Nonlinear Medical Ultrasound Tomography: 3D Modeling of Sound Wave Propagation in Human Tissues
Abstract
:1. Introducion
2. Governing Equations and the Numerical Method
3. Numerical Experiments
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strutt, J.W. The Theory of Sound; Cambridge University Press: Cambridge, UK, 2011; Volume 1. [Google Scholar]
- Strutt, J.W. The Theory of Sound; Cambridge University Press: Cambridge, UK, 2011; Volume 2. [Google Scholar]
- Li, S.; Jackowski, M.; Dione, D.P.; Varslot, T.; Staib, L.H.; Mueller, K. Refraction corrected transmission ultrasound computed tomography for application in breast imaging. Med. Phys. 2010, 37, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
- Huthwaite, P.; Simonetti, F. High-resolution imaging without iteration: A fast and robust method for breast ultrasound tomography. J. Acoust. Soc. Am. 2011, 130, 1721–1734. [Google Scholar] [CrossRef] [PubMed]
- Duric, N.; Littrup, P.; Li, C.; Roy, O.; Schmidt, S.; Janer, R.; Cheng, X.; Goll, J.; Rama, O.; Bey-Knight, L.; et al. Breast ultrasound tomography: Bridging the gap to clinical practice. Proc. SPIE 2012, 8320, 832000. [Google Scholar]
- Jirik, R.; Peterlik, I.; Ruiter, N.; Fousek, J.; Dapp, R.; Zapf, M.; Jan, J. Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.G.; Altman, D.G.; Cameron, D.A.; Dewar, J.A.; Thompson, S.G.; Wilcox, M. The benefits and harms of breast cancer screening: An independent review. Br. J. Cancer 2013, 108, 2205–2240. [Google Scholar] [CrossRef] [PubMed]
- Birk, M.; Dapp, R.; Ruiter, N.V.; Becker, J. GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography. J. Parallel Distrib. Comput. 2014, 74, 1730–1743. [Google Scholar] [CrossRef]
- Burov, V.A.; Zotov, D.I.; Rumyantseva, O.D. Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data. Acoust. Phys. 2015, 61, 231–248. [Google Scholar] [CrossRef]
- Sandhu, G.Y.; Li, C.; Roy, O.; Schmidt, S.; Duric, N. Frequency domain ultrasound waveform tomography: Breast imaging using a ring transducer. Phys. Med. Biol. 2015, 60, 5381–5398. [Google Scholar] [CrossRef]
- Liu, H.; Uhlmann, G. Determining both sound speed and internal source in thermo- and photo-acoustic tomography. Inverse Probl. 2015, 31, 105005. [Google Scholar] [CrossRef]
- Huang, L.; Shin, J.; Chen, T.; Lin, Y.; Gao, K.; Intrator, M.; Hanson, K. Breast ultrasound tomography with two parallel transducer arrays. In Medical Imaging 2016: Physics of Medical Imaging (International Society for Optics and Photonics); SPIE: Bellingham, WA, USA, 2016; Volume 9783, p. 97830C. [Google Scholar]
- Matthews, T.P.; Wang, K.; Li, C.; Duric, N.; Anastasio, M.A. Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 811–825. [Google Scholar] [CrossRef]
- Opieliński, K.J.; Pruchnicki, P.; Szymanowski, P.; Szepieniec, W.K.; Szweda, H.; Świś, E.; Jóźwik, M.; Tenderenda, M.; Bułkowski, M. Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesions. Comput. Med. Imaging Graph. 2018, 65, 102–114. [Google Scholar] [CrossRef]
- Malik, B.; Terry, R.; Wiskin, J.; Lenox, M. Quantitative transmission ultrasound tomography: Imaging and performance characteristics. Med. Phys. 2018, 45, 3063–3075. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Lu, G.; Qin, B.; Fei, B. Ultrasound imaging technologies for breast cancer detection and management: A review. Ultrasound Med. Biol. 2018, 44, 37–70. [Google Scholar] [CrossRef] [PubMed]
- Wiskin, J.; Malik, B.; Natesan, R.; Lenox, M. Quantitative assessment of breast density using transmission ultrasound tomography. Med. Phys. 2019, 46, 2610–2620. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.L.; Pollack, E.; Mollura, D.J.; Mullen, L.A.; Harvey, S.C. Ultrasound for breast cancer detection globally: A systematic review and meta-analysis. J. Glob. Oncol. 2019, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Vourtsis, A. Three-dimensional automated breast ultrasound: Technical aspects and first results. Diagn. Intervent. Radiol. 2019, 100, 579–592. [Google Scholar] [CrossRef]
