Inverse Problem for the Nonlinear Convection–Diffusion Equation by Using the Multigrid Method and Constraint Data
Abstract
:1. Introduction
2. Direct Problem
2.1. Nonlinear Convection–Diffusion Equation
- —porosity;
- —permeability;
- —height;
- —global pressure;
- —total Darcy velocity;
- —total mobility of the phases;
- —phase mobility of the nonwetting phase;
- —density of the wetting phase;
- —density of the nonwetting phase;
- —production well;
- —injection well.
2.2. Upwind Difference Scheme
3. Inverse Problem Formulation
4. Inversion Method
Algorithm 1: Two-grid method. |
|
Algorithm 2: Multigrid method. |
|
5. Numerical Examples
- Model 1. The first model is a level-stratified permeability model comprising three interfaces, and the permeability values from bottom to top are 1.55, 3.33, 1.21, and 2.80 as shown in Figure 3. For the addition of 40 dB, 30 dB, 20 dB, and 10 dB Gaussian noises (which are generated by the function AWGN in MATLAB) to the measurement data, the inversion results of the multigrid method with constraint data and the multigrid method without constraint data are respectively displayed in Figure 4 and Figure 5.
- Model 2. The second model as shown in Figure 6 is composed of two anomalous bodies embedded into a homogeneous background. The background permeability value is 3.25. The permeability values of the two anomalous bodies are 4.95 and 2.18. Figure 7 and Figure 8 respectively display the inversion results of the multigrid method with constraint data and the multigrid method without constraint data, with 40 dB, 30 dB, 20 dB, and 10 dB Gaussian noises added.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zureigat, H.; Al-Smadi, M.; Al-Khateeb, A.; Al-Omari, S.; Alhazmi, S.E. Fourth-order numerical solutions for a fuzzy time-fractional convection-diffusion equation under Caputo generalized hukuhara derivative. Fractal Fract. 2023, 7, 47. [Google Scholar] [CrossRef]
- Thiele, J.C.; Gregor, I.; Karedla, N.; Enderlein, J. Efficient modeling of three-dimensional convection-diffusion problems in stationary flows. Phys. Fluids 2020, 32, 112015. [Google Scholar] [CrossRef]
- Al-Khateeb, A. Efficient numerical solutions for fuzzy time fractional convection diffusion equations using two explicit finite difference methods. Axioms 2024, 13, 221. [Google Scholar] [CrossRef]
- Moraga, N.O.; Jaime, J.I.; Cabrales, R.C. An approach to accelerate the convergence of SIMPLER algorithm for convection-diffusion problems of fluid flow with heat transfer and phase change. Int. Commun. Heat Mass 2021, 129, 105715. [Google Scholar] [CrossRef]
- Salmi, A.; Madkhali, H.A.; Nawaz, M.; Alharbi, S.O.; Malik, M.Y. Computational analysis for enhancement of heat and mass transfer in MHD-polymer with hybrid nano-particles using generalized laws. Case Stud. Therm. Eng. 2022, 31, 101851. [Google Scholar] [CrossRef]
- Espedal, M.S.; Karlsen, K.H. Numerical solution of reservoir flow models based on large time step operator splitting algorithm. In Filtration in Porous Media and Industrial Applications: Lecture Notes in Mathematics; Fasano, A., Ed.; Springer: Berlin, Germany, 2000; Volume 1734, pp. 9–77. [Google Scholar]
- Subbey, S.; Christie, M.; Sambridge, M. Prediction under uncertainty in reservoir modeling. J. Petrol. Sci. Eng. 2004, 44, 143–153. [Google Scholar] [CrossRef]
- Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Liu, P.; Liu, S. Gas diffusion coefficient estimation of coal: A dimensionless numerical method and its experimental validation. Int. J. Heat Mass Tran. 2020, 162, 120336. [Google Scholar] [CrossRef]
- Pohjola, V. A uniqueness result for an inverse problem of the steady state convection-diffusion equation. SIAM J. Math. Anal. 2015, 47, 2084–2103. [Google Scholar] [CrossRef]
- Burman, E.; Nechita, M.; Oksanen, L. A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: Diffusion-dominated regime. Numer. Math. 2020, 144, 451–477. [Google Scholar] [CrossRef]
- Burman, E.; Nechita, M.; Oksanen, L. A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: Convection-dominated regime. Numer. Math. 2022, 150, 769–801. [Google Scholar] [CrossRef]
- Sharma, M.; Hahn, M.; Leyffer, S.; Ruthotto, L.; van Bloemen Waanders, B. Inversion of convection-diffusion equation with discrete sources. Optim. Eng. 2021, 22, 1419–1457. [Google Scholar] [CrossRef]
- Kelbert, A.; Egbert, G.D.; Schultz, A. Non-linear conjugate gradient inversion for global EM induction: Resolution studies. Geophys. J. Int. 2008, 173, 365–381. [Google Scholar] [CrossRef]
- Bauer, F.; Hohage, T.; Munk, A. Iteratively regularized Gauss–Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal. 2009, 47, 1827–1846. [Google Scholar] [CrossRef]
- Pan, W.; Innanen, K.A.; Margrave, G.F.; Fehler, M.C.; Fang, X.; Li, J. Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion. Geophysics 2016, 81, R275–R291. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Mohammad-Djafari, A. Regularization, Bayesian inference, and machine learning methods for inverse problems. Entropy 2021, 23, 1673. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J. Deep learning for geophysics: Current and future trends. Rev. Geophys. 2021, 59, e2021RG000742. [Google Scholar] [CrossRef]
- Singhal, V.; Majumdar, A. A domain adaptation approach to solve inverse problems in imaging via coupled deep dictionary learning. Pattern Recogn. 2020, 100, 107163. [Google Scholar] [CrossRef]
- Liu, L.; Ma, J.; Plonka, G. Sparse graph-regularized dictionary learning for suppressing random seismic noise. Geophysics 2018, 83, V215–V231. [Google Scholar] [CrossRef]
- Liu, L.; Ma, J. Structured graph dictionary learning and application on the seismic denoising. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1883–1893. [Google Scholar] [CrossRef]
- Ahmad, D.; Donatelli, M.; Mazza, M.; Serra-Capizzano, S.; Trotti, K. A note on the convergence of multigrid methods for the Riesz-Space equation and an application to image deblurring. Mathematics 2024, 12, 1916. [Google Scholar] [CrossRef]
- Donatelli, M.; Krause, R.; Mazza, M.; Trotti, K. Multigrid for two-sided fractional differential equations discretized by finite volume elements on graded meshes. J. Comput. Appl. Math. 2024, 444, 115787. [Google Scholar] [CrossRef]
- Teunissen, J.; Schiavello, F. Geometric multigrid method for solving Poisson’s equation on octree grids with irregular boundaries. Comput. Phys. Commun. 2023, 286, 108665. [Google Scholar] [CrossRef]
- Bolten, M.; Donatelli, M.; Ferrari, P.; Furci, I. Symbol based convergence analysis in block multigrid methods with applications for Stokes problems. Appl. Numer. Math. 2023, 193, 109–130. [Google Scholar] [CrossRef]
- Oh, S.; Milstein, A.B.; Bouman, C.A.; Webb, K.J. A general framework for nonlinear multigrid inversion. IEEE Trans. Image Process. 2004, 14, 125–140. [Google Scholar]
- Liu, T. A multigrid-homotopy method for nonlinear inverse problems. Comput. Math. Appl. 2020, 79, 1706–1717. [Google Scholar] [CrossRef]
