On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences
Abstract
:1. Introduction
2. The Generalization of Minton’s and Karlsson’s Summation Formulas
3. On the Reduction of the Hypergeometric Function to the Function
4. Summation Formulas That Are Hidden in Transformations of Hypergeometric Functions with an Arbitrary Argument
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Stecherthafner Service Agency: Cambridge, UK, 1935. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Stecherthafner Service Agency: New York, NY, USA; London, UK, 1964. [Google Scholar]
- Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K. Quantum Theory of Angular Momentum; World Scientific: Singapore, 1988. [Google Scholar]
- Krattenthaler, C.; Srinivasa Rao, K. On group theoretical aspects, hypergeometric transformations and symmetries of angular momentum coefficients. In Symmetries in Science, XI; Kluwer Academic: Dordrecht, The Netherlands, 2005; pp. 355–375. [Google Scholar]
- Rao, K.S.; Doebner, H.D.; Natterman, P. Generalized hypergeometric series and the symmetries of 3-j and 6-j coefficients. In Number Theoretic Methods. Developments in Mathematics; Kanemitsu, S., Jia, C., Eds.; Springer: Boston, MA, USA, 2002; Volume 8, pp. 381–403. [Google Scholar]
- Quintana, Y.; Ramírez, W.; Urieles, A. On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo 2018, 55, 30. [Google Scholar] [CrossRef]
- Cesarano, C.; Ramírez, W.; Diaz, S. New results for degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials. Wseas Trans. Math. 2022, 21, 604–608. [Google Scholar]
- Karp, D.B.; Prilepkina, E.G. Extensions of Karlsson–Minton summation theorem and some consequences of the first Miller–Paris transformation. Integral Transform. Spec. Funct. 2018, 29, 955–970. [Google Scholar] [CrossRef]
- Karp, D.B.; Prilepkina, E.G. Transformations for hypergeometric 4F3 with one unit shift: A group theoretic study. Mathematics 2020, 8, 1966. [Google Scholar] [CrossRef]
- Karp, D.B.; Prilepkina, E.G. Beyond the beta integral method: Transformation formulas for hypergeometric functions via Meijer’s G function. Symmetry 2022, 14, 1541. [Google Scholar] [CrossRef]
- Karp, D.B.; Prilepkina, E.G. Hypergeometric 4F3(1) with integral parameter differences. Lobachevsky J. Math. 2022, 43, 1326–1336. [Google Scholar] [CrossRef]
- Minton, B.M. Generalized hypergeometric functions at unit argument. J. Math. Phys. 1970, 12, 1375–1376. [Google Scholar] [CrossRef]
- Karlsson, P.W. Hypergeometric functions with integral parameter differences. J. Math. Phys. 1971, 12, 270–271. [Google Scholar] [CrossRef]
- Gasper, G. Summation formulas for basic hypergeometric series. SIAM J. Math. Anal. 1981, 12, 196–200. [Google Scholar] [CrossRef]
- Chu, W. Partial fractions and bilateral summations. J. Math Phys. 1994, 35, 2036–2042. [Google Scholar] [CrossRef]
- Chu, W. Erratum: Partial fractions and bilateral summations. J. Math. Phys. 1995, 36, 5198–5199. [Google Scholar] [CrossRef]
- Schlosser, M. Elementary derivations of identities for bilateral basic hypergeometric series. Sel. Math. 2003, 9, 119–159. [Google Scholar] [CrossRef]
- Schlosser, M. Multilateral transformations of q-series with quotients of parameters that are nonnegative integral powers of q. In q-Series with Applications to Combinatorics, Number Theory, and Physics; Berndt, B.C., Ono, K., Eds.; Volume 291 of American Mathematical Society Contemporary Mathematics; AMS: Philadelphia, PA, USA, 2001; pp. 203–227. [Google Scholar]
- Lima, H.; Loureiro, A. Multiple orthogonal polynomials associated with confluent hypergeometric functions. J. Approx. Theory 2020, 260, 105484. [Google Scholar] [CrossRef]
- Branquinho, A.; Díaz, J.E.F.; Foulquié-Moreno, A.; Mañas, M. Hypergeometric Expressions for Type I Jacobi-Piñeiro Orthogonal Polynomials with Arbitrary Number of Weights. arXiv 2023, arXiv:2310.18294. [Google Scholar]
- Chen, K.-W. Clausen’s Series 3F2(1) with Integral Parameter Differences. Symmetry 2021, 13, 1783. [Google Scholar] [CrossRef]
- Candezano, M.A.C.; Karp, D.B.; Prilepkina, E.G. Further applications of the G function integral method. Lobachevskii J. Math. 2020, 41, 747–762. [Google Scholar] [CrossRef]
- Miller, A.R.; Paris, R.B. Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mt. J. Math. 2013, 43, 291–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhtin, K.; Prilepkina, E. On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences. Mathematics 2024, 12, 1656. https://doi.org/10.3390/math12111656
Bakhtin K, Prilepkina E. On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences. Mathematics. 2024; 12(11):1656. https://doi.org/10.3390/math12111656
Chicago/Turabian StyleBakhtin, Kirill, and Elena Prilepkina. 2024. "On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences" Mathematics 12, no. 11: 1656. https://doi.org/10.3390/math12111656
APA StyleBakhtin, K., & Prilepkina, E. (2024). On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences. Mathematics, 12(11), 1656. https://doi.org/10.3390/math12111656