Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania
Abstract
:1. Introduction
2. Inequality and Poverty
Poverty in Italy in the Context of Agenda 2030
3. A Look at Data
4. Methodology: Tandem Clustering
4.1. Multiple Correspondence Analysis
4.2. Hierarchical Agglomerative Clustering
5. Results and Discussion
Clusters Description
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- OECD. Opportunities for All: A Framework for Policy Action on Inclusive Growth; Organisation for Economic Cooperation and Development: Paris, France, 2018. [Google Scholar]
- United Nations. The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Caritas Presentation. Available online: https://www.caritas.it/presentazione/ (accessed on 15 June 2024).
- van de Valden, M.; Iodice D’Enza, A.; Palumbo, F. Cluster Correspondence Analysis. Psychometrika 2017, 82, 158–185. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Kim, S.; Lee, J.; Lee, D.-W. A tandem clustering process for multimodal datasets. Eur. J. Oper. Res. 2006, 168, 998–1008. [Google Scholar] [CrossRef]
- Aaberge, R.; Brandolini, A. Multidimensional poverty and inequality. In Handbook of Income Distribution; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 141–216. [Google Scholar]
- Smith, A. The Wealth of Nations; The Modern Library, Random House Inc.: New York, NY, USA, 1937. [Google Scholar]
- Ravallion, M. The debate on globalization, poverty and inequality: Why measurement matters. Int. Aff. 2003, 79.4, 739–753. [Google Scholar] [CrossRef]
- Alkire, S.; Santos, M.E. Poverty and inequality measurement. In An Introduction to the Human Development and Capability Approach; Routledge: Oxfordshire, UK, 2009; pp. 121–161. [Google Scholar]
- Biggeri, M.; Bortolotti, L.; Ferrannini, A.; Saccone, D. China’s subnational policies and the performance of provinces towards meeting the UN’s Sustainable Development Goals. Reg. Stud. Reg. Sci. 2023, 10, 439–460. [Google Scholar] [CrossRef]
- Farnia, L.; Cavalli, L.; Lizzi, G.; Vergalli, S. Methodological insights to measure the Agenda 2030 at urban level in Italy. Sustainability 2019, 11, 4598. [Google Scholar] [CrossRef]
- Eurostat Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Living_conditions_in_Europe_-_poverty_and_social_exclusion (accessed on 15 June 2024).
- ISTAT. Annual Report on Poverty. Available online: https://www.istat.it/it/files/2023/06/REPORT-REDDITO-CONDIZIONI-DI-121VITA2022.pdf (accessed on 15 June 2024).
- Caritas Italiana. TUTTO DA PERDERE: Rapporto su Povertà ed Esclusione Sociale in Italia 2023; Edizioni Palumbi: Rome, Italy, 2023. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data; John Wiley & Sons: Hoboken, NJ, USA, 2019; Volume 793. [Google Scholar]
- Pages, J. Analyse factorielle de donnees mixtes. Rev. Stat. Appl. 2004, 52, 93–111. [Google Scholar]
- Gifi, A. Nonlinear Multivariate Analysis; Wiley: Chichester, UK, 1990; Volume 8. [Google Scholar]
- Benzécri, J.P. L’Analyse des Données; Two Volumes; Dunad: Paris, France, 1973. [Google Scholar]
- Greenacre, M. Theory and Application of Correspondence Analysis; Academic Press: London, UK, 1984. [Google Scholar]
- Lebart, L.; Morineau, A.; Warwick, K.M. Multivariate Descriptive Statistical Analysis; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–56. [Google Scholar] [CrossRef]
- Camminatiello, I.; Lombardo, R.; Musella, M.; Borrata, G. A model for evaluating inequalities in sustainability. Soc. Indic. Res. 2023, 1–20. [Google Scholar] [CrossRef]
