Realization of Extremal Spectral Data by Pentadiagonal Matrices
Abstract
:1. Introduction
- (1)
- If , then .
- (2)
- If , then .
2. Construction of Symmetric Pentadiagonal Matrices
- (i)
- , for all .
- (ii)
- , for .
3. Construction of Nonsymmetric Pentadiagonal Matrix
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arela-Pérez, S.; Nina, H.; Pantáz, J.; Pickmann-Soto, H.; Valero, E. Construction of Lefkovitch and doubly Lefkovitch matrices with maximal eigenvalues and some diagonal elements prescribed. Linear Algebra Appl. 2021, 626, 152–170. [Google Scholar] [CrossRef]
- Arela-Pérez, S.; Egaña, J.; Pasten, G.; Pickmann-Soto, H. Extremal realization spectra by two acyclic matrices whose graphs are caterpillars. Linear Multilinear Algebra 2023, 71, 1657–1680. [Google Scholar] [CrossRef]
- Arela-Pérez, S.; Lozano, C.; Nina, H.; Pickmann-Soto, H.; Rodriguez, J. The new inverse eigenvalue problems for periodic and generalized periodic Jacobi matrices from their extremal spectral data. Linear Algebra Appl. 2023, 659, 55–72. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X. Inverse Eigenvalue Problem for Generalized Periodic Jacobi Matrices with Linear Relation. In Proceedings of the Third International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009; pp. 18–20. [Google Scholar]
- Liu, Z.; Wang, K.; Xu, C. Extremal inverse eigenvalue problem for symmetric doubly arrow matrices. J. Appl. Math. Comput. 2014, 45, 151–164. [Google Scholar] [CrossRef]
- Pickmann, H.; Soto, R.L.; Ega na, J.; Salas, M. An inverse problem for symmetric tridiagonal matrices. Comput. Math. Appl. 2007, 54, 699–708. [Google Scholar] [CrossRef]
- Pickmann-Soto, H.; Arela-Pérez, S.; Nina, H.; Valero, E. Inverse maximal eigenvalues problems for Leslie and doubly Leslie matrices. Linear Algebra Appl. 2020, 592, 93–112. [Google Scholar] [CrossRef]
- Sharma, D.; Sen, M. Inverse eigenvalue problems for two special acyclic matrices. Mathematics 2016, 4, 12. [Google Scholar] [CrossRef]
- Horn, H.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Boley, D.; Golub, G.H. A survey of matrix inverse eigenvalue problems. Inverse Probl. 1987, 3, 595–622. [Google Scholar] [CrossRef]
- Chu, M.T.; Golub, G.H. Inverse Eigenvalue Problems: Theory, Algorithms, and Applications; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Barcilon, V. On the multiplicity of solutions of the inverse problem for a vibrating beam. SIAM J. Appl. Math 1979, 37, 605–613. [Google Scholar] [CrossRef]
- Gladwell, G.M.L. Inverse Problems in Vibration, Kluwer Academic Publishers, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Moghaddam, M.R.; Mirzaei, H.; Ghanbari, K. On the generalized inverse eigenvalue problem of constructing symmetric pentadiagonal matrices from three mixed eigendata. Linear Multilinear Algebra 2015, 63, 1154–1166. [Google Scholar] [CrossRef]
- Andelić, M.; da Fonseca, C.M. Some determinantal cosiderations for pentadiagonal matrices. Linear Multilinear Algebra 2021, 69, 3121–3129. [Google Scholar] [CrossRef]
- Marr, R.B.; Vineyard, G.H. Five-diagonal Toeplitz determinants an their relation to Chebyshev polinomials. SIAM J. Matrix Anal. Appl. 1988, 9, 579–586. [Google Scholar] [CrossRef]
- Elouafi, A.D.A.H.M. On the characteristic polynomial, eigenvectors and determinant of a pentadiagonal matrices. Appl. Math. Comput. 2008, 198, 634–642. [Google Scholar]
- Kanal, M.E.; Baykara, N.A.; Demiralp, M. Theory and algorithm of the inversion method for pentadiagonal matrices. J. Math. Chem. 2012, 50, 289–299. [Google Scholar] [CrossRef]
