Solution to Several Split Quaternion Matrix Equations
Abstract
:1. Introduction
2. Real Representations
- (a)
- (i)(ii)
- (b)
- (i)(ii)
- (c)
- (d)
- Let be the set of zero divisors of , and , such that Then, and
3. Split Quaternion Matrix Equation
4. Split Quaternion Matrix Equation
- (a)
- (b)
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayro-Corrochano, E.; Vazquez-Flores, Z.; Uriostegui-Legorreta, U. The Lorentz Group using Conformal Geometric Algebra and Split Quaternions for Color Image Processing: Theory and Practice. IEEE Access 2023, 11, 56785–56800. [Google Scholar] [CrossRef]
- Ghademi, R.; Rahebi, J.; Yaylı, Y. A Novel Approach for Spherical Spline Split Quaternion Interpolation Lorentzian Sphere Using Bezier Curve Algorithm. Life Sci. J. 2012, 9, 3394–3397. [Google Scholar]
- Gogberashvili, M. Split quaternions and particles in (2 + 1)-space. Eur. Phys. J. 2014, 74, 3200. [Google Scholar] [CrossRef]
- Ujang, B.C.; Took, C.C.; Mandic, D.P. Split quaternion nonlinear adaptive filtering. Neural Netw. 2010, 23, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, Z.H. On the split quaternion matrix equation AX=B. Banach J. Math. Anal. 2020, 14, 228–248. [Google Scholar] [CrossRef]
- Özdemir, M.; Erdoğdu, M.; Şimşek, H. On the eigenvalues and eigenvectors of a lorentzian rotation matrix by using split quaternions. Adv. Appl. Clifford Algebr. 2014, 24, 179–192. [Google Scholar] [CrossRef]
- Wang, G.; Guo, Z.; Zhang, D.; Jiang, T. Algebraic techniques for least squares problem over generalized quaternion algebras: A unified approach in quaternionic and split quaternionic theory. Math. Methods Appl. Sci. 2020, 43, 1124–1137. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Özdemir, M. On exponential of split quaternionic matrices. Appl. Math. Comput. 2017, 315, 468–476. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, T.; Vasil’ev, V.I.; Wang, G. A novel algebraic approach for the Schrödinger equation in split quaternionic mechanics. Appl. Math. Lett. 2023, 137, 108485. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Z.; Jiang, Z. Algebraic techniques for eigenvalues and eigenvectors of a split quaternion matrix in split quaternionic mechanics. Comput. Phys. Commun. 2018, 229, 1–7. [Google Scholar] [CrossRef]
- Kyrchei, I. Cramer’s rules for some hermitian coquaternionic matrix equations. Adv. Appl. Clifford Algebr. 2017, 27, 2509–2529. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, T.; Vasil’ev, V.I.; Guo, Z. On singular value decomposition for split quaternion matrices and applications in split quaternionic mechanics. J. Comput. Appl. Math. 2024, 436, 115447. [Google Scholar] [CrossRef]
- Yue, S.; Li, Y.; Wei, A.; Zhao, J. An Efficient Method for Split Quaternion Matrix Equation X − Af(X)B = C. Symmetry 2022, 14, 1158. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y. Consistency of Split Quaternion Matrix Equations AX★ − XB = CY + D and X − AX★B = CY + D. Adv. Appl. Clifford Algebr. 2019, 29, 64. [Google Scholar] [CrossRef]
- Li, M.Z.; Yuan, S.F.; Jiang, H. Direct methods on η-Hermitian solutions of the split quaternion matrix equation (AXB,CXD) = (E, F). Math. Methods Appl. Sci. 2023, 46, 15952–15971. [Google Scholar] [CrossRef]
- Yuan, S.F.; Wang, Q.W.; Yu, Y.B.; Tian, Y. On Hermitian solutions of the split quaternion matrix equation AXB + CXD = E. Adv. Appl. Clifford Algebr. 2017, 27, 3235–3252. [Google Scholar] [CrossRef]
- Jian, Z.; Xiaoping, F.; Cailun, H. A Method of Super-resolution Image Restoration Based on Separation. In Proceedings of the 2007 Chinese Control Conference, Zhangjiajie, China, 26–31 July 2007. [Google Scholar]
- Si, K.W.; Wang, Q.W. The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra. Symmetry 2024, 16, 491. [Google Scholar] [CrossRef]
- Chu, E. The solution of the matrix equations AXB − CXD = E and (YA − DZ,YC − BZ) = (E, F). Linear Algebra Its Appl. 1987, 93, 93–105. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, X.; Wei, M. Iterative algorithms for solving the matrix equation AXB + CXTD = E. Appl. Math. Comput. 2007, 187, 622–629. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Shi, T.; Zhang, Y. Solution to Several Split Quaternion Matrix Equations. Mathematics 2024, 12, 1707. https://doi.org/10.3390/math12111707
Liu X, Shi T, Zhang Y. Solution to Several Split Quaternion Matrix Equations. Mathematics. 2024; 12(11):1707. https://doi.org/10.3390/math12111707
Chicago/Turabian StyleLiu, Xin, Tong Shi, and Yang Zhang. 2024. "Solution to Several Split Quaternion Matrix Equations" Mathematics 12, no. 11: 1707. https://doi.org/10.3390/math12111707
APA StyleLiu, X., Shi, T., & Zhang, Y. (2024). Solution to Several Split Quaternion Matrix Equations. Mathematics, 12(11), 1707. https://doi.org/10.3390/math12111707