- Izzo, F.; Camminatiello, I.; Sasso, P.; Solima, L.; Lombardo, R. Creating customer, museum and social value through digital technologies: Evidence from the MANN Assiri project. Socio-Econ. Plan. Sci. 2023, 85, 101502. [Google Scholar] [CrossRef]
- Rossi, L.; Camminatiello, I.; Zanetti, M. The learning style of teenagers with callous-unemotional traits. Stat.-Appl.-Ital. J. Appl. Stat. 2022, 34. [Google Scholar] [CrossRef]
- Lebart, L.; Morineau, A.; Piron, M. Statistique Exploratoire Multidimensionnelle; Dunod: Paris, France, 1997. [Google Scholar]
- Benzécri, J.P. Sur le calcul des taux d’inertie dans l’analyse d’un questionnaire (abbendum et erratum). Cah. L’Analyse Données 1979, 4, 377–378. [Google Scholar]
- Husson, F.; Le, S.; Pagés, J. Exploratory Multivariate Analysis by Example Using R; Chapman and Hall: New York, NY, USA, 2010. [Google Scholar]
- Gherghi, M.; Lauro, C. Appunti di Analisi dei Dati Multidimensionali; RCE Edizioni: Napoli, Italy, 2008. [Google Scholar]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Hwang, H.; Dillon, W.R.; Takane, Y. An extension of multiple correspondence analysis for identifying heterogeneous subgroups of respondents. Psychometrika 2006, 71, 161–171. [Google Scholar] [CrossRef]
- Iodice D’Enza, A.; Palumbo, F. Iterative factor clustering of binary data. Comput. Stat. 2013, 28, 789–807. [Google Scholar] [CrossRef]
Variable Labels | Variables | Category Labels | Categories |
---|---|---|---|
ACM | Services offered to the beneficiary: housing | YES; NO | |
AGE | Age brackets | 11–17; 18–34; 35–44; 45–54; 55–64; 65–99 | |
CHD | Indicate the presence of children | 0; 1; 2; 3 or more | |
CI | Indicate whether the users receive citizenship income | YES | |
COU | Indicate the country of origin if users are not Italian | AL; DZ; AR; BR; BG; BF; CU; EG; PH; GE; DE; GR; IN; IR; IT; KZ; KG; LT; MA; MD; NG; PK; PL; UK; DO; RO; RU; SD; SN; ES; LK; TJ; TN; UA; UZ | |
DRES | Indicate years of residence; if born in the municipality of residence, indicate N | N; 1–10; 11–20; 21–30; 31–40; 41–50; 51–60; 60+ | |
EM | Employed (including irregular) in the family unit | 0; 1; 2; 3; 4+ | |
EQ | Specify the educational qualification | MS; HS; BD; Ill | Middle school diploma; high school diploma; bachelor’s degree; illiterate |
ES | Indicate the employment status | UNW; UW; IE; PT; TC; PC; HM; RE; UN; OT | Unemployed not seeking work; unemployed seeking work; irregularly employed; part-time employed; temporary contract; permanent contract; homemaker; retired; unable to work; other |
FC | Year of the first contact with the center (specify the year) | Quantitative variable | |
FRQ | Specify the frequency of contact | W; B; M; T; Y | Weekly; biweekly; about once a month; at least once every three months; at least once a year |
GEN | Indicate gender | M; F | Male; Female |
HS | Indicate type of housing | RR; UR; SR; OP; GS; HL | Regular rent; unregistered rent; single room; owned property; guests; homeless |
LIS | Services offered to the beneficiary: listening | YES; NO | |
MD | Indicate the presence of declared pathologies within the family unit | YES; NO | |
MGS | Services provided to the beneficiary: material goods and services | YES; NO; FP; F/C; GV; GV/UB; IND; SUP; UB | Food parcel; food/clothes parcel; grocery vouchers; grocery vouchers/utility bills; clothing; support; utility bills |
MIG | If migrant, indicate the year of arrival in Italy | 1970s; 1980s; 1990s; 2000s; 2010s; 2020s | |
MS | Indicate marital status | M; D; S; W; NS | Married; divorced; single; widower; not specified |