- Park, C.K.S.; Xing, S.; Papernick, S.; Orlando, N.; Knull, E.; Toit, C.D.; Bax, J.S.; Gardi, L.; Barker, K.; Tessier, D.; et al. Spatially tracked whole-breast three-dimensional ultrasound system toward point-of-care breast cancer screening in high-risk women with dense breasts. Med. Phys. 2022, 49, 3944–3962. [Google Scholar] [CrossRef]
- Wang, K.; Matthews, T.; Anis, F.; Li, C.; Duric, N.; Anastasio, M.A. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 475–493. [Google Scholar] [CrossRef]
- Bernard, S.; Monteiller, V.; Komatitsch, D.; Lasaygues, P. Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging. Phys. Med. Biol. 2017, 62, 7011–7035. [Google Scholar] [CrossRef]
- Pérez-Liva, M.; Herraiz, J.L.; Udías, J.M.; Miller, E.; Cox, B.T.; Treeby, B.E. Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion. J. Acoust. Soc. Am. 2017, 141, 1595–1604. [Google Scholar] [CrossRef]
- Filatova, V.; Danilin, A.; Nosikova, V.; Pestov, L. Supercomputer Simulations of the Medical Ultrasound Tomography Problem. Commun. Comput. Inf. Sci. 2019, 1063, 297–308. [Google Scholar]
- Kabanikhin, S.I.; Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. Numerics of acoustical 2D tomography based on the conservation laws. J. Inverse Ill-Posed Probl. 2020, 28, 287–297. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. Recovering density and speed of sound coefficients in the 2d hyperbolic system of acoustic equations of the first order by a finite number of observations. Mathematics 2021, 9, 199. [Google Scholar] [CrossRef]
- Filatova, V.; Pestov, L.; Poddubskaya, A. Detection of velocity and attenuation inclusions in the medical ultrasound tomography. J. Inverse Ill-Posed Probl. 2021, 29, 459–466. [Google Scholar] [CrossRef]
- Rumyantseva, O.D.; Shurup, A.S.; Zotov, D.I. Possibilities for separation of scalar and vector characteristics of acoustic scatterer in tomographic polychromatic regime. J. Inverse Ill-Posed Probl. 2021, 29, 407–420. [Google Scholar] [CrossRef]
- Shurup, A.S. Numerical comparison of iterative and functional-analytical algorithms for inverse acoustic scattering. Eurasian J. Math. Comput. Appl. 2022, 10, 79–99. [Google Scholar] [CrossRef]
- Lucka, F.; Pérez-Liva, M.; Treeby, B.E.; Cox, B.T. High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion. Inverse Probl. 2022, 38, 025008. [Google Scholar] [CrossRef]
- Romanov, V.G.; Kabanikhin, S.I. Inverse Problems for Maxwell’s Equations; VSP: Utrecht, The Netherlands, 1994. [Google Scholar]
- Jafarzadeh, E.; Amini, M.H.; Sinclair, A.N. Spectral Shift Originating from Non-linear Ultrasonic Wave Propagation and Its Effect on Imaging Resolution. Ultrasound Med. Biol. 2021, 47, 1893–1903. [Google Scholar] [CrossRef]
- Campo-Valera, M.; Villó-Pérez, I.; Fernández-Garrido, A.; Rodríguez-Rodríguez, I.; Asorey-Cacheda, R. Exploring the Parametric Effect in Nonlinear Acoustic Waves. IEEE Access 2023, 11, 97221–97238. [Google Scholar] [CrossRef]
- Ichida, N.; Sato, T.; Linzer, M. Imaging the nonlinear ultrasonic parameter of a medium. Ultrason. Imaging 1983, 5, 295–299. [Google Scholar] [CrossRef]
- Lewin, P.A.; Nowicki, A. 16—Nonlinear acoustics and its application to biomedical ultrasonics. In Woodhead Publishing Series in Electronic and Optical Materials, Ultrasonic Transducers; Nakamura, K., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 517–544. [Google Scholar] [CrossRef]
- Meliani, M.; Nikolić, V. Analysis of General Shape Optimization Problems in Nonlinear Acoustics. Appl. Math. Optim. 2022, 86, 39. [Google Scholar] [CrossRef]
- Panfilova, A.; van Sloun, R.J.; Wijkstra, H.; Sapozhnikov, O.A.; Mischi, M. A review on B/A measurement methods with a clinical perspective. J. Acoust. Soc. Am. 2021, 149, 2200. [Google Scholar] [CrossRef]
- Tabak, G.; Oelze, M.L.; Singer, A.C. Effects of acoustic nonlinearity on communication performance in soft tissues. J. Acoust. Soc. Am. 2022, 152, 3583. [Google Scholar] [CrossRef]
