VARMA Models with Single- or Mixed-Frequency Data: New Conditions for Extended Yule–Walker Identification
Abstract
:1. Introduction
2. The Six Sufficient Conditions for Identification in [1]
3. Reconstructing Missing Blocks in Autocovariance Matrices
3.1. Case I: r > q
- rank Mq−r+1,∞,∞ = rank Mq−r+1,r,nr
- rank Qq−r+1,r,∞ = rank Qq−r+1,r,nr
- rank Mq−r+1,r,nr = rank Qq−r+1,r,nr
- (a)
- Condition iv.1 is necessary and sufficient for identifiability of the VARMA(r, q) model (1) in the SFD case.
- (b)
- Conditions iv.1, v.1 and vi are sufficient for identifiability of the VARMA(r, q) model (1) in the MFD case.
3.2. Case 2: r = q
- (a)
- Condition iv.2 is necessary and sufficient for identifiability of the VARMA(r, r) model (1) in the SFD case.
- (b)
- Conditions iv.2, v.2 and vi are sufficient for identifiability of the VARMA(r, r) model (1) in the MFD case.
4. Counterexamples
- (i)
- First, we computed Ci (i = 0, 1, 2, 3) by solving the Yule–Walker equations:C0 − A1C−1 − A2C−2 − A3C−3 = I + B1K1tC1 − A1C0 − A2C−1 − A3C−2 = B1C2 − A1C1 − A2C0 − A3C−1 = 0C3 − A1C2 − A2C1 − A3C0 = 0
- (ii)
- Second, we obtained that rank = 6.
- (iii)
- Taking into account that = Or(F, H) CL(F, V*(Ft)r−q+1), Or(F, H) is full column rank nr, CL(F, V*(Ft)r−q+1) has nr rows and rank = 6 = nr, and we can affirm that rank CL(F, V*(Ft)r−q+1) = nr = 6; i.e., Condition v.1 holds.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zadrozny, P.A. Extended Yule-Walker identification of VARMA models with single-or mixed-frequency data. J. Econom. 2016, 193, 438–446. [Google Scholar] [CrossRef]
- Anderson, B.D.; Deistler, M.; Felsenstein, E.; Koelbl, L. The structure of multivariate AR and ARMA systems: Regular and singular systems; the single and the mixed frequency case. J. Econom. 2016, 192, 366–373. [Google Scholar] [CrossRef]
- Anderson, B.D.; Deistler, M.; Felsenstein, E.; Funovits, B.; Koelbl, L.; Zamani, M. Multivariate AR systems and mixed frequency data: G-identifiability and estimation. Econom. Theory 2016, 32, 793–826. [Google Scholar] [CrossRef]
- Boularouk, Y.; Djeddour, K. New approximation for ARMA parameters estimate. Math. Comput. Simul. 2015, 118, 116–122. [Google Scholar] [CrossRef]
- Chen, B.; Zadrozny, P.A. An extended Yule-Walker method for estimating a vector autoregressive model with mixed-frequency data. Adv. Econom. 1998, 13, 47–73. [Google Scholar]
- Deistler, M.; Koelbl, L.; Anderson, B.D. Non-identifiability of VMA and VARMA systems in the mixed frequency case. Econom. Stat. 2017, 4, 31–38. [Google Scholar] [CrossRef]
- Furnovits, B.; Braumann, A. Identifiability of Structural Singular Vector Autoregressive Model. arXiv 2019, arXiv:1910.04096. [Google Scholar]
- Koelbl, L.; Deistler, M. A new approach for estimating VAR systems in the mixed-frequency case. Stat. Pap. 2018, 61, 1203–1212. [Google Scholar] [CrossRef]
- Hannan, E.J. The identification of vector mixed autoregressive-moving. Biometrika 1969, 56, 223–225. [Google Scholar]
- Hannan, E.J.; Deistler, M. The statistical theory of linear systems. Society for Industrial and Applied Mathematics. average systems, Biometrika 2012, 56, 223–225. [Google Scholar]
- Hanzon, B. Identifiability, Recursive Identification and Spaces of Linear Dynamical Systems; Centrum Wiskunde & Informatica (CWI): Amsterdam, The Netherlands, 1989; Tracts 63, 64; ISBN 9061963710. [Google Scholar]
- Hong-Zhi, Z.; Zhao-Guo, C.; Hannan, E.J. A Note on ARMA Estimation. J. Time Ser. Anal. 1983, 4, 9–17. [Google Scholar] [CrossRef]
- Yin, H.; Zhifang, Z.; Ding, F. Model order determination using the Hankel matrix of Impulse responses. Appl. Math. Lett. 2011, 24, 797–802. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pestano-Gabino, C.; González-Concepción, C.; Gil-Fariña, M.C. VARMA Models with Single- or Mixed-Frequency Data: New Conditions for Extended Yule–Walker Identification. Mathematics 2024, 12, 244. https://doi.org/10.3390/math12020244
Pestano-Gabino C, González-Concepción C, Gil-Fariña MC. VARMA Models with Single- or Mixed-Frequency Data: New Conditions for Extended Yule–Walker Identification. Mathematics. 2024; 12(2):244. https://doi.org/10.3390/math12020244
Chicago/Turabian StylePestano-Gabino, Celina, Concepción González-Concepción, and María Candelaria Gil-Fariña. 2024. "VARMA Models with Single- or Mixed-Frequency Data: New Conditions for Extended Yule–Walker Identification" Mathematics 12, no. 2: 244. https://doi.org/10.3390/math12020244
APA StylePestano-Gabino, C., González-Concepción, C., & Gil-Fariña, M. C. (2024). VARMA Models with Single- or Mixed-Frequency Data: New Conditions for Extended Yule–Walker Identification. Mathematics, 12(2), 244. https://doi.org/10.3390/math12020244