NC | Indicate the number of family members | 0–3; 4–6; 7–9 | |
NM | Indicate the presence of minors | 0; 1; 2; 3 or more | |
OIND | Declared situation of over-indebtedness | YES; NO | |
OS | Indicate if supported by other public services | YES | |
PN | Main need for which Caritas support is requested | HI; DJ; ADD; FAM; HAN; EDI; IMM; EI; POV; HP; PRO | Housing issues; detention and justice; addiction; family issues; handicap and disabilities; educational issues; migration/immigration issues; employment issues; poverty/economic issues; health problems; other problems |
RES | Indicate the usual municipality of residence | AFR; CA; CR; CV; CE; CC; CI; MA; MAR; MT; RE; SA; SF; SME; SNS; SMV; SMCV | |
RP | For foreign users, please indicate the residence permit | YES; NO | |
SAF | In case of minors, indicate whether they attend school regularly | 0; 1; 2; 3 or more; NO | |
SN | Indicate if users have received additional support | HI; DJ; ADD; FAM; HAN; EDI; IMM; EI; POV; HP; PRO | Housing issues; detention and justice; addiction; family issues; handicap and disabilities; educational issues; migration/immigration issues; employment issues; poverty/economic issues; health problems; other problems |
TN | Indicate if users have received additional support | HI; DJ; ADD; FAM; HAN; EDI; IMM; EI; POV; HP; PRO | Housing issues; detention and justice; addiction; family issues; handicap and disabilities; educational issues; migration/immigration issues; employment issues; poverty/economic issues; health problems; other problems |
UEM | If long-term unemployed, indicate the last year of employment | Quantitative variable |
Categories | Contributions | Coordinates | ||
---|---|---|---|---|
Dim 1 | Dim 2 | Dim 1 | Dim 2 | |
Albania | 0.2494 | 0.6348 | −0.6663 | 0.9157 |
Algeria | 0.0000 | 0.0133 | −0.0010 | 0.6484 |
Argentina | 0.0030 | 0.0038 | −0.5025 | 0.4893 |
Brazil | 0.0122 | 0.0529 | 0.4562 | 0.8189 |
Bulgaria | 0.0003 | 0.0001 | −0.1686 | 0.0712 |
Burkina Faso | 0.0000 | 0.0011 | −0.0135 | −0.2668 |
Cuba | 0.0318 | 0.0001 | 1.6483 | 0.0753 |
Egypt | 0.0052 | 0.0002 | −0.6697 | 0.0979 |
Philippines | 0.0071 | 0.2513 | −0.1218 | 0.6234 |
Georgia | 0.6414 | 0.0069 | 4.2738 | 0.3810 |
Germany | 0.0175 | 0.0055 | 0.7067 | 0.3412 |
Greece | 0.0551 | 0.0020 | 2.1693 | −0.3571 |
India | 0.0156 | 0.0125 | −0.6667 | 0.5140 |
Iran | 1.0352 | 0.0210 | 4.7022 | 0.5767 |
Italy | 0.8350 | 0.6538 | −0.2312 | −0.1762 |
Kazakhstan | 0.0007 | 0.0013 | −0.2381 | 0.2839 |
Kyrgyzstan | 0.3394 | 0.0388 | 1.3060 | 0.3806 |
Lithuania | 0.0005 | 0.0303 | −0.1527 | 0.9804 |
Morocco | 0.0627 | 0.1306 | −0.5788 | 0.7195 |
Moldova | 0.0004 | 0.0036 | −0.1233 | 0.3379 |
Nigeria | 0.1192 | 0.8363 | 0.7371 | 0.2985 |
Pakistan | 0.0040 | 0.0008 | 0.4109 | 0.1636 |
United Kingdom | 0.0017 | 0.0002 | 0.3582 | 0.4327 |
Poland | 0.0271 | 0.0013 | 0.3840 | −0.1250 |
Dominican Republic | 0.0006 | 0.0000 | 0.2214 | 0.0328 |
Romania | 0.0223 | 0.0013 | 0.6899 | 0.1415 |
Russia | 0.0113 | 0.0229 | 0.4395 | 0.5397 |
Senegal | 0.0198 | 0.1088 | 3.3073 | 0.1710 |
Spain | 0.0002 | 0.0078 | 0.2228 | 0.4505 |
Sri Lanka | 0.0123 | 0.0009 | 0.1439 | 0.7013 |
Kyrgyzstan | 0.0004 | 0.0051 | 0.7242 | 0.1675 |
Tunisia | 0.0001 | 0.0421 | −0.4910 | 1.2169 |
Tajikistan | 0.0264 | 0.0435 | −0.1374 | 0.4023 |
Tunisia | 0.0020 | 1.4628 | −0.0350 | 0.7307 |
Ukraine | 3.2956 | 0.4785 | 1.0634 | 0.3491 |
Uzbekistan | 0.0016 | 0.0001 | 0.3668 | −0.0917 |
13–17 | 0.5920 | 0.0211 | 5.0301 | 0.8149 |
