A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Systems: Applications to Shallow Water Equations
Abstract
:1. Introduction
2. General Formulation of Path-Conservative ADER-DG Method
- For every and ,
- For every , , and ,
2.1. Applications to 1D SWEs
2.1.1. Notations and Solution Space
2.1.2. Construction of 1D Path-Conservative ADER-DG Method
- The Osher jump term:
- The Roe jump term:
- -
- For each , the matrix owns m different real eigenvalues
- -
- The compatibility property
- -
- For arbitrary , , the matrix satisfies the below requirement
2.1.3. The DT Procedure
2.1.4. The Slope Limiter
2.1.5. Implementation Details of 1D Path-Conservative ADER-DG Method
3. Extension to 2D System
4. Numerical Results
4.1. 1D System
4.1.1. WB Property Test
4.1.2. Accuracy Test
4.1.3. Perturbations of a Steady State Water Flow
4.1.4. The Dam Break Problem over a Rectangular Bottom
4.1.5. Steady Flow over a Hump
- Case A: the transcritical flow without a shockat the upstream boundary; on the downstream one.
- Case B: the transcritical flow with a shockon the upstream boundary; on the downstream one.
- Case C: the subcritical flowon the upstream boundary; on the downstream one.
4.1.6. The Dam Break Problem over a Step
- Case AOver time, this example produces a rarefaction moving to the left and a shock moving to the right.
- Case BThe initial conditions are
- Case C
- Case DThe initial data are
4.2. 2D System
4.2.1. WB Property Test
4.2.2. A Small Perturbation of a 2D Steady State Flow
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1: The algorithm of the DT procedure for 1D SWEs |
|
References
- Maso, G.D.; LeFloch, P.G.; Murat, F. Definition and weak stability of nonconservative products. J. Math. Pures Appl. 1995, 74, 483–548. [Google Scholar]
- Castro, M.J.; Gallardo, J.M.; Parés, C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems. Math. Comput. 2006, 75, 1103–1134. [Google Scholar] [CrossRef]
- Parés, C. Numerical methods for nonconservative hyperbolic systems: A theoretical framework. Siam J. Numer. Anal. 2006, 44, 300–321. [Google Scholar] [CrossRef]
- Toumi, I. A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 1992, 102, 360–373. [Google Scholar] [CrossRef]
- Dumbser, M.; Castro, M.; Parés, C.; Toro, E.F. ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows. Comput. Fluids 2009, 38, 1731–1748. [Google Scholar] [CrossRef]
- Dumbser, M.; Hidalgo, A.; Zanotti, O. High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 2014, 268, 359–387. [Google Scholar] [CrossRef]
- Dumbser, M.; Hidalgo, A.; Castro, M.J.; Parés, C.; Toro, E.F. FORCE schemes on unstructured meshes II: Nonconservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 2010, 199, 625–647. [Google Scholar] [CrossRef]
- Tian, B.L.; Toro, E.F.; Castro, C.E. A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput. Fluids 2011, 46, 122–132. [Google Scholar] [CrossRef]
- Dumbser, M.; Toro, E.F. A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. 2011, 48, 70–88. [Google Scholar] [CrossRef]
- Castro, M.J.; Parés, C.; Puppo, G.; Russo, G. Central schemes for nonconservative hyperbolic systems. Siam J. Sci. Comput. 2012, 34, B523–B558. [Google Scholar] [CrossRef]
- Díaz, M.J.C.; Kurganov, A.; Luna, T.M. Path-conservative central-upwind schemes for nonconservative hyperbolic systems. Esaim Math. Model. Numer. Anal. 2019, 53, 959–985. [Google Scholar] [CrossRef]
- Chu, S.S.; Kurganov, A.; Na, M.Y. Fifth-order A-WENO schemes based on the path-conservative central-upwind method. J. Comput. Phys. 2022, 469, 111508. [Google Scholar] [CrossRef]
