Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights
Abstract
:1. Introduction
- The goal of this experiment is to estimate the channel for intelligent reflecting surface-based wireless communication using RNN algorithms. Different combinations of RNN algorithms are considered for channel estimation.
- Rather than using traditional CE techniques like LS and MMSE, the suggested LSTM, BiLSTM, and GRU combined model can jointly estimate and identify the transmitted data from BS to UE.
- Comparative simulation results are presented to evaluate the effectiveness of the suggested system with respect to BER and SER measures.
2. Related Works
3. System Model
3.1. IRS Architecture and Working
- Improved signal coverage: IRSs may greatly increase the coverage area, especially in areas with many impediments, by reflecting signals around objects like walls or buildings that often impede wireless signals.
- Energy efficiency: IRSs may reflect signals with low energy usage as it is made up of passive components that do not require active, power-hungry transmitters. This lowers the total energy consumption of wireless networks.
- Reduced interference: IRSs may reduce interference by carefully rerouting communications away from places or devices that cause interference. This is especially helpful when there are lots of devices interacting at once in congested areas.
- Enhanced spectral efficiency: IRSs aid in the effective use of the available spectrum by modifying the wireless environment and boosting the data rates and overall capacity of wireless networks.
- Cost-effective deployment: As an IRS is passive, it is less expensive to install and operate than power-hungry relays or new base stations. This makes it a more cost-effective option overall.
- Support for 5G and beyond: By improving communication at high-frequency bands like millimeter waves (mmWave), which are vulnerable to high route loss and limited penetration, IRSs can supplement 5G technology.
3.2. IRS System Structure
3.3. Data Generation for Training from the IRS Network
4. Recurrent Neural Network Models
4.1. LSTM Working Structure
4.2. BiLSTM Working Structure
4.3. GRU Working Structure
5. Proposed Model Architecture
6. Results
6.1. Model Training
6.2. Results of Individual RNN Techniques
6.3. Hybrid Model Performances
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Alexandropoulos, G.C.; Lerosey, G.; Debbah, M.; Fink, M. Reconfigurable intelligent surfaces and metamaterials: The potential of wave propagation control for 6G wireless communications. arXiv 2020, arXiv:2006.11136. [Google Scholar]
- Mishra, D.; Johansson, H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4659–4663. [Google Scholar]
- Alwazani, H.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S. Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design. IEEE Open J. Commun. Soc. 2020, 1, 661–680. [Google Scholar]
- Guo, H.; Lau, V.K. Uplink cascaded channel estimation for intelligent reflecting surface assisted multiuser MISO systems. IEEE Trans. Signal Process. 2022, 70, 3964–3977. [Google Scholar] [CrossRef]
- He, Z.Q.; Yuan, X. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 2019, 9, 210–214. [Google Scholar] [CrossRef]
- Wang, P.; Fang, J.; Duan, H.; Li, H. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems. IEEE Signal Process. Lett. 2020, 27, 905–909. [Google Scholar] [CrossRef]
- Lin, T.; Yu, X.; Zhu, Y.; Schober, R. Channel estimation for intelligent reflecting surface-assisted millimeter wave MIMO systems. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine learning for intelligent-reflecting-surface-based wireless communication towards 6G: A review. Sensors 2022, 22, 5405. [Google Scholar] [CrossRef]
- Wei, X.; Shen, D.; Dai, L. Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on double-structured sparsity. IEEE Commun. Lett. 2021, 25, 1403–1407. [Google Scholar] [CrossRef]
- Shtaiwi, E.; Zhang, H.; Vishwanath, S.; Youssef, M.; Abdelhadi, A.; Han, Z. Channel estimation approach for RIS assisted MIMO systems. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 452–465. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Gao, Y.; Zhang, C.; Zhang, W. Deep learning for channel tracking in IRS-assisted UAV communication systems. IEEE Trans. Wirel. Commun. 2022, 21, 7711–7722. [Google Scholar] [CrossRef]
- Song, H.; Zhang, M.; Gao, J.; Zhong, C. Unsupervised learning-based joint active and passive beamforming design for reconfigurable intelligent surfaces aided wireless networks. IEEE Commun. Lett. 2020, 25, 892–896. [Google Scholar] [CrossRef]
- Lin, T.; Horne, B.G.; Giles, C.L. How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies. Neural Netw. 1998, 11, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Faisal, K.; Choi, W. Machine learning approaches for reconfigurable intelligent surfaces: A survey. IEEE Access 2022, 10, 27343–27367. [Google Scholar] [CrossRef]