18–34 | 0.6406 | 0.1881 | 0.5992 | −0.2783 |
35–44 | 0.0066 | 0.0325 | −0.0394 | 0.0771 |
45–54 | 0.0127 | 0.0628 | −0.0492 | −0.0979 |
55–64 | 0.0058 | 0.0105 | 0.0318 | −0.0368 |
65–99 | 0.0109 | 0.1155 | −0.0522 | 0.1464 |
GEN.F | 0.0040 | 0.1405 | 0.0168 | 0.0863 |
GEN.M | 0.0077 | 0.2722 | −0.0325 | −0.1671 |
Afragola | 0.0011 | 0.0105 | 0.2218 | 0.5729 |
Caivano | 0.0009 | 0.0879 | −0.2815 | 2.3796 |
Capodrise | 0.0001 | 0.0049 | −0.0905 | 0.5550 |
Casagiove | 0.0079 | 0.0101 | 0.3097 | 0.3007 |
Caserta | 2.6139 | 0.729 | 0.5024 | 0.2220 |
Castel Campagnano | 0.0076 | 0 | −0.8026 | −0.0099 |
Cervino | 0.0376 | 0.0007 | −0.8952 | −0.1178 |
Maddaloni | 2.7782 | 2.2105 | −0.7406 | 0.5758 |
Marcianise | 0.601 | 12.3915 | −0.4574 | −1.7767 |
Montedecoro | 0.0072 | 0.0522 | −0.7864 | 1.8315 |
Recale | 0.0018 | 0.2526 | 0.0887 | −0.9119 |
Salerno | 0.0051 | 0.0954 | 0.6606 | 2.4625 |
San Felice a Cancello | 0.0227 | 0.0082 | 1.3954 | 0.7035 |
San Marco Evangelista | 0.0018 | 0.0006 | −0.0396 | 0.0261 |
San Nicola La Strada | 0.0207 | 0.013 | −0.1355 | −0.0879 |
Santa Maria a Vico | 0.0484 | 0.1461 | −1.4390 | 2.1716 |
Santa Maria Capua Vetere | 0.0148 | 0.0007 | 0.7951 | 0.1394 |
11 to 20 | 0.2694 | 0.006 | 0.3600 | 0.0434 |
1 to 10 | 1.6208 | 0.0819 | 0.5461 | 0.10327 |
21 to 30 | 0.0698 | 0.536 | −0.3683 | −0.8828 |
31 to 40 | 0.0533 | 2.1049 | −0.3914 | −2.1091 |
41 to 50 | 0.0983 | 1.1696 | 0.4978 | −1.4800 |
51 to 60 | 0.0212 | 0.0396 | −0.6021 | −0.7105 |
60+ | 0.0007 | 0.0133 | −0.1712 | −0.6596 |
DRES.N | 0.0520 | 1.0030 | −0.0767 | −0.2901 |
N | 0.0026 | 0.0057 | −0.4685 | 0.6003 |
MS.M | 0.6169 | 0.1261 | −0.2334 | −0.0909 |
MS.D | 0.0016 | 0.0447 | 0.0241 | −0.1088 |
MS.S | 2.9642 | 0.1032 | 0.8099 | 0.1302 |
MS.W | 0.4344 | 0.2471 | −0.4145 | 0.2692 |
0 to 3 | 0.3442 | 0.1254 | 0.1526 | 0.0793 |
4 to 6 | 0.6839 | 0.4336 | −0.3446 | −0.2363 |
7 to 9 | 0.0977 | 0.0019 | −0.4815 | −0.0580 |
0 | 12.0556 | 0.1097 | 2.3722 | 0.1949 |
1 | 0.1046 | 0.0292 | −0.1525 | −0.0694 |
2 | 0.3598 | 0.1569 | −0.2803 | −0.1595 |
3 or more | 0.4530 | 0.2247 | −0.4213 | −0.2555 |
UR | 0.0002 | 0.2983 | 0.0162 | 0.5916 |
RR | 0.0357 | 0.4530 | 0.0475 | −0.1456 |
GS | 0.0001 | 0.0023 | −0.0182 | 0.0689 |
SR | 6.7695 | 0.1685 | 3.1575 | 0.4290 |
OP | 0.5757 | 0.9386 | −0.5526 | −0.6078 |
HL | 0.0014 | 0.0991 | 0.2452 | 1.7718 |
HS | 0.0954 | 0.0011 | 0.2019 | −0.0186 |
MS | 0.2358 | 1.2473 | 0.1266 | −0.2507 |
BD | 0.0254 | 0.2202 | 0.2126 | 0.5392 |
Illiterate | 0.0516 | 0.0001 | −0.7421 | 0.0230 |
HM | 0.6740 | 0.0078 | −0.3725 | 0.0346 |
UW | 0.3794 | 0.2950 | −0.2959 | −0.2248 |
UNW | 0.0087 | 0.3586 | 0.1059 | 0.5868 |
UN | 0.0151 | 0.0067 | −0.2271 | 0.1300 |
IE | 1.6168 | 0.4105 | 0.5920 | −0.2569 |
RE | 0.0156 | 0.1285 | −0.0692 | 0.1708 |
PT | 0.0632 | 0.0048 | 0.2582 | 0.0611 |
TC | 0.0426 | 0.1078 | −0.2844 | 0.3895 |
PC | 0.0004 | 0.2811 | −0.0204 | 0.4973 |
OT | 1.7880 | 0.0000 | 2.1846 | 0.0060 |
PN.HI | 0.0000 | 0.0249 | −0.0012 | −0.2463 |
PN.HP | 0.5246 | 17.4752 | −0.4453 | −2.2134 |
PN.IMM | 7.6240 | 0.0067 | 1.9807 | 0.0507 |
PN.PAC | 0.0013 | 0.0000 | −0.3271 | −0.0083 |
PN.DJ | 0.0099 | 0.0012 | 0.5301 | 0.1593 |
PN.FAM | 0.0119 | 0.0121 | −0.2691 | 0.2339 |
PN.ADD | 0.0001 | 0.0027 | −0.0613 | 0.2934 |
PN.HAN | 0.0640 | 0.0381 | 0.8270 | 0.5490 |
PN.EDI | 0.0013 | 0.0021 | 0.2334 | −0.2560 |
PN.EI | 1.6004 | 0.0048 | 0.7847 | 0.0372 |
PN.POV | 1.8813 | 3.1435 | −0.4083 | 0.4545 |
PN.PRO | 0.0294 | 0.0388 | 0.1429 | −0.1415 |
