Aging Renewal Point Processes and Exchangeability of Event Times
Abstract
:1. Introduction
2. Preliminaries
3. Statistical Aging in Mixed Renewal Processes
4. Analysis of Exchangeable Event Sequences: Simulations and Empirical Results
4.1. Exchangeable Mixture Models
Algorithm 1 Generation of a Single Exchangeable Sequence Conditional to a Prior |
|
4.1.1. Mixture of Exponentials
- At this point, we will switch our analysis to an exchangeable sequence delineated by inter-event intervals, denoted as . These intervals are represented as random variables drawn from an exponential distribution with a rate parameter , such that , where the rate parameter itself is taken from a uniform distribution, denoted as . The marginal density function of the waiting times is given by the unconditional mixed-type pdf, as from Equation (12):The equation above is valid since the the Laplace transform of conditional aged probability density function can be written as , so that:Essentially, in this example case the renewal process is affected by neutral aging. Moreover, the mixed renewal function can be written in terms of the Laplace transform as from Proposition 4:Moreover, regarding the hazard rate, we have:
- As a more general example, let us assume again , but now the exponential rate follows a gamma distribution, i.e., , where is the shape factor and is the scale factor. So, in this case, the marginal density function of the waiting times is given by the unconditional mixed-type pdf:Consequently, the cumulative hazard rate is . Similarly, one can find that the mean residual lifetime asymptotic behavior is . Finally, the mixed renewal function can be written as:Essentially, all the survival analysis is quite similar to the one in previous example.
4.1.2. Mixture of Generalized Exponentials
4.1.3. Mixture of Heavy-Tail Distributions
4.2. Case Study: High-Frequency Exchange Rates
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDF | Cumulative Distribution Function |
eCDF | empirical Cumulative Distribution Function |
probability density function | |
i.i.d. | independent identically distributed |
EXP | Exponential |
GA | Gamma |
ML | Mittag–Leffler |
Appendix A. Mixture Models Derivations
Appendix A.1. Derivation of Equation (27)
Appendix A.2. Derivation of Equation (29)
Appendix A.3. Derivation of Equation (30)
Appendix A.4. Derivation of Equation (32)
References
- Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 1968; Volume 1. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 1991; Volume 2. [Google Scholar]
- Cox, D.R. Renewal Theory; Methuen: London, UK, 1967; Volume 1. [Google Scholar]
- Barlow, R.E.; Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models; Holt, Rinehart and Winston: New York, NY, USA, 1975; Volume 1. [Google Scholar]
- Lio, Y.; Chen, D.G.; Ng, H.T.; Tsai, T.R. Bayesian Inference and Computation in Reliability and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Pergamenshchikov, S.; Pchelintsev, E. Renewal Theory and Its Applications. Hal-Ope Sci. 2020. Available online: https://hal.science/hal-02485643 (accessed on 20 March 2024).
