A -Dressing Method for the Kundu-Nonlinear Schrödinger Equation
Abstract
:1. Introduction
2. The -Dressing Method
2.1. Spectral Transform and Lax Pair
2.2. Recursion Operator
3. Soliton Solution
4. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kakei, S.; Sasa, N.; Satsuma, J. Bilinearization of a Generalized Derivative Nonlinear Schrödinger Equation. J. Phys. Soc. Jpn. 1995, 64, 1519–1523. [Google Scholar] [CrossRef]
- Sulem, C.; Sulem, P.L. The Nonlinear Schrödinger Equation. In The Nonlinear Schrödinger Equation; Springer: New York, NY, USA, 1999. [Google Scholar]
- Longhi, S. Fractional Schrödinger Equation in Optics. Opt. Lett. 2015, 40, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Chekhov, L. A Matrix Model for Classical Nonlinear Schrödinger Equation. Int. J. Mod. Phys. A 1992, 7, 2981–2996. [Google Scholar] [CrossRef]
- Mielnik, B.; Reyes, M.A. The Classical Schrödinger Equation. J. Phys. A-Math. Theor. 1996, 29, 6009–6025. [Google Scholar] [CrossRef]
- Truman, A. Classical Mechanics, the Diffusion (Heat) Equation, and the Schrödinger Equation. J. Math. Phys. 1977, 18, 2308–2315. [Google Scholar] [CrossRef]
- Manikandan, K.; Serikbayev, N.; Manigandan, M.; Sabareeshwaran, M. Dynamical Evolutions of Optical Smooth Positons in Variable Coefficient Nonlinear Schrödinger Equation with External Potentials. Optik 2023, 288, 171203. [Google Scholar] [CrossRef]
- Sabi’u, J.; Tala-Tebue, E.; Rezazadeh, H.; Arshed, S.; Bekir, A. Optical Solitons for the Decoupled Nonlinear Schrödinger Equation Using Jacobi Elliptic Approach. Commun. Theor. Phys. 2021, 73, 075003. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Sabi’u, J.; Jena, R.M.; Chakraverty, S. New Optical Soliton Solutions for Triki–Biswas Model by New Extended Direct Algebraic Method. Mod. Phys. Lett. B 2020, 34, 2150023. [Google Scholar]
- Silem, A.; Lin, J. Exact Solutions for a Variable-Coefficients Nonisospectral Nonlinear Schrödinger Equation via Wronskian Technique. Appl. Math. Lett. 2023, 135, 108397. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Tian, S.F.; Zhang, X.F. Riemann-Hilbert Problem for the Kundu-Type Nonlinear Schrödinger Equation with N Distinct Arbitrary-Order Poles. Theor. Math. Phys. 2021, 207, 415–433. [Google Scholar] [CrossRef]
- Li, J.; Xia, T. A Riemann-Hilbert Approach to the Kundu-Nonlinear Schrödinger Equation and Its Multi-component Generalization. J. Math. Anal. Appl. 2021, 500, 125109. [Google Scholar] [CrossRef]
- Yan, X.W. Riemann–Hilbert Method and Multi-soliton Solutions of the Kundu-Nonlinear Schrödinger Equation. Nonlinear Dyn. 2020, 102, 2811–2819. [Google Scholar] [CrossRef]
- Hu, B.B.; Zhang, L.; Xia, T.C. On the Riemann-Hilbert Problem of a Generalized Derivative Nonlinear Schrödinger Equation. Commun. Theor. Phys. 2021, 73, 015002. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; He, J. Darboux Transformation and Rogue Waves of the Kundu-Nonlinear Schrödinger Equation. Math. Method. Appl. Sci. 2015, 38, 2411–2425. [Google Scholar] [CrossRef]
- Wang, X.B.; Han, B. The Kundu-Nonlinear Schrödinger Equation: Breathers, Rogue Waves and Their Dynamics. J. Phys. Soc. Jpn. 2020, 89, 014001. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. A Scheme for Integrating the Nonlinear Equations of Mathematical Physics by the Method of the Inverse Scattering Problem (I). Funct. Anal. Appl. 1974, 8, 226–235. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Manakov, S.V. Construction of Higher-dimensional Nonlinear Integrable Systems and of Their Solutions. Funct. Anal. Appl. 1985, 19, 89–101. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Yaacov, D.B.; Fokas, A.S. On the Inverse Scattering Transform for the Kadomtsev-Petviashvili Equation. Stud. Appl. Math. 1983, 69, 135–143. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. The Approach to Inverse Scattering and Nonlinear Evolutions. Phys. D 1986, 18, 242–249. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. Scattering and Inverse Scattering for First-order Systems: II. Inverse. Probl. 1987, 3, 577–593. [Google Scholar] [CrossRef]
- Manakov, S.V. The Inverse Scattering Transform for the Time-dependent Schrödinger Equation and Kadomtsev-Petviashvili Equation. Phys. D 1981, 3, 420–427. [Google Scholar] [CrossRef]
- Konopelchenko, B.G.; Alonso, L.M. Dispersionless Scalar Integrable Hierarchies, Whitham Hierarchy, and the Quasiclassical -dressing Method. J. Math. Phys. 2002, 43, 3807–3823. [Google Scholar] [CrossRef]
- Luo, J.; Fan, E. A -dressing Approach to the Kundu-Eckhaus Equation. J. Geom. Phys. 2021, 167, 1042911. [Google Scholar] [CrossRef]
- Luo, J.; Fan, E. -dressing Method for the Gerdjikov-Ivanov Equation with Nonzero Boundary Conditions. Appl. Math. Lett. 2021, 110, 106589. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, J.; Fan, E. The Riemann-Hilbert Problem and Long-time Asymptotics for the Kundu-Eckhaus Equation with Decaying Initial Value. Appl. Math. Lett. 2017, 76, 81–89. [Google Scholar] [CrossRef]
- Sun, S.F.; Li, B. A -dressing Method for the Mixed Chen-Lee-Liu Derivative Nonlinear Schrödinger Equation. J. Nonlinear Math. Phys. 2022, 30, 201–214. [Google Scholar] [CrossRef]
- Yang, S.X.; Li, B. A -dressing Method for the (2+1)-Dimensional Korteweg-de Vries Equation. Appl. Math. Lett. 2023, 140, 108589. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Geng, X.G. The AB Equations and the -dressing Method in Semi-characteristic Coordinates. Math. Phys. Anal. Geom. 2014, 17, 49–65. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhu, J.Y. A Three-wave Interaction Model with Self-consistent Sources: The -dressing Method and Solutions. J. Math. Anal. Appl. 2015, 426, 783–793. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhang, N.
A
Hu J, Zhang N.
A
Hu, Jiawei, and Ning Zhang.
2024. "A
Hu, J., & Zhang, N.
(2024). A