SN.ADD | 0.0074 | 0.0061 | −0.3256 | 0.2548 |
SN.HI | 0.0001 | 0.0027 | 0.0483 | 0.2062 |
SN.DJ | 0.1294 | 0.2208 | −1.2566 | 1.4138 |
SN.FAM | 0.0231 | 0.0052 | −0.2932 | 0.1201 |
SN.HAN | 0.0132 | 0.0006 | −0.4335 | 0.0772 |
SN.EDI | 0.0029 | 0.0036 | −0.5012 | 0.4768 |
SN.EI | 0.3485 | 0.1577 | −0.4920 | 0.2851 |
SN.POV | 0.4039 | 15.1835 | −0.3504 | −1.8503 |
SN.PRO | 0.0102 | 0.2828 | −0.0748 | 0.3389 |
SN.IMM | 5.9819 | 0.0034 | 2.8037 | 0.0572 |
SN.HP | 0.0086 | 0.2007 | −0.1015 | 0.4232 |
2000 | 0.0010 | 0.0237 | −0.2111 | −0.8670 |
2001 | 0.0000 | 0.0014 | −0.0474 | −0.2931 |
2003 | 0.0001 | 0.0007 | −0.0693 | −0.1447 |
2004 | 0.0002 | 0.0024 | −0.1006 | −0.2750 |
2005 | 0.0015 | 0.0008 | 0.3602 | −0.2187 |
2008 | 0.0006 | 0.0004 | −0.1332 | −0.0947 |
2009 | 0.0002 | 0.0036 | −0.0836 | −0.3365 |
2010 | 0.0058 | 0.0129 | 0.1958 | −0.2508 |
2011 | 0.0055 | 0.0068 | 0.4829 | −0.4647 |
2013 | 0.0000 | 0.0015 | 0.0188 | 0.0944 |
2014 | 0.1083 | 1.3733 | −0.3993 | −1.2249 |
2015 | 0.0450 | 1.1157 | −0.2033 | −0.8719 |
2016 | 0.1599 | 0.0426 | −0.3080 | 0.1368 |
2017 | 0.2065 | 0.4358 | −0.2716 | 0.3399 |
2018 | 0.1261 | 0.0553 | −0.3422 | 0.1952 |
2019 | 0.0532 | 0.0411 | −0.2187 | −0.1655 |
2020 | 0.2010 | 0.0428 | −0.2769 | −0.1100 |
2021 | 0.4102 | 0.0672 | −0.3837 | 0.1337 |
2022 | 0.3117 | 0.3069 | −0.3290 | −0.2811 |
2023 | 0.1387 | 0.3374 | −0.4001 | 0.5375 |
FRQ.Y | 0.0903 | 0.0088 | 1.3888 | 0.3724 |
FRQ.M | 0.0079 | 0.0017 | −0.0204 | 0.0082 |
FRQ.T | 0.0194 | 0.0282 | −0.4286 | −0.4456 |
FRQ.B | 0.0044 | 0.0216 | −0.0747 | −0.1418 |
FRQ.W | 0.0050 | 0.0128 | −0.0749 | −0.1034 |
LIS.NO | 0.1003 | 0.0854 | 0.7100 | 0.5643 |
LIS.YES | 1.8280 | 4.5479 | −0.4404 | 0.5983 |
MGS.FOOD PARCEL | 2.1021 | 0.0695 | −0.3484 | −0.0546 |
MGS.FOOD PARCEL/CLOTHING | 0.0513 | 0.1407 | −1.0464 | 1.4931 |
MGS.GROCERY VOUCHERS | 0.4383 | 0.0044 | 1.6352 | −0.1406 |
MGS.GROCERY VOUCHERS/UTILITY | 1.4355 | 0.0144 | 1.6152 | −0.1392 |
MGS.CLOTHING | 0.0083 | 0.0114 | −0.8422 | 0.8515 |
MGS.NO | 0.0081 | 0.0001 | 0.8311 | 0.0634 |
MGS.YES | 0.0142 | 0.3412 | −0.2162 | 0.9118 |
MGS.SUPPORT | 0.0034 | 0.0128 | 0.3787 | −0.6377 |
MGS.UTILITY BILLS | 0.1653 | 0.0019 | 0.9114 | 0.0844 |
Description | Cla/Mod | Mod/Cla | Global | p-Value | v.Yest |
---|---|---|---|---|---|
PN = PN_HP | 95V575 | 97.738 | 12.370 | <0.0001 | 34.512 |
SN = SN_POV | 78.292 | 99.548 | 15.380 | <0.0001 | 32.097 |
RES = Marcianise | 81.855 | 91.855 | 13.574 | <0.0001 | 30.195 |
COU = Italia | 16.479 | 99.548 | 73.071 | <0.0001 | 11.617 |
MGS = MGS_FOOD PARCEL | 14.875 | 99.548 | 80.952 | <0.0001 | 9.330 |
DRES = 31 to 40 | 73.333 | 9.955 | 1.642 | <0.0001 | 7.797 |
EQ = MS | 15.513 | 88.235 | 68.801 | <0.0001 | 7.142 |
DRES = 41 to 50 | 55.882 | 8.597 | 1.861 | <0.0001 | 6.168 |
FC = 2015 | 34.409 | 14.480 | 5.090 | <0.0001 | 5.780 |
FC = 2014 | 41.379 | 10.860 | 3.175 | <0.0001 | 5.724 |
HS = OP | 26.708 | 19.457 | 8.812 | <0.0001 | 5.327 |
ES = IE | 19.797 | 35.294 | 21.565 | <0.0001 | 5.023 |
DRES = 21 to 30 | 40.909 | 8.145 | 2.408 | <0.0001 | 4.880 |
FC = 2022 | 19.919 | 22.172 | 13.465 | <0.0001 | 3.798 |
GEN = GEN_M | 15.916 | 44.796 | 34.045 | <0.0001 | 3.531 |
FRQ = FRQ_M | 12.963 | 95.023 | 88.670 | <0.0001 | 3.429 |
NC = 4 to 6 | 16.057 | 35.747 | 26.929 | <0.0001 | 3.072 |
RES = Recale | 36.842 | 3.167 | 1.040 | <0.0001 | 2.762 |
CHD = 2 | 16.113 | 28.507 | 21.401 | <0.0001 | 2.668 |
ES = UW | 16.216 | 27.149 | 20.252 | <0.0001 | 2.639 |
MS = MS_M | 13.857 | 60.633 | 52.928 | <0.0001 | 2.450 |