- Cha, J.H.; Finkelstein, M. Point Processes for Reliability Analysis; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Schulz, J.H.; Barkai, E.; Metzler, R. Aging renewal theory and application to random walks. Phys. Rev. X 2014, 4, 011028. [Google Scholar] [CrossRef]
- De Finetti, B. Funzione caratteristica di un fenomeno aleatorio. In Proceedings of the Atti del Congresso Internazionale dei Matematici, Bologna, Italy, 3–10 September 1928; pp. 179–190. [Google Scholar]
- De Finetti, B. La prévision: Ses lois logiques, ses sources subjectives. Ann. L’institut Henri Poincaré 1937, 7, 1–68. [Google Scholar]
- Aldous, D.J. Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour XIII—1983; Springer: Berlin/Heidelberg, Germany, 1985; pp. 1–198. [Google Scholar]
- Bernardo, J.M.; Smith, A.F. Bayesian Theory; John Wiley & Sons: Berlin/Heidelberg, Germany, 2009; Volume 405. [Google Scholar]
- Mitov, K. Renewal Processes; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Akimoto, T. Statistics of the number of renewals, occupation times, and correlation in ordinary, equilibrium, and aging alternating renewal processes. Phys. Rev. E 2023, 108, 054113. [Google Scholar] [CrossRef]
- Coen, A.; Gutiérrez, L.; Mena, R.H. Modelling failures times with dependent renewal type models via exchangeability. Statistics 2019, 53, 1112–1130. [Google Scholar] [CrossRef]
- Huang, W.J. On the characterization of point processes with the exchangeable and Markov properties. Sankhyā Indian J. Stat. Ser. A 1990, 52, 16–27. [Google Scholar]
- Lyberopoulos, D.P.; Macheras, N.D. Some characterizations of mixed renewal processes. Math. Slovaca 2022, 72, 197–216. [Google Scholar] [CrossRef]
- Monthus, C.; Bouchaud, J.P. Models of traps and glass phenomenology. J. Phys. A Math. Gen. 1996, 29, 3847. [Google Scholar] [CrossRef]
- Parisi, G. Short-time aging in binary glasses. J. Phys. A Math. Gen. 1997, 30, L765. [Google Scholar] [CrossRef]
- Baity-Jesi, M.; Calore, E.; Cruz, A.; Fernandez, L.; Gil-Narvion, J.; Gonzalez-Adalid Pemartin, I.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Marinari, E.; et al. Memory and rejuvenation effects in spin glasses are governed by more than one length scale. Nat. Phys. 2023, 19, 978–985. [Google Scholar] [CrossRef]
- Böhmer, T.; Gabriel, J.P.; Costigliola, L.; Kociok, J.N.; Hecksher, T.; Dyre, J.C.; Blochowicz, T. Time reversibility during the ageing of materials. Nat. Phys. 2024, 20, 637–645. [Google Scholar] [CrossRef]
- Laloux, L.; Le Doussal, P. Aging and diffusion in low dimensional environments. Phys. Rev. E 1998, 57, 6296. [Google Scholar] [CrossRef]
- Godreche, C.; Luck, J. Statistics of the occupation time of renewal processes. J. Stat. Phys. 2001, 104, 489–524. [Google Scholar] [CrossRef]
- Barkai, E. Aging in subdiffusion generated by a deterministic dynamical system. Phys. Rev. Lett. 2003, 90, 104101. [Google Scholar] [CrossRef]
- Akimoto, T.; Barkai, E. Aging generates regular motions in weakly chaotic systems. Phys. Rev. E 2013, 87, 032915. [Google Scholar] [CrossRef]
- Allegrini, P.; Aquino, G.; Grigolini, P.; Palatella, L.; Rosa, A. Generalized master equation via aging continuous-time random walks. Phys. Rev. E 2003, 68, 056123. [Google Scholar] [CrossRef]
- Cox, D.R.; Isham, V. Point Processes; CRC Press: Boca Raton, FL, USA, 1980; Volume 12. [Google Scholar]
- Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [Google Scholar] [CrossRef]
- Bianco, S.; Grigolini, P.; Paradisi, P. Fluorescence intermittency in blinking quantum dots: Renewal or slow modulation? J. Chem. Phys. 2005, 123, 174704. [Google Scholar] [CrossRef] [PubMed]
