Globally Exponentially Attracting Sets and Heteroclinic Orbits Revealed
Abstract
1. Introduction
- (1)
- The globally exponentially attracting sets are located using a series of Lyapunov functions.
- (2)
- The existence of a pair of heteroclinic orbits is proven with the aid of a Lyapunov function and the definitions of both the -limit set and -limit set.
2. Mathematical Model and Main Results
3. Globally Exponentially Attracting Sets and Proof of Proposition 1
- (1)
- is expressed as a solution of system (1) through the initial point .
- (2)
- (resp. ) is represented as the positive (resp. negative) branch of the unstable manifold corresponding to (resp. ) for a large negative t.
- (3)
- .
4. Existence of Heteroclinic Orbit and Proof of Proposition 2
- (i)
- If ∃ such that and , then is one of the equilibria of system (1).
- (ii)
- If , and, for some , , then and for all . Therefore, .
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, L. Research on Complex Dynamics of New Four-Dimensional Hyperchaotic System Based on Lorenz-like System. Master’s Thesis, South China University of Technology, Guangzhou, China, 2019; pp. 24–61. (In Chinese). [Google Scholar]
- Chen, Y.; Yang, Q. Dynamics of a hyperchaotic Lorenz-type system. Nonlinear Dyn. 2014, 77, 569–581. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F. Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system. Discret. Contin. Dyn. Syst. Ser. B 2020, 25, 1791–1820. [Google Scholar] [CrossRef]
- Wang, H.; Fan, H.; Pan, J. Complex dynamics of a four-dimensional circuit system. Int. J. Bifurc. Chaos 2021, 31, 2150208. [Google Scholar] [CrossRef]
- Wang, H.; Ke, G.; Pan, J.; Su, Q.; Dong, G.; Fan, H. Revealing the true and pseudo-singularly degenerate heteroclinic cycles. Indian J. Phys. 2023, 97, 3601–3615. [Google Scholar] [CrossRef]
- Li, T.; Chen, G.; Chen, G. On homoclinic and heteroclinic orbits of the Chen’s system. Int. J. Bifurc. Chaos 2006, 16, 3035–3041. [Google Scholar] [CrossRef]
- Tigan, G.; Constantinescu, D. Heteroclinic orbits in the T Lü System. Chaos Solitons Fractals 2009, 42, 20–23. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q. Dynamics of a new Lorenz-like chaotic system. Nonl. Anal. RWA 2010, 11, 2563–2572. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, W. Dynamics of the general Lorenz family. Nonlinear Dyn. 2012, 67, 1595–1611. [Google Scholar] [CrossRef]
- Hunt, G.W.; Peletier, M.A.; Champneys, A.R.; Woods, P.D.; Ahmerwaddee, M.; Budd, C.J.; Lord, G.J. Cellular Buckling Long Structures. Nonlinear Dyn. 2000, 21, 3–29. [Google Scholar] [CrossRef]
- Aulbach, B.; Flockerzi, D. The past in short hypercycles. J. Math. Biol. 1989, 27, 223–231. [Google Scholar] [CrossRef]
- May, R.M.; Leonard, W. Nonlinear aspect of competition between three species. SIAM J. Appl. Math. 1975, 29, 243–253. [Google Scholar] [CrossRef]
- Hofbauer, J.; Sigmund, K. On the stabilizing effect of predator and competitors on ecological communities. J. Math. Biol. 1975, 27, 537–548. [Google Scholar] [CrossRef]
- Feng, B.Y. The heteroclinic cycle in the model of competition between n species and its stability. Acta Math. Appl. Sin. 1998, 14, 404–413. [Google Scholar]
- Koon, W.S.; Lo, M.W.; Marsden, J.E.; Ross, S.D. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 2000, 10, 427–469. [Google Scholar] [CrossRef]
- Wilczak, D.; Zgliczyński, P. Heteroclinic connections between periodic orbits in planar restricted circular three body problem—A computer assisted proof. Commun. Math. Phys. 2003, 234, 37–75. [Google Scholar] [CrossRef][Green Version]
- Wilczak, D.; Zgliczyński, P. Heteroclinic connections between periodic orbits in planar restricted circular three body problem. Part II. Commun. Math. Phys. 2003, 259, 561–576. [Google Scholar] [CrossRef][Green Version]
- Wiggins, S. Introduction to Applied Nonlinear Dynamical System and Chaos; Springer: New York, NY, USA, 2003. [Google Scholar]
- Shilnikov, L.P.; Shilnikov, A.L.; Turaev, D.V.; Chua, L.O. Methods of Qualitative Theory in Nonlinear Dynamics, Part II; World Scientific: Singapore, 2001. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed.; Springer: Berlin, Germany, 1983. [Google Scholar]
- Leonov, G.A. Fishing principle for homoclinic and heteroclinic trajectories. Nonlinear Dyn. 2014, 78, 2751–2758. [Google Scholar] [CrossRef]
- Tigan, G.; Turaev, D. Analytical search for homoclinic bifurcations in the Shimizu-Morioka model. Phys. D 2011, 240, 985–989. [Google Scholar] [CrossRef]
- Wang, H.; Pan, J.; Ke, G. Revealing more hidden attractors from a new sub-quadratic Lorenz-like system of degree . Int. J. Bifurc. Chaos 2024, 34, 2450071. [Google Scholar] [CrossRef]
- Wang, H.; Pan, J.; Ke, G.; Hu, F. A pair of centro-symmetric heteroclinic orbits coined. Adv. Cont. Discr. Mod. 2024, 14, 14. [Google Scholar] [CrossRef]
- Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N.V.; Leonov, G.A.; Prasad, A. Hidden attractors in dynamical systems. Phys. Rep. 2016, 637, 1–50. [Google Scholar] [CrossRef]
- Liao, X.; Yu, P.; Xie, S.; Fu, Y. Study on the global property of the smooth Chua’s system. Int. J. Bifurc. Chaos 2006, 16, 2815–2841. [Google Scholar] [CrossRef]
- Chen, G.; Lü, J. Dynamical Analysis, Control and Synchronization of Lorenz Families; Chinese Science Press: Beijing, China, 2003. [Google Scholar]
- Liao, X. New Research on Some Mathematical Problems of Lorenz Chaotic Family; Huazhong University of Science & Technology Press: Wuhan, China, 2017. (In Chinese) [Google Scholar]
- Li, Z.; Yan, Z.; Yang, J.; Tang, X. The structure entropy of social networks. J. Syst. Sci. Complex. 2024, 37, 1147–1162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, G. Globally Exponentially Attracting Sets and Heteroclinic Orbits Revealed. Mathematics 2024, 12, 1780. https://doi.org/10.3390/math12121780
Ke G. Globally Exponentially Attracting Sets and Heteroclinic Orbits Revealed. Mathematics. 2024; 12(12):1780. https://doi.org/10.3390/math12121780
Chicago/Turabian StyleKe, Guiyao. 2024. "Globally Exponentially Attracting Sets and Heteroclinic Orbits Revealed" Mathematics 12, no. 12: 1780. https://doi.org/10.3390/math12121780
APA StyleKe, G. (2024). Globally Exponentially Attracting Sets and Heteroclinic Orbits Revealed. Mathematics, 12(12), 1780. https://doi.org/10.3390/math12121780