HS = RR | 13.072 | 80.090 | 74.111 | <0.0001 | 2.199 |
DRES = N | 13.907 | 47.511 | 41.325 | <0.0001 | 1.979 |
MGS = MGS_YES | 0.000 | 0.452 | 1.423 | <0.0001 | −2.118 |
COU = Albania | 2.083 | 0.452 | 2.627 | <0.0001 | −2.396 |
COU = Senegal | 0.000 | 0.000 | 1.861 | <0.0001 | −2.513 |
MS = MS_S | 8.290 | 14.480 | 21.128 | <0.0001 | −2.658 |
ES = PC | 2.778 | 0.905 | 3.941 | <0.0001 | −2.761 |
COU = Philippines | 0.000 | 0.000 | 2.244 | <0.0001 | −2.823 |
FC = 2017 | 6.695 | 7.240 | 13.082 | <0.0001 | −2.894 |
ES = TC | 0.000 | 0.000 | 2.463 | <0.0001 | −2.989 |
NC = 0 to 3 | 10.530 | 60.181 | 69.130 | <0.0001 | −3.011 |
EQ = BD | 0.000 | 0.000 | 2.627 | <0.0001 | −3.108 |
HS = UR | 0.000 | 0.000 | 2.956 | <0.0001 | −3.337 |
HS = SR | 0.000 | 0.000 | 3.175 | <0.0001 | −3.482 |
GEN = GEN_F | 10.124 | 55.204 | 65.955 | <0.0001 | −3.531 |
DRES = 1 to 10 | 7.527 | 15.837 | 25.452 | <0.0001 | −3.631 |
SN = SN_IMM | 0.000 | 0.000 | 3.558 | <0.0001 | −3.725 |
ES = UNW | 0.000 | 0.000 | 3.612 | <0.0001 | −3.759 |
SN = SN.HP | 0.000 | 0.000 | 3.886 | <0.0001 | −3.923 |
FC = 2023 | 0.000 | 0.000 | 4.050 | <0.0001 | −4.020 |
ES = PT | 0.000 | 0.000 | 4.433 | <0.0001 | −4.237 |
SN = SN.EI | 0.813 | 0.452 | 6.732 | <0.0001 | −4.817 |
PN = PN.PRO | 0.813 | 0.452 | 6.732 | <0.0001 | −4.817 |
RES = San Marco Evangelista | 0.000 | 0.000 | 5.692 | <0.0001 | −4.894 |
SN = SN.PRO | 0.000 | 0.000 | 8.539 | <0.0001 | −6.167 |
PN = PN.IMM | 0.000 | 0.000 | 9.086 | <0.0001 | −6.388 |
PN = PN.EI | 0.901 | 0.905 | 12.151 | <0.0001 | −6.628 |
CHD = 0 | 0.000 | 0.000 | 10.016 | <0.0001 | −6.751 |
COU = Ukraine | 0.000 | 0.000 | 13.629 | <0.0001 | −8.044 |
RES = Maddaloni | 0.461 | 0.905 | 23.755 | <0.0001 | −10.372 |
LIS = LIS.YES | 0.497 | 1.810 | 44.061 | <0.0001 | −15.416 |
RES = Caserta | 0.337 | 1.357 | 48.714 | <0.0001 | −16.961 |
PN = PN.POV | 0.104 | 0.452 | 52.764 | <0.0001 | −18.646 |
Description | Cla/Mod | Mod/Cla | Global | p-Value | v.Test |
---|---|---|---|---|---|
PN = PN.POV | 99.481 | 69.898 | 52.764 | <0.0001 | 28.096 |
LIS = LIS.YES | 98.758 | 57.945 | 44.061 | <0.0001 | 23.251 |
MGS = MGS.FOOD PARCEL | 84.652 | 91.254 | 80.952 | <0.0001 | 18.261 |
RES = Maddaloni | 99.539 | 31.487 | 23.755 | <0.0001 | 16.267 |
SN = SN.PRO | 98.718 | 11.224 | 8.539 | <0.0001 | 8.619 |
SN = SN.EI | 98.374 | 8.819 | 6.732 | <0.0001 | 7.407 |
PN = PN.PRO | 98.374 | 8.819 | 6.732 | <0.0001 | 7.407 |
FC = 2017 | 92.050 | 16.035 | 13.082 | <0.0001 | 7.134 |
RES = San Marco Evangelista | 99.038 | 7.507 | 5.692 | <0.0001 | 7.062 |
FC = 2023 | 98.649 | 5.321 | 4.050 | <0.0001 | 5.722 |
ES = PT | 97.531 | 5.758 | 4.433 | <0.0001 | 5.603 |
HS = UR | 100.000 | 3.936 | 2.956 | <0.0001 | 5.256 |
SN = SN.HP | 97.183 | 5.029 | 3.886 | <0.0001 | 5.107 |
MS = MS.W | 87.963 | 13.848 | 11.823 | <0.0001 | 4.945 |
RES = San Nicola La Strada | 93.878 | 6.706 | 5.364 | <0.0001 | 4.940 |
ES = PC | 95.833 | 5.029 | 3.941 | <0.0001 | 4.734 |
FC = 2016 | 89.583 | 9.402 | 7.882 | <0.0001 | 4.503 |
COU = Philippines | 100.000 | 2.988 | 2.244 | <0.0001 | 4.499 |
FC = 2018 | 91.304 | 6.122 | 5.036 | <0.0001 | 4.012 |
FRQ = FRQ.W | 92.105 | 5.102 | 4.160 | <0.0001 | 3.828 |
EQ = BD | 95.833 | 3.353 | 2.627 | <0.0001 | 3.799 |
ES = TC | 95.556 | 3.134 | 2.463 | <0.0001 | 3.604 |
ES = HM | 81.687 | 24.708 | 22.715 | <0.0001 | 3.604 |
FC = 2021 | 84.034 | 14.577 | 13.027 | <0.0001 | 3.539 |
MGS = MGS.YES | 100.000 | 1.895 | 1.423 | <0.0001 | 3.455 |
COU = Albania | 93.750 | 3.280 | 2.627 | <0.0001 | 3.332 |