- Brokmann, X.; Hermier, J.P.; Messin, G.; Desbiolles, P.; Bouchaud, J.P.; Dahan, M. Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 2003, 90, 120601. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Zeng, W.B.; Wu, Y. Probability and Statistical Models: Foundations for Problems in Reliability and Financial Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hens, T.; Schenk-Hoppé, K.R. Handbook of Financial Markets: Dynamics and Evolution; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Barbiero, A.; Hitaj, A. Discrete half-logistic distributions with applications in reliability and risk analysis. Ann. Oper. Res. 2024, 1–31. [Google Scholar] [CrossRef]
- Bianco, S.; Grigolini, P. Aging in financial market. Chaos Solitons Fractals 2007, 34, 41–50. [Google Scholar] [CrossRef]
- Fama, E.F. The behavior of stock-market prices. J. Bus. 1965, 38, 34–105. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Vinod, D.; Aghion, E.; Chechkin, A.V.; Metzler, R. Time averaging, ageing and delay analysis of financial time series. New J. Phys. 2017, 19, 063045. [Google Scholar] [CrossRef]
- Niepert, M.; Domingos, P. Exchangeable variable models. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 271–279. [Google Scholar]
- Poirier, D.J. 40 Exchangeability, Representation Theorems, and Subjectivity. In The Oxford Handbook of Bayesian Econometrics; Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Hewitt, E.; Savage, L.J. Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 1955, 80, 470–501. [Google Scholar] [CrossRef]
- Diaconis, P.; Freedman, D. Finite exchangeable sequences. Ann. Probab. 1980, 8, 745–764. [Google Scholar] [CrossRef]
- Kerns, G.J.; Székely, G.J. Definetti’s theorem for abstract finite exchangeable sequences. J. Theor. Probab. 2006, 19, 589–608. [Google Scholar] [CrossRef]
- Kallenberg, O. Probabilistic Symmetries and Invariance Principles; Springer: New York, NY, USA, 2005. [Google Scholar]
- O’Neill, B. Exchangeability, correlation, and Bayes’ effect. Int. Stat. Rev. 2009, 77, 241–250. [Google Scholar] [CrossRef]
- Barber, R.F.; Candes, E.J.; Ramdas, A.; Tibshirani, R.J. De Finetti’s Theorem and Related Results for Infinite Weighted Exchangeable Sequences. arXiv 2023, arXiv:2304.03927. [Google Scholar]
- Zabell, S.L. Predicting the unpredictable. Synthese 1992, 90, 205–232. [Google Scholar] [CrossRef]
- Bernardo, J.M. Bayesian statistics. Probab. Stat. R. Viertl Ed 1994, 2, 345–407. [Google Scholar]
- Bernardo, J.M. The concept of exchangeability and its applications. Far East J. Math. Sci. 1996, 4, 111–122. [Google Scholar]
- Allegrini, P.; Barbi, F.; Grigolini, P.; Paradisi, P. Aging and renewal events in sporadically modulated systems. Chaos Solitons Fractals 2007, 34, 11–18. [Google Scholar] [CrossRef]
- Paradisi, P.; Grigolini, P.; Bianco, S.; Akin, O.C. Renewal aging in non-homogeneous poisson processes with periodic rate modulation. Int. J. Bifurc. Chaos 2008, 18, 2681–2691. [Google Scholar] [CrossRef]
- Turalska, M.; Lukovic, M.; West, B.J.; Grigolini, P. Complexity and synchronization. Phys. Rev. E 2009, 80, 021110. [Google Scholar] [CrossRef]
- Aquino, G.; Bologna, M.; Grigolini, P.; West, B.J. Aging and rejuvenation with fractional derivatives. Phys. Rev. E 2004, 70, 036105. [Google Scholar] [CrossRef]
- Allegrini, P.; Aquino, G.; Grigolini, P.; Palatella, L.; Rosa, A.; West, B.J. Correlation function and generalized master equation of arbitrary age. Phys. Rev. E 2005, 71, 066109. [Google Scholar] [CrossRef]
- Bernstein, D.L. The double Laplace integral. Duke Math. J. 1941, 8, 460–496. [Google Scholar] [CrossRef]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; Chapter 4. [Google Scholar]