- Kokumo, K.; Sharma, A.; Myers, K.; Ambinder, E.; Oluyemi, E.; Bell, M.A.L. Theoretical basis and experimental validation of harmonic coherence-based ultrasound imaging for breast mass diagnosis. In Medical Imaging 2023: Physics of Medical Imaging; SPIE: Bellingham, WA, USA, 2023; Volume 12463, pp. 95–104. [Google Scholar]
- Ferziger, J.H.; Peric, M. Computational Method for Fluid Dynamics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Mozer, D.; Kim, J.; Mansour, N.N. DNS of Turbulent Channel Flow. J. Phys. Fluids 1999, 11, 943–945. [Google Scholar]
- Muir, T.G.; Carstensen, E.L. Prediction of nonlinear acoustic effects at biomedical frequencies and intensities. Ultrasound Med. Biol. 1980, 6, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Okawai, H.; Kobayashi, K.; Nitta, S. An approach to acoustic properties of biological tissues using acoustic micrographs of attenuation constant and sound speed. J. Ultrasound Med. 2001, 20, 891–907. [Google Scholar] [CrossRef] [PubMed]
- Duck, F.A. Nonlinear acoustics in diagnostic ultrasound. Ultrasound Med. Biol. 2002, 28, 1–18. [Google Scholar] [CrossRef]
- Kaltenbacher, B. Mathematics of nonlinear acoustics. Evol. Equ. Control. Theory 2015, 4, 447–491. [Google Scholar] [CrossRef]
- Yu, T.; Cai, W. Simultaneous reconstruction of temperature and velocity fields using nonlinear acoustic tomography. Appl. Phys. Lett. 2019, 115, 104104. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Liu, H. On Identifying Magnetized Anomalies Using Geomagnetic Monitoring Within a Magnetohydrodynamic model. Arch. Ration. Mech. Anal. 2020, 235, 691–721. [Google Scholar] [CrossRef]
- Gan, W.S. Nonlinear Acoustical Imaging; Springer: Singapore, 2021. [Google Scholar]
- Kozelkov, A.S.; Krutyakova, O.G.L.; Kurulin, V.V.; Strelets, D.Y.E.; Shishlenin, M.A. The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations. Sib. Electron. Math. Rep. 2021, 18, 1238–1250. [Google Scholar] [CrossRef]
- Maev, R.G.; Seviaryn, F. Applications of non-linear acoustics for quality control and material characterization. J. Appl. Phys. 2022, 132, 161101. [Google Scholar] [CrossRef]
- Chen, P.; Pollet, A.M.; Panfilova, A.; Zhou, M.; Turco, S.; den Toonder, J.M.; Mischi, M. Acoustic characterization of tissue-mimicking materials for ultrasound perfusion imaging research. Ultrasound Med. Biol. 2022, 48, 124–142. [Google Scholar] [CrossRef]
- Gemmeke, H.; Hopp, T.; Zapf, M.; Kaiser, C.; Ruiter, N.V. 3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 873, 59–65. [Google Scholar] [CrossRef]
- Zhang, Y. Nonlinear acoustic imaging with damping. arXiv 2023, arXiv:2302.14174. [Google Scholar]
- Wiskin, J.; Malik, B.; Klock, J. Low frequency 3D transmission ultrasound tomography: Technical details and clinical implications. Z. Med. Phys. 2023, 33, 427–443. [Google Scholar] [CrossRef]
- Wiskin, J.; Malik, B.; Ruoff, C.; Pirshafiey, N.; Lenox, M.; Klock, J. Whole-Body Imaging Using Low Frequency Transmission Ultrasound. Acad. Radiol. 2023, 30, 2674–2685. [Google Scholar] [CrossRef]
- Lashkin, S.V.; Kozelkov, A.S.; Yalozo, A.V.; Gerasimov, V.Y.; Zelensky, D.K. Efficiency analysis of the parallel implementation of the simple algorithm on multiprocessor computers. J. Appl. Mech. Tech. Phys. 2017, 58, 1242–1259. [Google Scholar] [CrossRef]
- Kozelkov, A.; Tyatyushkina, E.; Kurkin, A.; Kurulin, V.; Kurkina, O.; Kochetkova, O. Fluid flow simulation in a T-connection of square pipes using modern approaches to turbulence modeling. Sib. Electron. Math. Rep. 2023, 20, 25–46. [Google Scholar]
- Kozelkov, A.; Kurkin, A.; Utkin, D.; Tyatyushkina, E.; Kurulin, V.; Strelets, D. Application of Non-Reflective Boundary Conditions in Three-Dimensional Numerical Simulations of Free-Surface Flow Problems. Geosciences 2022, 12, 427. [Google Scholar] [CrossRef]
- Kozelkov, A.S.; Lashkin, S.V.; Efremov, V.R.; Volkov, K.N.; Tsibereva, Y.A.; Tarasova, N.V. An implicit algorithm of solving Navier–Stokes equations to simulate flows in anisotropic porous media. Comput. Fluids 2018, 160, 164–174. [Google Scholar] [CrossRef]