ES = UNW | 90.909 | 4.373 | 3.612 | <0.0001 | 3.261 |
SN = SN.FAM | 100.000 | 1.676 | 1.259 | <0.0001 | 3.213 |
CHD = 1 | 81.250 | 22.741 | 21.018 | <0.0001 | 3.197 |
FRQ = FRQ.B | 89.706 | 4.446 | 3.722 | <0.0001 | 3.029 |
FC = 2020 | 83.036 | 13.557 | 12.261 | <0.0001 | 3.018 |
COU = Senegal | 94.118 | 2.332 | 1.861 | <0.0001 | 2.822 |
PN = PN.HI | 96.154 | 1.822 | 1.423 | <0.0001 | 2.752 |
HS = GS | 93.548 | 2.114 | 1.697 | <0.0001 | 2.584 |
MS = MS.M | 77.559 | 54.665 | 52.928 | <0.0001 | 2.577 |
GEN = GEN.F | 76.929 | 67.566 | 65.955 | <0.0001 | 2.504 |
PN = PN.FAM | 100.000 | 1.020 | 0.766 | <0.0001 | 2.369 |
FC = 2010 | 100.000 | 0.948 | 0.712 | <0.0001 | 2.260 |
ES = UW | 79.459 | 21.429 | 20.252 | <0.0001 | 2.196 |
FC = 2019 | 84.211 | 5.831 | 5.200 | <0.0001 | 2.171 |
DRES = 21 to 30 | 59.091 | 1.895 | 2.408 | <0.0001 | −2.349 |
COU = Georgia | 0.000 | 0.000 | 0.164 | <0.0001 | −2.424 |
GEN = GEN.M | 71.543 | 32.434 | 34.045 | <0.0001 | −2.504 |
FC = 2014 | 58.621 | 2.478 | 3.175 | <0.0001 | −2.786 |
COU = Iran | 0.000 | 0.000 | 0.219 | <0.0001 | −2.894 |
FC = 2015 | 61.290 | 4.155 | 5.090 | <0.0001 | −3.014 |
COU = Ukraine | 67.068 | 12.172 | 13.629 | <0.0001 | −3.071 |
COU = Santo Domingo | 0.000 | 0.000 | 0.274 | <0.0001 | −3.307 |
FRQ = FRQ.M | 73.889 | 87.245 | 88.670 | <0.0001 | −3.464 |
DRES = N | 70.728 | 38.921 | 41.325 | <0.0001 | −3.603 |
DRES = 41 to 50 | 44.118 | 1.093 | 1.861 | <0.0001 | −3.849 |
AGE = 18–34 | 59.211 | 6.560 | 8.320 | <0.0001 | −4.497 |
MGS = MGS.GROCERY VOUCHERS | 14.286 | 0.146 | 0.766 | <0.0001 | −4.676 |
DRES = 31 to 40 | 23.333 | 0.510 | 1.642 | <0.0001 | −5.929 |
ES = OT | 18.750 | 0.437 | 1.752 | <0.0001 | −6.682 |
MS = MS.S | 60.622 | 17.055 | 21.128 | <0.0001 | −7.140 |
HS = SR | 8.621 | 0.364 | 3.175 | <0.0001 | −10.894 |
ES = IE | 51.777 | 14.869 | 21.565 | <0.0001 | −11.518 |
EQ = MS | 67.621 | 61.953 | 68.801 | <0.0001 | −11.73 |
SN = SN.IMM | 1.538 | 0.073 | 3.558 | <0.0001 | −13.097 |
CHD = 0 | 8.743 | 1.166 | 10.016 | <0.0001 | −20.355 |
PN = PN.IMM | 4.217 | 0.510 | 9.086 | <0.0001 | −20.805 |
RES = Marcianise | 17.742 | 3.207 | 13.574 | <0.0001 | −20.840 |
SN = SN.POV | 20.996 | 4.300 | 15.380 | <0.0001 | −21.205 |
PN = PN.HP | 4.425 | 0.729 | 12.370 | <0.0001 | −24.823 |
Description | Cla/Mod | Mod/Cla | Global | p-Value | v.Test |
---|---|---|---|---|---|
CHD = 0 | 91.257 | 71.368 | 10.016 | <0.0001 | 26.948 |
PN = PN.IMM | 95.783 | 67.949 | 9.086 | <0.0001 | 26.924 |
RES = Caserta | 25.843 | 98.291 | 48.714 | <0.0001 | 18.069 |
SN = SN.IMM | 98.462 | 27.350 | 3.558 | <0.0001 | 16.299 |
HS = SR | 91.379 | 22.650 | 3.175 | <0.0001 | 13.918 |
MGS = MGS.GROCERY VOUCHERS | 95.745 | 19.231 | 2.573 | <0.0001 | 13.182 |
MS = MS.S | 31.088 | 51.282 | 21.128 | <0.0001 | 11.062 |
ES = IE | 28.426 | 47.863 | 21.565 | <0.0001 | 9.661 |
COU = Ukraine | 32.932 | 35.043 | 13.629 | <0.0001 | 9.074 |
EQ = MS | 16.866 | 90.598 | 68.801 | <0.0001 | 8.403 |
ES = OT | 75.000 | 10.256 | 1.752 | <0.0001 | 8.099 |
PN = PN.EI | 28.829 | 27.350 | 12.151 | <0.0001 | 6.854 |
MGS = MGS.GROCERY VOUCHERS | 85.714 | 5.128 | 0.766 | <0.0001 | 6.093 |
NC = 0 to 3 | 15.044 | 81.197 | 69.130 | <0.0001 | 4.430 |
COU = Santo Domingo | 100.000 | 2.137 | 0.274 | <0.0001 | 4.150 |
DRES = 1 to 10 | 18.280 | 36.325 | 25.452 | <0.0001 | 3.955 |
AGE = 18–34 | 23.684 | 15.385 | 8.320 | <0.0001 | 3.853 |
COU = Iran | 100.000 | 1.709 | 0.219 | <0.0001 | 3.649 |
MGS = MGS.UTILITY BILLS | 47.059 | 3.419 | 0.930 | <0.0001 | 3.417 |