- Li, G.; Li, J.J.; Qian, S.G.; Gao, J.M. A well-balanced ADER discontinuous Galerkin method based on differential transformation procedure for shallow water equations. Appl. Math. Comput. 2021, 395, 125848. [Google Scholar] [CrossRef]
- Parés, C. Path-conservative numerical methods for nonconservative hyperbolic systems. In Numerical Methods for Balance Laws; Quaderni di Matematica; Dipto. di Matematica della Seconda Universitá di Napoli: Naples, Italy, 2014; Volume 24, pp. 67–122. [Google Scholar]
- Castro, M.J.; Asuncíon, M.; Fernández-Nieto, E.D.; Gallardo, J.M.; Vida, J.M.G.; Macías, J.; Moraies, T.; Ortega, S.; Parés, C. A review on high order well-balanced path-conservative finite volume schemes for geophysical flows. Proc. Int. Congr. Math. 2018, 4, 3533–3558. [Google Scholar]
- Ayaz, F. On the two-dimensional differential transform method. Appl. Math. Comput. 2003, 143, 361–374. [Google Scholar] [CrossRef]
- Ayaz, F. Solutions of the system of differential equations by differential transform method. Appl. Math. Comput. 2004, 147, 547–567. [Google Scholar] [CrossRef]
- Kurnaza, A.; Oturanc, G.; Kiris, M.E. n-Dimensional differential transformation method for solving PDEs. Int. J. Comput. Math. 2005, 82, 369–380. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, G.; Qian, S.G.; Gao, J.M. A new ADER discontinuous Galerkin method based on differential transformation procedure for hyperbolic conservation laws. Comput. Appl. Math. 2021, 40, 139. [Google Scholar] [CrossRef]
- Greenberg, J.M.; Leroux, A.Y. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. Siam J. Numer. Anal. 1996, 33, 1–16. [Google Scholar] [CrossRef]
- Greenberg, J.M.; Leroux, A.Y.; Baraille, R.; Noussair, A. Analysis and approximation of conservation laws with source terms. Siam J. Numer. Anal. 1997, 34, 1980–2007. [Google Scholar] [CrossRef]
- Noelle, S.; Xing, Y.L.; Shu, C.-W. High-order well-balanced schemes. In Numerical Methods for Balance Laws; Puppo, G., Russo, G., Eds.; Quaderni di Matematica: Naples, Italy, 2010. [Google Scholar]
- Dumbser, M.; Munz, C.D. ADER discontinuous Galerkin schemes for aeroacoustics. Comput. Rendus Mec. 2005, 333, 683–687. [Google Scholar] [CrossRef]
- Dumbser, M. Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains; Shaker Verlag: Aachen, Germany, 2005. [Google Scholar]
- Dumbser, M.; Munz, C.D. Arbitrary high order discontinuous Galerkin schemes. In Numerical Methods for Hyperbolic and Kinetic Problems; Cordier, S., Goudon, T., Gutnic, M., Sonnendrucker, E., Eds.; IRMA series in mathematics and theoretical physics; EMS Publishing House: Helsinki, Finland, 2005; pp. 295–333. [Google Scholar]
- Toro, E.F.; Millington, R.C.; Nejad, L.A.M. Towards very high order Godunov schemes. In Godunov Methods. Theory and Applications; Toro, E.F., Ed.; Kluwer/Plenum Academic Publishers: New York, NY, USA, 2001; pp. 905–938. [Google Scholar]
- Titarev, V.A.; Toro, E.F. ADER: Arbitrary high order Godunov approach. J. Sci. Comput. 2002, 17, 609–618. [Google Scholar] [CrossRef]
- Titarev, V.A.; Toro, E.F. ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 2005, 204, 715–736. [Google Scholar] [CrossRef]
- Dumbser, M.; Munz, C.D. Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 2006, 27, 215–230. [Google Scholar] [CrossRef]
- Duan, J.; Tang, H. An efficient ADER discontinuous Galerkin scheme for directly solving Hamilton-Jacobi equation. J. Comput. Math. 2020, 38, 58–83. [Google Scholar]
- Dumbser, M.; Balsara, D.; Toro, E.F.; Munz, C.D. A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J. Comput. Phys. 2008, 227, 8209–8253. [Google Scholar] [CrossRef]
- Pukhov, G.E. Differential transforms and circuit theory. Int. J. Circuit Theory Appl. 1982, 10, 265–276. [Google Scholar] [CrossRef]
- Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. [Google Scholar]
- Norman, M.R.; Finkel, H. Multi-moment ADER-Taylor methods for systems of conservation laws with source terms in one dimension. J. Comput. Phys. 2012, 231, 6622–6642. [Google Scholar] [CrossRef]
- Cockburn, B.; Shu, C.-W. The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 1998, 141, 199–224. [Google Scholar] [CrossRef]
- Shu, C.-W. TVB uniformly high-order schemes for conservation laws. Math. Comput. 1987, 49, 105–121. [Google Scholar] [CrossRef]
- Shu, C.-W. Total-variation-diminishing time discretizations. Siam J. Sci. Stat. Comput. 1988, 9, 1073–1084. [Google Scholar] [CrossRef]
- Xing, Y.L.; Shu, C.-W. High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 2005, 208, 206–227. [Google Scholar] [CrossRef]
- LeVeque, R.J. Balancing source terms and flux gradient on high-resolution Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 1998, 146, 346–365. [Google Scholar] [CrossRef]
- Xing, Y.L.; Shu, C.-W. A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 2006, 1, 100–134. [Google Scholar]
- Vukovic, S.; Sopta, L. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 2002, 179, 593–621. [Google Scholar] [CrossRef]
- Li, G.; Caleffi, V.; Qi, Z.K. A well-balanced finite difference WENO scheme for shallow water flow model. Appl. Math. Comput. 2015, 265, 1–16. [Google Scholar] [CrossRef]
- Vazquez-Cendon, M.E. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 1999, 148, 497–526. [Google Scholar] [CrossRef]
- Goutal, N.; Maurel, F. Proceedings of the Second Workshop on Dam-Break Wave Simulation; Technical Report HE-43/97/016/A; Electricite´ de France, De´partement Laboratoire National d’Hydraulique, Groupe Hydraulique Fluviale: Chatou, France, 1997. [Google Scholar]
- Alcrudo, F.; Benkhaldoun, F. Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Comput. Fluids 2001, 30, 643–671. [Google Scholar] [CrossRef]
- Li, G.; Lu, C.; Qiu, J. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. J. Sci. Comput. 2012, 51, 527–559. [Google Scholar] [CrossRef]
- Caleffi, V. A new well-balanced Hermite weighted essentially non-oscillatory scheme for shallow water equations. Int. J. Numer. Methods Fluids 2011, 67, 1135–1159. [Google Scholar] [CrossRef]
Original Function | Transformed Function |
---|---|
Precision | Error | Error | ||||
---|---|---|---|---|---|---|
Single | ||||||
Double |
Precision | ||||||
---|---|---|---|---|---|---|
Single | ||||||
Double |
Cells | h | |||
---|---|---|---|---|
Order | Order | |||
25 | ||||
50 | 2.33 | 2.43 | ||
100 | 2.41 | 2.51 | ||
200 | 2.56 | 2.66 | ||
400 | 2.70 | 2.70 | ||
800 | 2.83 | 2.86 | ||
1600 | 2.93 | 2.90 | ||
3200 | 3.01 | 2.99 |
Precision | Error | ||
---|---|---|---|
Single | |||
Double |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, B.; Li, G.; Qian, S. A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Systems: Applications to Shallow Water Equations. Mathematics 2024, 12, 2601. https://doi.org/10.3390/math12162601
Zhao X, Wang B, Li G, Qian S. A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Systems: Applications to Shallow Water Equations. Mathematics. 2024; 12(16):2601. https://doi.org/10.3390/math12162601
Chicago/Turabian StyleZhao, Xiaoxu, Baining Wang, Gang Li, and Shouguo Qian. 2024. "A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Systems: Applications to Shallow Water Equations" Mathematics 12, no. 16: 2601. https://doi.org/10.3390/math12162601
APA StyleZhao, X., Wang, B., Li, G., & Qian, S. (2024). A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Systems: Applications to Shallow Water Equations. Mathematics, 12(16), 2601. https://doi.org/10.3390/math12162601