- Al-Mahdawi, H.K.I.; Abotaleb, M.; Alkattan, H.; Tareq, A.M.Z.; Badr, A.; Kadi, A. Multigrid method for solving inverse problems for heat equation. Mathematics 2022, 10, 2802. [Google Scholar] [CrossRef]
- Al-Mahdawi, H.K.; Sidikova, A.I.; Alkattan, H.; Abotaleb, M.; Kadi, A.; El-Kenawy, E.S.M. Parallel multigrid method for solving inverse problems. MethodsX 2022, 9, 101887. [Google Scholar] [CrossRef]
- Xie, M.; Xu, F.; Yue, M. A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering. ESAIM Math. Model. Numer. Anal. 2021, 55, 1779–1802. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Duan, Y.; Yin, K.; Tai, X.C. An efficient multi-grid method for TV minimization problems. Inverse Probl. Imag. 2021, 15, 1199–1221. [Google Scholar] [CrossRef]
- Marlevi, D.; Kohr, H.; Buurlage, J.W.; Gao, B.; Batenburg, K.J.; Colarieti-Tosti, M. Multigrid reconstruction in tomographic imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 4, 300–310. [Google Scholar] [CrossRef]
- Edjlali, E.; Bérubé-Lauzière, Y. Lq-Lp optimization for multigrid fluorescence tomography of small animals using simplified spherical harmonics. J. Quant. Spectrosc. Ra. 2018, 205, 163–173. [Google Scholar] [CrossRef]
- Li, S.; Montcel, B.; Yuan, Z.; Liu, W.; Vray, D. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography. Biomed. Opt. Express 2015, 6, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Sorsa, L.I.; Takala, M.; Eyraud, C.; Pursiainen, S. A time-domain multigrid solver with higher-order born approximation for full-wave radar tomography of a complex-shaped target. IEEE Trans. Comput. Imaging 2020, 6, 579–590. [Google Scholar] [CrossRef]
- Ascher, U.M.; Haber, E. A multigrid method for distributed parameter estimation problems. Electron. Trans. Numer. Anal. 2003, 15, 1–17. [Google Scholar]
- Adavani, S.S.; Biros, G. Multigrid algorithms for inverse problems with linear parabolic PDE constraints. SIAM J. Sci. Comput. 2008, 31, 369–397. [Google Scholar] [CrossRef]
- Liu, T. Parameter estimation with the multigrid-homotopy method for a nonlinear diffusion equation. J. Comput. Appl. Math. 2022, 413, 114393. [Google Scholar] [CrossRef]
- Christiansen, R.; Morosini, A.; Enriquez, E.; Muñoz, B.; Klinger, F.L.; Martinez, M.P.; Suárez, A.O.; Kostadinoff, J. 3D litho-constrained inversion model of southern Sierra Grande de San Luis: New insights into the Famatinian tectonic setting. Tectonophysics 2019, 756, 1–24. [Google Scholar] [CrossRef]
- Dobróka, M.; Szabó, N.P.; Tóth, J.; Vass, P. Interval inversion approach for an improved interpretation of well logs. Geophysics 2016, 81, D155–D167. [Google Scholar] [CrossRef]
- Dobróka, M.; Szabó, N.P. Interval inversion of well-logging data for automatic determination of formation boundaries by using a float-encoded genetic algorithm. J. Petrol. Sci. Eng. 2012, 86, 144–152. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Moore, A.M.; Arango, H.G.; Cornuelle, B.D.; Miller, A.J.; Powell, B.; Chua, B.S.; Bennett, A.F. Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Model. 2007, 16, 160–187. [Google Scholar] [CrossRef]
- Gao, L.; Sadeghi, M.; Ebtehaj, A. Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite. Remote Sens. Environ. 2020, 239, 111662. [Google Scholar] [CrossRef]