COU = Georgia | 100.000 | 1.282 | 0.164 | <0.0001 | 3.079 |
COU = Kyrgyzstan | 41.176 | 2.991 | 0.930 | <0.0001 | 2.896 |
DRES = N | 15.364 | 0.729 | 12.370 | <0.0001 | 2.723 |
AGE = 13–17 | 100.000 | 0.855 | 0.109 | <0.0001 | 2.401 |
COU = Nigeria | 50.000 | 1.282 | 0.328 | <0.0001 | 2.119 |
PN = PN.DJ | 66.667 | 0.855 | 0.164 | <0.0001 | 1.987 |
SN = SN.FAM | 0.000 | 0.000 | 1.259 | <0.0001 | −2.035 |
MGS = MGS.YES | 0.000 | 0.000 | 1.423 | <0.0001 | −2.203 |
PN = PN.HI | 0.000 | 0.000 | 1.423 | <0.0001 | −2.203 |
FRQ = FRQ.B | 4.412 | 1.282 | 3.722 | <0.0001 | −2.276 |
DRES = 41 to 50 | 0.000 | 0.000 | 1.861 | <0.0001 | −2.610 |
FC = 2015 | 4.301 | 1.709 | 5.090 | <0.0001 | −2.755 |
CHD = 2 | 8.696 | 14.530 | 21.401 | <0.0001 | −2.828 |
SN = SN.HP | 2.817 | 0.855 | 3.886 | <0.0001 | −2.880 |
COU = Philippines | 0.000 | 0.000 | 2.244 | <0.0001 | −2.930 |
DRES = 21 to 30 | 0.000 | 0.000 | 2.408 | <0.0001 | −3.058 |
ES = PT | 2.469 | 0.855 | 4.433 | <0.0001 | −3.239 |
ES = PC | 1.389 | 0.427 | 3.941 | <0.0001 | −3.456 |
HS = UR | 0.000 | 0.000 | 2.956 | <0.0001 | −3.459 |
FC = 2023 | 1.351 | 0.427 | 4.050 | <0.0001 | −3.526 |
FC = 2018 | 2.174 | 0.855 | 5.036 | <0.0001 | −3.606 |
FC = 2014 | 0.000 | 0.000 | 3.175 | <0.0001 | −3.608 |
NC = 4 to 6 | 8.130 | 17.094 | 26.929 | <0.0001 | −3.758 |
FC = 2019 | 1.053 | 0.427 | 5.200 | <0.0001 | −4.209 |
FRQ = FRQ.W | 0.000 | 0.000 | 4.160 | <0.0001 | −4.227 |
CHD = 3 or more | 4.587 | 4.274 | 11.932 | <0.0001 | −4.258 |
FC = 2016 | 2.778 | 1.709 | 7.882 | <0.0001 | −4.291 |
RES = San Marco Evangelista | 0.962 | 0.427 | 5.692 | <0.0001 | −4.478 |
RES = San Nicola La Strada | 0.000 | 0.000 | 5.364 | <0.0001 | −4.894 |
SN = SN.EI | 0.813 | 0.427 | 6.732 | <0.0001 | −5.009 |
PN = PN.PRO | 0.813 | 0.427 | 6.732 | <0.0001 | −5.009 |
ES = HM | 6.024 | 10.684 | 22.715 | <0.0001 | −5.017 |
SN = SN.PRO | 1.282 | 0.855 | 8.539 | <0.0001 | −5.396 |
CHD = 1 | 5.208 | 8.547 | 21.018 | <0.0001 | −5.425 |
HS = OP | 1.242 | 0.855 | 8.812 | <0.0001 | −5.518 |
MS = MS.M | 8.583 | 35.470 | 52.928 | <0.0001 | −5.663 |
FC = 2020 | 2.232 | 2.137 | 12.261 | <0.0001 | −5.878 |
ES = UW | 4.324 | 6.838 | 20.252 | <0.0001 | −6.013 |
MS = MS.W | 1.852 | 1.709 | 11.823 | <0.0001 | −6.034 |
FC = 2021 | 1.681 | 1.709 | 13.027 | <0.0001 | −6.508 |
FC = 2017 | 1.255 | 1.282 | 13.082 | <0.0001 | −6.874 |
FC = 2022 | 0.813 | 0.855 | 13.465 | <0.0001 | −7.384 |
RES = Marcianise | 0.403 | 0.427 | 13.574 | <0.0001 | −7.825 |
PN = PN.HP | 0.000 | 0.000 | 12.370 | <0.0001 | −7.863 |
SN = SN.POV | 0.712 | 0.855 | 15.380 | <0.0001 | −8.067 |
COU = Italia | 8.689 | 49.573 | 73.071 | <0.0001 | −8.229 |
RES = Maddaloni | 0.000 | 0.000 | 23.755 | <0.0001 | −11.485 |
LIS = LIS.YES | 0.745 | 2.564 | 44.061 | <0.0001 | −15.499 |
PN = PN.POV | 0.415 | 1.709 | 52.764 | <0.0001 | −18.511 |
MGS = MGS.FOOD PARCEL | 0.473 | 2.991 | 80.952 | <0.0001 | −29.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musella, M.; Camminatiello, I.; Izzo, F. Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania. Mathematics 2024, 12, 2301. https://doi.org/10.3390/math12152301
Musella M, Camminatiello I, Izzo F. Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania. Mathematics. 2024; 12(15):2301. https://doi.org/10.3390/math12152301
Chicago/Turabian StyleMusella, Mario, Ida Camminatiello, and Francesco Izzo. 2024. "Caritas’s Work for the Goals of Agenda 2030: A Study on the Services Provided in Campania" Mathematics 12, no. 15: 2301. https://doi.org/10.3390/math12152301