- Zhou, H.; Erol-Kantarci, M.; Liu, Y.; Poor, H.V. A Survey on Model-Based, Heuristic, and Machine Learning Optimization Approaches in RIS-Aided Wireless Networks. IEEE Commun. Surv. Tutor. 2024, 26, 781–823. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, X.; Greco, M.S.; Gini, F. CNN based Sparse IRS Design for Channel Estimation in Assisted Uplink Communications. In Proceedings of the 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 6–10 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, M.M.; Liu, A.; Zhao, M.J. Channel Tracking and Prediction for IRS-Aided Wireless Communications. IEEE Trans. Wirel. Commun. 2023, 22, 563–579. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Suga, N.; Uruma, K.; Fujisawa, M. LSTM-based Spectral Efficiency Prediction by Capturing Wireless Terminal Movement in IRS-Assisted Systems. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Nguyen, C.; Hoang, T.M.; Cheema, A.A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network. IEEE Trans. Mach. Learn. Commun. Netw. 2023, 1, 43–60. [Google Scholar] [CrossRef]
- Gong, S.; Lin, J.; Ding, B.; Niyato, D.; Kim, D.I.; Guizani, M. When optimization meets machine learning: The case of IRS-assisted wireless networks. IEEE Netw. 2022, 36, 190–198. [Google Scholar] [CrossRef]
- Dajer, M.; Ma, Z.; Piazzi, L.; Prasad, N.; Qi, X.F.; Sheen, B.; Yang, J.; Yue, G. Reconfigurable intelligent surface: Design the channel—A new opportunity for future wireless networks. Digit. Commun. Netw. 2022, 8, 87–104. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Di Renzo, M.; Ntontin, K.; Song, J.; Danufane, F.H.; Qian, X.; Lazarakis, F.; De Rosny, J.; Phan-Huy, D.T.; Simeone, O.; Zhang, R.; et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 2020, 1, 798–807. [Google Scholar] [CrossRef]
- Qian, X.; Di Renzo, M.; Liu, J.; Kammoun, A.; Alouini, M.S. Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise. IEEE Wirel. Commun. Lett. 2020, 10, 77–81. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 836–869. [Google Scholar] [CrossRef]
- Medium. Long Short-Term Memory (LSTM). Available online: https://medium.com/@saba99/long-short-term-memory-lstm-fffc5eaebfdc (accessed on 29 August 2024).
- Terminology, Z. BiLSTM (Bidirectional Long Short-Term Memory). Available online: https://computer-nerd-zettelkasten.tistory.com/entry/BiLSTM-Bidirectional-Long-Short-Term-Memory (accessed on 29 August 2024).
- Chen, J.; Huang, X.; Jiang, H.; Miao, X. Low-cost and device-free human activity recognition based on hierarchical learning model. Sensors 2021, 21, 2359. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Sejan, M.A.S.; Aziz, M.A.; You, Y.H.; Song, H.K. HyDNN: A Hybrid Deep Learning Framework Based Multiuser Uplink Channel Estimation and Signal Detection for NOMA-OFDM System. IEEE Access 2023, 11, 66742–66755. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S.; Aziz, M.A.; Kim, D.S.; You, Y.H.; Song, H.K. Deep Convolutional and Recurrent Neural-Network-Based Optimal Decoding for RIS-Assisted MIMO Communication. Mathematics 2023, 11, 3397. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Aziz, M.A.; You, Y.H.; Song, H.K. Temporal Neural Network Framework Adaptation in Reconfigurable Intelligent Surface-Assisted Wireless Communication. Sensors 2023, 23, 2777. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Song, H.K. Demod-CNN: A Robust Deep Learning Approach for Intelligent Reflecting Surface-Assisted Multiuser MIMO Communication. Sensors 2022, 22, 5971. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of IRS elements | 512 |
Number of paths of BS to IRS | 2 |
Number of paths of IRS to user | 4 |
Antenna spacing for transmitter | 0.5 |
IRS element spacing | 0.5 |
Transmitter antenna | 2 |
Receiver antenna | 2 |
OFDM subcarrier | 128 |
Modulation | QPSK |
Noise for channel | AWGN |
Parameter | Value |
---|---|
Minibatch size | 200 |
Maximum number of episodes | 25 |
Learning rate | 0.001 |
Hidden units | 200 |
Number of classes | 16 |
Dropout rate | 0.02 |
Optimizer | ADAM |
Gradient threshold | 1 |
Validation frequency | 50 |
Shuffle | every episode |
Iteration per episode | 2560 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, R.; Sejan, M.A.S.; Rahman, M.H.; Aziz, M.A.; Song, H.-K. Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights. Mathematics 2024, 12, 2973. https://doi.org/10.3390/math12192973
Tabassum R, Sejan MAS, Rahman MH, Aziz MA, Song H-K. Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights. Mathematics. 2024; 12(19):2973. https://doi.org/10.3390/math12192973
Chicago/Turabian StyleTabassum, Rana, Mohammad Abrar Shakil Sejan, Md Habibur Rahman, Md Abdul Aziz, and Hyoung-Kyu Song. 2024. "Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights" Mathematics 12, no. 19: 2973. https://doi.org/10.3390/math12192973
APA StyleTabassum, R., Sejan, M. A. S., Rahman, M. H., Aziz, M. A., & Song, H. -K. (2024). Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights. Mathematics, 12(19), 2973. https://doi.org/10.3390/math12192973