- Chen, Z.J.; Przekwas, A.J. A coupled pressure-based computational method for incompressible/compressible flows. J. Comput. Phys. 2010, 229, 9150–9165. [Google Scholar] [CrossRef]
- Moukalled, F.; Darwish, M. Pressure-Based Algorithms for Multi-Fluid Flow at All Speeds—Part I: Mass Conservation Formulation, Numerical Heat Transfer. Part B Fundam. 2004, 45, 495–522. [Google Scholar] [CrossRef]
- Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Department of Mechanical Engineering, Imperial College of Science, London, UK, 1996. [Google Scholar]
- Jasak, H.; Weller, H.G.; Gosman, A.D. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 1999, 31, 431–449. [Google Scholar] [CrossRef]
- Leonard, B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech./Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- Gaskell, P.H. Curvature-compensated convective-transport—SMART, A new boundedness-preserving transport algorithm. Int. J. Numer. Methods Fluids 1988, 8, 617–641. [Google Scholar] [CrossRef]
- Goss, S.A.; Johnston, R.L.; Dunn, F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 1978, 64, 423–457. [Google Scholar] [CrossRef]
- Mast, T.D. Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. 2000, 1, 37–42. [Google Scholar] [CrossRef]
- Klyuchinskiy, D.; Novikov, N.; Shishlenin, M. A Modification of gradient descent method for solving coefficient inverse problem for acoustics equations. Computation 2020, 8, 73. [Google Scholar] [CrossRef]
- Shishlenin, M.A.; Savchenko, N.A.; Novikov, N.S.; Klyuchinskiy, D.V. On the reconstruction of the absorption coefficient for the 2D acoustic system. Sib. Electron. Math. Rep. 2023, 20, 1474–1489. [Google Scholar]
- Klyuchinskiy, D.V.; Novikov, N.S.; Shishlenin, M.A. CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach. J. Comput. Phys. 2021, 439, 110374. [Google Scholar] [CrossRef]
- Jenaliyev, M.T.; Bektemesov, M.A.; Yergaliyev, M.G. On an inverse problem for a linearized system of Navier–Stokes equations with a final overdetermination condition. J. Inverse Ill-Posed Probl. 2023, 31, 611–624. [Google Scholar] [CrossRef]
- Wang, Z.; Dulikravich, G. A numerical Method for Solving Cascade Inverse Problems Using Navier-Stokes Equations. 33rd Aerospace Sciences Meeting and Exhibit. 1995. Published Online: 22 August 2012. Available online: https://arc.aiaa.org/doi/abs/10.2514/6.1995-304 (accessed on 20 November 2023).
- Arridge, S.; Maass, P.; Öktem, O.; Schönlieb, C. Solving inverse problems using data-driven models. Acta Numer. 2019, 28, 1–174. [Google Scholar] [CrossRef]
- Basurto-Hurtado, J.A.; Cruz-Albarran, I.A.; Toledano-Ayala, M.; Ibarra-Manzano, M.A.; Morales-Hernandez, L.A.; Perez-Ramirez, C.A. Diagnostic Strategies for Breast Cancer Detection: From Image Generation to Classification Strategies Using Artificial Intelligence Algorithms. Cancers 2022, 14, 3442. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, H.; Gemmeke, H.; Hopp, T.; Hesser, J. Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging. Neurocomputing 2022, 467, 10–21. [Google Scholar] [CrossRef]
Speed of Sound, m/s | Density, kg/m3 | |
---|---|---|
Muscular tissue | 1550 | 994 |
Adipose tissue | 1460 | 904 |
Liver | 1570 | 1083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishlenin, M.; Kozelkov, A.; Novikov, N. Nonlinear Medical Ultrasound Tomography: 3D Modeling of Sound Wave Propagation in Human Tissues. Mathematics 2024, 12, 212. https://doi.org/10.3390/math12020212
Shishlenin M, Kozelkov A, Novikov N. Nonlinear Medical Ultrasound Tomography: 3D Modeling of Sound Wave Propagation in Human Tissues. Mathematics. 2024; 12(2):212. https://doi.org/10.3390/math12020212
Chicago/Turabian StyleShishlenin, Maxim, Andrey Kozelkov, and Nikita Novikov. 2024. "Nonlinear Medical Ultrasound Tomography: 3D Modeling of Sound Wave Propagation in Human Tissues" Mathematics 12, no. 2: 212. https://doi.org/10.3390/math12020212
APA StyleShishlenin, M., Kozelkov, A., & Novikov, N. (2024). Nonlinear Medical Ultrasound Tomography: 3D Modeling of Sound Wave Propagation in Human Tissues. Mathematics, 12(2), 212. https://doi.org/10.3390/math12020212