- Aquino, G.; Palatella, L.; Grigolini, P. Absorption and emission in the non-poisson case: The theoretical challenge posed by renewal aging. Braz. J. Phys. 2005, 35, 418–424. [Google Scholar] [CrossRef]
- Spizzichino, F. Subjective Probability Models for Lifetimes; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Lai, C.D.; Xie, M. Stochastic Ageing and Dependence for Reliability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Nappo, G.; Spizzichino, F. Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property. Depend. Model. 2020, 8, 1–33. [Google Scholar] [CrossRef]
- McCall, J.J. An Introduction to Exchangeability and Its Economic Applications; Hoover Institution, Stanford University: Stanford, CA, USA, 1988. [Google Scholar]
- Faragó, A. Decomposition of Random Sequences into Mixtures of Simpler Ones and Its Application in Network Analysis. Algorithms 2021, 14, 336. [Google Scholar] [CrossRef]
- Mainardi, F.; Gorenflo, R.; Vivoli, A. Renewal Processes of Mittag-Leffler and Wright Type. Fract. Calc. Appl. Anal. 2005, 8, 7–38. [Google Scholar]
- Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E. Fractional calculus and continuous-time finance II: The waiting-time distribution. Phys. A Stat. Mech. Its Appl. 2000, 287, 468–481. [Google Scholar] [CrossRef]
- Pramukkul, P.; Svenkeson, A.; Grigolini, P.; Bologna, M.; West, B. Complexity and the fractional calculus. Adv. Math. Phys. 2013, 2013, 498789. [Google Scholar] [CrossRef]
- Apelblat, A. Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Its Appl. 2000, 284, 376–384. [Google Scholar] [CrossRef]
- Gençay, R.; Dacorogna, M.; Muller, U.A.; Pictet, O.; Olsen, R. An Introduction to High-Frequency Finance; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Palatella, L.; Perelló, J.; Montero, M.; Masoliver, J. Activity autocorrelation in financial markets: A comparative study between several models. Eur. Phys. J. Condens. Matter Complex Syst. 2004, 38, 671–677. [Google Scholar] [CrossRef]
- Taylor, S.J. Modeling stochastic volatility: A review and comparative study. Math. Financ. 1994, 4, 183–204. [Google Scholar] [CrossRef]
- Pederzoli, C. Stochastic volatility and GARCH: A comparison based on UK stock data. Eur. J. Financ. 2006, 12, 41–59. [Google Scholar] [CrossRef]
- Fouque, J.P.; Papanicolaou, G.; Sircar, K.R. Derivatives in Financial Markets with Stochastic Volatility; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cont, R. Statistical modeling of high-frequency financial data. IEEE Signal Process. Mag. 2011, 28, 16–25. [Google Scholar] [CrossRef]
- Corp., I.D. TrueFX Market Exchange Rate Data, 2014. EURUSD Exchange Rates Data. Available online: https://www.truefx.com/truefx-historical-downloads/#93-106-november (accessed on 20 March 2024).
- Scalas 7, E.; Gorenflo, R.; Luckock, H.; Mainardi, F.; Mantelli, M.; Raberto, M. Anomalous waiting times in high-frequency financial data. Quant. Financ. 2004, 4, 695–702. [Google Scholar] [CrossRef]
- Aldrich, E.M.; Heckenbach, I.; Laughlin, G. The random walk of high frequency trading. arXiv 2014, arXiv:1408.3650. [Google Scholar]
- Gao, F.; He, X. Survival Analysis: Theory and Application in Finance. In Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning; World Scientific: Singapore, 2021; pp. 4087–4118. [Google Scholar]
- Gepp, A.; Kumar, K. The role of survival analysis in financial distress prediction. Int. Res. J. Financ. Econ. 2008, 16, 13–34. [Google Scholar]
- Calabrese, P.; Gambassi, A. Ageing properties of critical systems. J. Phys. A Math. Gen. 2005, 38, R133. [Google Scholar] [CrossRef]
