. Chebyshev-type inequalities and large deviation principles. Theory Probab. Appl. 2022, 66, 718–733. [Google Scholar] [CrossRef]
- Moslehian, M.S.; Bakherad, M. Chebyshev type inequalities for Hilbert space operators. J. Math. Anal. Appl. 2014, 420, 737–749. [Google Scholar] [CrossRef]
- Hwang, D.Y.; Dragomir, S.S. Comparing two integral means for absolutely continuous functions whose absolute value of the derivative are convex and applications. Appl. Math. Comput. 2014, 230, 259–266. [Google Scholar] [CrossRef]
- Zhao, J.; Butt, S.I.; Nasir, J.; Wang, Z.; Tlili, I. Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives. J. Funct. Spaces 2020, 2020, 7061549. [Google Scholar] [CrossRef]
- Abramovich, S.; Persson, L.E. Rearrangements and Jensen type inequalities related to convexity, superquadracity, strong convexity and 1-quasiconvexity. J. Math. Inequal. 2020, 14, 641–659. [Google Scholar] [CrossRef]
- Moradi, H.R.; Furuichi, S. Improvement and generalization of some Jensen-Mercer-type inequalities. J. Math. Inequal. 2020, 14, 377–383. [Google Scholar] [CrossRef]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L.G. Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Ho, P.T.; Pyo, J. Evolution of the first eigenvalue along the inverse mean curvature flow in space forms. J. Math. Anal. Appl. 2024, 532, 127980. [Google Scholar] [CrossRef]
- Bošnjak, M.; Krnić, M.; Pexcxarixcx, J. Jensen-type inequalities, Montgomery identity and higher-order convexity. Mediterr. J. Math. 2022, 19, 230. [Google Scholar] [CrossRef]
- Minculete, N. On several inequalities related to convex functions. J. Math. Inequal. 2023, 17, 1075–1086. [Google Scholar] [CrossRef]
- Knoerr, J. The support of dually epi-translation invariant valuations on convex functions. J. Funct. Anal. 2021, 281, 109059. [Google Scholar] [CrossRef]
- Colesanti, A.; Ludwig, M.; Mussnig, F. A homogeneous decomposition theorem for valuations on convex functions. J. Funct. Anal. 2020, 279, 108573. [Google Scholar] [CrossRef]
- Wen, J.J.; Huang, Y.; Cheng, S.S. Theory of ϕ-Jensen variance and its applications in higher education. J. Inequal. Appl. 2015, 2015, 270. [Google Scholar] [CrossRef]
- Lu, M.; Wang, Y.; Jiang, D. Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection. Appl. Math. Comput. 2021, 410, 126483. [Google Scholar] [CrossRef]
- Gafel, H.S.; Rashid, S.; Elagan, S.K. Novel codynamics of the HIV-1/HTLV-I model involving humoral immune response and cellular outbreak: A new approach to probability density functions and fractional operators. AIMS Math. 2023, 8, 28246–28279. [Google Scholar] [CrossRef]
- Jung, Y.M.; Whang, J.J.; Yun, S. Sparse probabilistic K-means. Appl. Math. Comput. 2020, 382, 125328. [Google Scholar] [CrossRef]
- Ejsmont, W.; Lehner, F. Sums of commutators in free probability. J. Funct. Anal. 2021, 280, 108791. [Google Scholar] [CrossRef]
- Gvalani, R.S.; Schlichting, A. Barriers of the McKean-Vlasov energy via a mountain pass theorem in the space of probability measures. J. Funct. Anal. 2020, 279, 108720. [Google Scholar] [CrossRef]
- Jekel, D. Operator-valued chordal Loewner chains and non-commutative probability. J. Funct. Anal. 2020, 278, 108452. [Google Scholar] [CrossRef]
- Lu, G.; Sun, W.; Jin, Y.; Liu, Q. Ulam stability of Jensen functional inequality on a class of noncommutative groups. J. Funct. Spaces 2023, 2023, 6674969. [Google Scholar] [CrossRef]
- Jankov, M.D.; Pogány, T.K. Functional bounds for Exton’s double hypergeometric X function. J. Math. Inequal. 2023, 17, 259–267. [Google Scholar]
- Park, C.; Najati, A.; Moghimi, M.B.; Noori, B. Approximation of two general functional equations in 2-Banach spaces. J. Math. Inequal. 2023, 17, 153–162. [Google Scholar] [CrossRef]
- Dell’Accio, F.; Di Tommaso, F.; Guessab, A.; Nudo, F. A unified enrichment approach of the standard three-node triangular element. Appl. Numer. Math. 2023, 187, 1–23. [Google Scholar] [CrossRef]
- Liu, Y.; Iqbal, W.; Rehman, A.U.; Farid, G.; Nonlaopon, K. Giaccardi inequality for modified h-convex functions and mean value theorems. J. Funct. Spaces 2022, 2022, 4364886. [Google Scholar] [CrossRef]
- Wang, W.L. Approaches to Prove Inequalities; Harbin Institute of Technology: Harbin, China, 2011. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Wen, J.; Zhao, L. Chebyshev–Jensen-Type Inequalities Involving χ-Products and Their Applications in Probability Theory. Mathematics 2024, 12, 1495. https://doi.org/10.3390/math12101495
Liu R, Wen J, Zhao L. Chebyshev–Jensen-Type Inequalities Involving χ-Products and Their Applications in Probability Theory. Mathematics. 2024; 12(10):1495. https://doi.org/10.3390/math12101495
Chicago/Turabian StyleLiu, Ru, Jiajin Wen, and Lingzhi Zhao. 2024. "Chebyshev–Jensen-Type Inequalities Involving χ-Products and Their Applications in Probability Theory" Mathematics 12, no. 10: 1495. https://doi.org/10.3390/math12101495
APA StyleLiu, R., Wen, J., & Zhao, L. (2024). Chebyshev–Jensen-Type Inequalities Involving χ-Products and Their Applications in Probability Theory. Mathematics, 12(10), 1495. https://doi.org/10.3390/math12101495