(R, S)-(Skew) Symmetric Solutions to Matrix Equation AXB = C over Quaternions
Abstract
:1. Introduction
2. The Solvability
- (a)
- (b)
- ;
- (c)
- ;
- (d)
- (e)
- Let . Then commutes with .
- (a)
- The matrix Equation (1) has an ()-symmetric solution ;
- (b)
- The matrix equation
- (c)
- (a)
- The matrix Equation (1) has an ()-skew symmetric solution ;
- (b)
- The matrix equation
- (c)
- The following rank equalities hold:
3. Least-Squares ()-(Skew) Symmetric Solutions
- (a)
- is ()-symmetric if and only if X can be expressed as
- (b)
- is ()-skew symmetric if and only if Y can be expressed as
y = P†b + (I − P†P)z, P = [B1T ⊗ A1, B2T ⊗ A2]τ, b = (Vec(C))cτ, |
01 is the zero matrix with the size of r1r2(m − r1)(n − r2), |
02 is the zero matrix with the size of (m − r1)(n − r2) r1r2, |
I1 is the identity matrix with the size of r1r2 × r1r2, |
I2 is the identity matrix with the size of k × k, |
where k = (m − r1)(n − r2) × (m − r1)(n − r2), |
z ∈ is arbitrary. |
y = P†b + (I − P†P)z, P = [B2T ⊗ A1, B1T ⊗ A2]τ, b = (Vec(C))cτ, |
03 is the zero matrix with the size of r1(n − r2) × (m − r1)r2, |
04 is the zero matrix with the size of (m − r1)r2 × r1(n − r2), |
I3 is the identity matrix with the size of r1(n − r2) × r1(n − r2), |
I4 is the identity matrix with the size of (m − r1)r2 × (m − r1)r2, |
z ∈ is arbitrary. |
4. Numerical Example
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Jia, Z.G.; Peng, Y.; Zhang, D.A. New structure-preserving quaternion QR decomposition method for color image blind watermarking. Signal Process. 2021, 185, 108088. [Google Scholar] [CrossRef]
- Gaudet, C.J.; Maida, A.S. Deep quaternion networks. In Proceedings of the 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- He, Z.H.; Wang, Q.W. A real quaternion matrix equation with applications. Linear Multilinear Algebra 2013, 61, 725–740. [Google Scholar] [CrossRef]
- Mandic, D.P.; Jahanchahi, C.; Took, C.C. A quaternion gradient operator and its applications. IEEE Signal Process. Lett. 2011, 18, 47–50. [Google Scholar] [CrossRef]
- Yang, Y. Spacecraft attitude determination and control: Quaternion based method. Annu. Rev. Control 2012, 36, 198–219. [Google Scholar]
- Zhu, X.; Xu, Y.; Xu, H.; Chen, C. Quaternion convolutional neural networks. Proc. Eur. Conf. Comput. Vis. 2018, 7, 631–647. [Google Scholar]
- Dehghan, M.; Hajarian, M. Matrix equations over (R, S)-symmetric and (R, S)-skew symmetric matrices. Comput. Math. Appl. 2010, 59, 3583–3594. [Google Scholar] [CrossRef]
- Trench, W.F. Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices. Linear Algebra Appl. 2014, 389, 23–31. [Google Scholar]
- Chen, H.C. Generalized Reflexive Matrices: Special Properties and Applications. SIAM J. Matrix Anal. Appl. 1998, 19, 140–153. [Google Scholar] [CrossRef]
- Lv, C.Q.; Ma, C.F. The iterative algorithm for solving a class of generalized coupled Sylvester-transpose equations over centrosymmetric or anti-centrosymmetric matrix. Int. J. Comput. Math. 2019, 96, 1576–1594. [Google Scholar]
- Wang, Q.W.; Van der Woude, J.W.; Chang, H.X. A system of real quaternion matrix equations with applications. Linear Algebra Appl. 2009, 431, 2291–2303. [Google Scholar] [CrossRef]
- Xu, W.R.; Chen, G.L. Inverse problems for (R, S)-symmetric matrices in structural dynamic model updating. Comput. Math. Appl. 2016, 71, 1074–1088. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, N.; Ma, C. Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix. Comput. Math. Appl. 2014, 67, 2071–2084. [Google Scholar]
- Yuan, Y.; Dai, H. Generalized reflexive solutions of the matrix equation AXB = D and an associated optimal approximation problem. Comput. Math. Appl. 2008, 56, 1643–1649. [Google Scholar]
- Zhang, Q.; Wang, Q.W. The (P, Q)-(skew) symmetric extremal rank solutions to a system of quaternion matrix equations. Appl. Math. Comput. 2011, 217, 9286–9296. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Hu, X.Y. The reflexive and anti-reflexive solutions of the matrix equation AX = B. Linear Algebra Appl. 2003, 375, 147–155. [Google Scholar] [CrossRef]
- Wang, Q.W.; Chang, H.X.; Lin, C.Y. P-(skew) symmetric common solutions to a pair of quaternion matrix equations. Appl. Math. Comput. 2008, 195, 721–732. [Google Scholar] [CrossRef]
- Zhou, F.Z.; Zhang, L.; Hu, X.Y. Least-square solutions for inverse problems of centrosymmetric matrices. Comput. Math. Appl. 2003, 45, 1581–1589. [Google Scholar] [CrossRef]
- Jiang, T.S. Algebraic methods for diagonalization of a quaternion matrix in quaternionic quantum theory. J. Math. Phys. 2005, 46, 783–786. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.W.; Zhang, Y. Consistency of quaternion matrix equations AX⋆−XB = C,X−AX⋆B=C. Electron. J. Linear Algebra 2019, 35, 394–407. [Google Scholar] [CrossRef]
- Rodman, L. Topics in Quaternion Linear Algebra. In Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications; Wiley: New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, R.; Liu, X.; Long, S.; Zhang, Y. (R, S)-(Skew) Symmetric Solutions to Matrix Equation AXB = C over Quaternions. Mathematics 2024, 12, 323. https://doi.org/10.3390/math12020323
Liao R, Liu X, Long S, Zhang Y. (R, S)-(Skew) Symmetric Solutions to Matrix Equation AXB = C over Quaternions. Mathematics. 2024; 12(2):323. https://doi.org/10.3390/math12020323
Chicago/Turabian StyleLiao, Ruopeng, Xin Liu, Sujuan Long, and Yang Zhang. 2024. "(R, S)-(Skew) Symmetric Solutions to Matrix Equation AXB = C over Quaternions" Mathematics 12, no. 2: 323. https://doi.org/10.3390/math12020323
APA StyleLiao, R., Liu, X., Long, S., & Zhang, Y. (2024). (R, S)-(Skew) Symmetric Solutions to Matrix Equation AXB = C over Quaternions. Mathematics, 12(2), 323. https://doi.org/10.3390/math12020323