- Henkel, M.; Pleimling, M. Non-Equilibrium Phase Transitions: Volume 2: Ageing and Dynamical Scaling Far from Equilibrium; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hase, M.O.; Tomé, T.; de Oliveira, M.J. Aging and fluctuation-dissipation ratio in a nonequilibrium q-state lattice model. Phys. Rev. E 2010, 82, 011133. [Google Scholar] [CrossRef] [PubMed]
- Geisel, T.; Nierwetberg, J.; Zacherl, A. Accelerated diffusion in Josephson junctions and related chaotic systems. Phys. Rev. Lett. 1985, 54, 616. [Google Scholar] [CrossRef] [PubMed]
- Beck, C. Superstatistics: Theory and applications. Contin. Mech. Thermodyn. 2004, 16, 293–304. [Google Scholar] [CrossRef]
- Allegrini, P.; Barbi, F.; Grigolini, P.; Paradisi, P. Renewal, modulation, and superstatistics in times series. Phys. Rev. E 2006, 73, 046136. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Kadoya, T. Superstatistics with cut-off tails for financial time series. Phys. A Stat. Mech. Its Appl. 2019, 526, 120930. [Google Scholar] [CrossRef]
- Schäfer, B.; Heppell, C.M.; Rhys, H.; Beck, C. Fluctuations of water quality time series in rivers follow superstatistics. iScience 2021, 24, 102881. [Google Scholar] [CrossRef] [PubMed]
- Katz, Y.A.; Tian, L. Superstatistical fluctuations in time series of leverage returns. Phys. A Stat. Mech. Its Appl. 2014, 405, 326–331. [Google Scholar] [CrossRef]
- Beck, C. Recent developments in superstatistics. Braz. J. Phys. 2009, 39, 357–363. [Google Scholar] [CrossRef]
- Bray, A.J.; Majumdar, S.N.; Schehr, G. Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 2013, 62, 225–361. [Google Scholar] [CrossRef]
- Bénichou, O. Anomalous persistence exponents for normal yet aging diffusion. Phys. Rev. E 2020, 102, 062115. [Google Scholar]
- Constantin, M.; Sarma, S.D. Volatility, persistence, and survival in financial markets. Phys. Rev. E 2005, 72, 051106. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Casillas-Pérez, D.; Del Ser, J.; Casanova-Mateo, C.; Cuadra, L.; Piles, M.; Camps-Valls, G. Persistence in complex systems. Phys. Rep. 2022, 957, 1–73. [Google Scholar] [CrossRef]
- Tobias, P.A.; Trindade, D. Applied Reliability; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wang, P.; Coit, D.W. Repairable systems reliability trend tests and evaluation. In Proceedings of the Annual Reliability and Maintainability Symposium, Citeseer, Alexandria, VA, USA, 24–27 January 2005; pp. 416–421. [Google Scholar]
Code | Pair | Name |
---|---|---|
I | USD/EUR | US Dollar/Euro |
II | USD/AUD | US Dollar/Australian Dollar |
III | USD/GBP | US Dollar/British Pound |
IV | USD/NZD | US Dollar/New Zealand Dollar |
V | USD/CAD | US Dollar/Canadian Dollar |
VI | USD/CHF | US Dollar/Swiss Franc |
VII | USD/JPY | US Dollar/Japanese Yen |
VIII | USD/MXN | US Dollar/Mexican Peso |
IX | USD/ZAR | US Dollar/South African Rand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanni, F.; Lambert, D. Aging Renewal Point Processes and Exchangeability of Event Times. Mathematics 2024, 12, 1529. https://doi.org/10.3390/math12101529
Vanni F, Lambert D. Aging Renewal Point Processes and Exchangeability of Event Times. Mathematics. 2024; 12(10):1529. https://doi.org/10.3390/math12101529
Chicago/Turabian StyleVanni, Fabio, and David Lambert. 2024. "Aging Renewal Point Processes and Exchangeability of Event Times" Mathematics 12, no. 10: 1529. https://doi.org/10.3390/math12101529
APA StyleVanni, F., & Lambert, D. (2024). Aging Renewal Point Processes and Exchangeability of Event Times. Mathematics, 12(10), 1529. https://doi.org/10.3390/math12101529