Multiple Sums of Circular Binomial Products
Abstract
:1. Introduction and Outline
- Recurrence relations:
- Boundary conditions:
- Generating functions:
2. The First Circular Sum
3. The Second Circular Sum
4. The Third Circular Sum
5. The Fourth Circular Sum
6. The Fifth Circular Sum
7. Conclusions and Further Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adegoke, K.; Frontczak, R.; Goy, T. Binomial sum relations involving Fibonacci and Lucas numbers. Appl. Math. 2023, 3, 851–881. [Google Scholar] [CrossRef]
- Adegoke, K.; Olatinwo, A.; Ghosh, S. Cubic binomial Fibonacci sums. Electron. J. Math. 2021, 2, 44–51. [Google Scholar] [CrossRef]
- Benjamin, A.T.; Quinn, J.J. Proofs that Really Count: The Art of Combinatorial Proof. In The Dolciani Mathematical Expositions; Mathematical Association of America: Washington, WA, USA, 2003. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Mikic, J. A proof of the curious binomial coefficient identity which is connected with the fibonacci numbers. Open Access J. Math. Theor. Phys. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Carlitz, L. The characteristic polynomial of a certain matrix of binomial coefficients. Fibonacci Quart. 1965, 3, 81–89. [Google Scholar]
- Benjamin, A.T.; Rouse, J.A. Recounting binomial Fibonacci identities. Appl. Fibonacci Numbers 2003, 9, 25–28. [Google Scholar]
- Chu, W. Circular sums of binomial coefficients. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, #92. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974; Chapter III. [Google Scholar]
- Wilf, H.S. Generatingfunctionology, 2nd ed.; Academic Press Inc.: London, UK, 1994. [Google Scholar]
- Benjamin, A.T.; Levin, G.M.; Quinn, J.J. Random approaches to Fibonacci identities. Am. Math. Mon. 2000, 107, 511–516. [Google Scholar] [CrossRef]
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences (OEIE). Available online: http://oeis.org/ (accessed on 4 April 2024).
- Lagrange, J.L. Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mém. Acad. R. Sci.-Belles-Lett. Berl. 1770, 24, 251–326. [Google Scholar]
- Chu, W. Derivative inverse series relations and Lagrange expansion formula. Int J. Num. Theory 2013, 9, 1001–1013. [Google Scholar] [CrossRef]
- Chu, W. Bell polynomials and nonlinear inverse relations. Electron. J. Combin. 2021, 28, #4.24. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.N.; Chu, W. Multiple Sums of Circular Binomial Products. Mathematics 2024, 12, 1855. https://doi.org/10.3390/math12121855
Chen MN, Chu W. Multiple Sums of Circular Binomial Products. Mathematics. 2024; 12(12):1855. https://doi.org/10.3390/math12121855
Chicago/Turabian StyleChen, Marta Na, and Wenchang Chu. 2024. "Multiple Sums of Circular Binomial Products" Mathematics 12, no. 12: 1855. https://doi.org/10.3390/math12121855
APA StyleChen, M. N., & Chu, W. (2024). Multiple Sums of Circular Binomial Products. Mathematics, 12(12), 1855. https://doi.org/10.3390/math12121855