- Sweet, R.A. A Recursive Relation for the Determinant of a Pentadiagonal Matrix. Commun. ACM 1969, 12, 330–332. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Brondani, A.E.; Macedo França, F.A.; Medina C., L.A. Characteristic Polynomials and Eigenvalues for Certain Classes of Pentadiagonal Matrices. Mathematics 2020, 8, 1056. [Google Scholar] [CrossRef]
- Arela-Pérez, S.; Lozano, C.; Nina, H.; Pickmann-Soto, H. Two Inverse Eigenproblems for Certain Symmetric and Nonsymmetric Pentadiagonal Matrices. Mathematics 2022, 10, 3054. [Google Scholar] [CrossRef]
- Chu, M.T.; Diele, F.; Ragni, S. On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from three largest eigenvalues. Inverse Probl. 2005, 21, 1879. [Google Scholar] [CrossRef]
- Eastman, B.; Meulen, K.N.V. Pentadiagonal Companion Matrices. Spec. Matrices 2016, 4, 13–30. [Google Scholar] [CrossRef]
- Fasino, D. Spectral and structural properties of some pentadiagonal symmetric matrices. Calcolo 1988, 25, 301–310. [Google Scholar] [CrossRef]
- Boley, D.; Golub, G.H. Inverse eigenvalue problems for band matrices. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1977; Volume 630, pp. 23–31. [Google Scholar]
- Hochstadt, H. On the construction of a Jacobi matrix from spectral data. Linear Algebra Appl. 1974, 8, 435–446. [Google Scholar] [CrossRef]
- Ghambari, K.; Mirzaei, H. Inverse eigenvalue problem for pentadiagonal matrices. Inverse Probl. Sci. Eng. 2014, 22, 530–542. [Google Scholar] [CrossRef]
- Li, J.; Dong, L.; Li, G. A class of inverse eigenvalue problems for real symmetric banded matrices with odd bandwidth. Linear Algebra Appl. 2018, 541, 131–162. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, H. On the construction of a real symmetric five-diagonal matrix from its three eigenpairs. Appl. Math. Comput. 2006, 175, 597–608. [Google Scholar] [CrossRef]
- Mirzaei, H.; Ghambari, K. Construction of H-Symmetric pentadiagonal matrices by three spectra. Appl. Math. Sci. Eng. 2022, 30, 61–74. [Google Scholar] [CrossRef]
- Parlett, B.N. The Symmetric Eigenvalue Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1998. [Google Scholar]
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1.5062 | 1.4490 | 0.3876 | 0.3814 | 0.1965 | 0.1437 | 0.1265 | |
1.5062 | 2.4118 | 2.7674 | 4.7154 | 4.9216 | 4.9317 | 4.9328 | |
−0.0661 | −0.3679 | −0.1576 | −0.8828 | −0.2302 | −0.0527 | −0.0169 |
2.0164 × | 1.5385 × |
n | |||
---|---|---|---|
5 | |||
10 | |||
15 | |||
20 | |||
25 |
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
8.0000 | 6.4384 | −8.3931 | −8.5420 | −9.0139 | −9.2627 | −9.2636 | |
8.0000 | 10.5616 | 29.4510 | 32.4643 | 33.6106 | 36.4775 | 39.8823 | |
0.1874 | 0.2344 | 0.3441 | 0.4280 | 0.4055 | 0.5309 | 0.4026 | |
0.2110 | 0.1320 | 0.0969 | 0.0603 | 0.1142 | 0.2990 | 0.9070 | |
−0.7099 | −0.3984 | −0.2910 | −0.1381 | −0.1851 | −0.4464 |
n | ||||
---|---|---|---|---|
5 | ||||
10 | ||||
15 | ||||
20 | ||||
25 | ||||
50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickmann-Soto, H.; Arela-Pérez, S.; Lozano, C.; Nina, H. Realization of Extremal Spectral Data by Pentadiagonal Matrices. Mathematics 2024, 12, 2198. https://doi.org/10.3390/math12142198
Pickmann-Soto H, Arela-Pérez S, Lozano C, Nina H. Realization of Extremal Spectral Data by Pentadiagonal Matrices. Mathematics. 2024; 12(14):2198. https://doi.org/10.3390/math12142198
Chicago/Turabian StylePickmann-Soto, Hubert, Susana Arela-Pérez, Charlie Lozano, and Hans Nina. 2024. "Realization of Extremal Spectral Data by Pentadiagonal Matrices" Mathematics 12, no. 14: 2198. https://doi.org/10.3390/math12142198
APA StylePickmann-Soto, H., Arela-Pérez, S., Lozano, C., & Nina, H. (2024). Realization of Extremal Spectral Data by Pentadiagonal Matrices. Mathematics, 12(14), 2198. https://doi.org/10.3390/math12142198