- Fournier, A.; Clerget, C.H.; Bharadwaj, P.; Merciu, A.; Skar, G. A seismoelectric inverse problem with well-log data and borehole-confined acquisition. In Proceedings of the SEG International Exposition and Annual Meeting, San Antonio, TX, USA, 15–20 September 2019; p. SEG-2019-3216905. [Google Scholar]
- Wisén, R.; Christiansen, A.V. Laterally and mutually constrained inversion of surface wave seismic data and resistivity data. J. Environ. Eng. Geophys. 2005, 10, 251–262. [Google Scholar] [CrossRef]
- Engquist, B.; Osher, S. One-sided difference approximations for nonlinear conservation laws. Math. Comput. 1981, 36, 321–351. [Google Scholar] [CrossRef]
- Nilssen, T.K.; Karlsen, K.H.; Mannseth, T.; Tai, X.C. Identification of diffusion parameters in a nonlinear convection-diffusion equation using the augmented Lagrangian method. Comput. Geosci. 2009, 13, 317–329. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, C.; Gao, G.; Vink, J. Enhancing the performance of the distributed Gauss-Newton optimization method by reducing the effect of numerical noise and truncation error with support-vector regression. SPE J. 2018, 23, 2428–2443. [Google Scholar] [CrossRef]
- Nissinen, A.; Heikkinen, L.M.; Kolehmainen, V.; Kaipio, J.P. Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 2009, 20, 105504. [Google Scholar] [CrossRef]
Model Number | Method | 40 dB Noise | 30 dB Noise | 20 dB Noise | 10 dB Noise |
---|---|---|---|---|---|
1 | Multigrid method with constraint data | 325.4338 | 327.7108 | 330.4046 | 337.0875 |
Fixed grid iterative method with constraint data | 625.8604 | 627.6335 | 631.3305 | × | |
Multigrid method without constraint data | 385.3616 | 391.9577 | × | × | |
2 | Multigrid method with constraint data | 235.4098 | 237.7170 | 238.4394 | 240.9123 |
Fixed grid iterative method with constraint data | 437.0836 | 442.0178 | 448.6282 | × | |
Multigrid method without constraint data | 281.6390 | 293.2465 | × | × |
Model Number | Method | 40 dB Noise | 30 dB Noise | 20 dB Noise | 10 dB Noise |
---|---|---|---|---|---|
1 | Multigrid method with constraint data | 0.1221 | 0.1230 | 0.1249 | 0.1274 |
Fixed grid iterative method with constraint data | 0.1237 | 0.1261 | 0.1288 | × | |
Multigrid method without constraint data | 0.1267 | 0.1305 | × | × | |
2 | Multigrid method with constraint data | 0.0524 | 0.0535 | 0.0551 | 0.0567 |
Fixed grid iterative method with constraint data | 0.0546 | 0.0576 | 0.0588 | × | |
Multigrid method without constraint data | 0.0600 | 0.0640 | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ling, S.; Chao, H.; Qi, Y.; Zhang, W.; Ma, Q.; Liu, T. Inverse Problem for the Nonlinear Convection–Diffusion Equation by Using the Multigrid Method and Constraint Data. Mathematics 2024, 12, 2402. https://doi.org/10.3390/math12152402
Wang S, Ling S, Chao H, Qi Y, Zhang W, Ma Q, Liu T. Inverse Problem for the Nonlinear Convection–Diffusion Equation by Using the Multigrid Method and Constraint Data. Mathematics. 2024; 12(15):2402. https://doi.org/10.3390/math12152402
Chicago/Turabian StyleWang, Shuai, Shiyi Ling, Heyang Chao, Yunfei Qi, Wenwen Zhang, Qiang Ma, and Tao Liu. 2024. "Inverse Problem for the Nonlinear Convection–Diffusion Equation by Using the Multigrid Method and Constraint Data" Mathematics 12, no. 15: 2402. https://doi.org/10.3390/math12152402
APA StyleWang, S., Ling, S., Chao, H., Qi, Y., Zhang, W., Ma, Q., & Liu, T. (2024). Inverse Problem for the Nonlinear Convection–Diffusion Equation by Using the Multigrid Method and Constraint Data. Mathematics, 12(15), 2402. https://doi.org/10.3390/math12152402