Solutions of Umbral Dirac-Type Equations
Abstract
:1. Introduction
2. Preliminaries
2.1. Umbral Dirac Operator
2.2. Umbral Euler Operator
2.3. Sheffer Operator
3. 0-Normalized System of Functions with Respect to the Umbral Dirac Operator
4. Applications of 0-Normalized System of Functions with Respect to the Umbral Dirac Operator
4.1. The Almansi-Type Expansion for the Umbral Dirac Operator
4.2. Solutions of the Equation
4.3. Solutions of Inhomogeneous Umbral Poly-Dirac Equations
5. Normalized System with the Base and Its Applications
5.1. Normalized System with the Base
5.2. Applications of the Normalized System with the Base
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riordan, J. An Introduction to Combinatorial Analysis; Wiley: New York, NY, USA, 1958; pp. 123–176. [Google Scholar]
- Bell, E.T. The history of Blissards symbolic calculus, with a sketch of the inventors life. Amer. Math. Mon. 1938, 45, 414–421. [Google Scholar] [CrossRef]
- Sheffer, I.M. Some properties of polynomial sets of type zero. Duke Math. J. 1939, 5, 590–622. [Google Scholar] [CrossRef]
- Pincherle, S.; Amalde, U. Le Operazioni Distributive e le loro Applicazioni al Analisi; Zanichelli: Bologana, Italy, 1901. [Google Scholar]
- Mullin, R.; Rota, G.C. On the Foundations of Combinatorial Theory. III. Theory of Binomial Enumeration, Graph Theory and Its Applications; Academic Press: New York, NY, USA, 1970; pp. 167–213. [Google Scholar]
- Di Bucchianico, A.; Loeb, D.E.; Rota, G.C. Umbral Calculus in Hilbert Space. In Mathematical Essays in Honor of Gian- Carlo Rota; Sagan, B., Stanley, R.P., Eds.; Birkhuser: Boston, MA, USA, 1998; pp. 213–238. [Google Scholar]
- Ren, G.; Faustino, N. Almansi theorems in umbral Clifford analysis and the quantum harmonic oscillator. Mathematic 2009, 1, 1–22. [Google Scholar]
- Faustino, N.; Ren, G. Discrete Almansi type decompositions: An umbral calculus framework based on osp(1|2) symmetries. Mathematics 2011, 2, 1–26. [Google Scholar] [CrossRef]
- Brackx, F.; Delanghe, R.; Sommen, F. Clifford Analysis; Pitman Advanced Publishing Program: London, UK, 1982. [Google Scholar]
- Delanghe, R.; Sommen, F.; Soucek, V. Clifford Algebra and Spinor-Valued Functions; Kluwer Acad. Publ.: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Gilbert, J.; Murray, M. Clifford Algebra and Dirac Operators in Harmonic Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Gurlebeck, K.; Sprossig, W. Quaternionic Analysis and Elliptic Boundary Value Problems; Akademie: Berlin, Germany, 1989. [Google Scholar]
- Roman, S. The Umbral Calculus; Academic Press: San Diego, CA, USA, 1984. [Google Scholar]
- Roman, S.; Rota, G.C. The umbral calculus. Adv. Math. 1978, 27, 95–188. [Google Scholar] [CrossRef]
- Rota, G.-C.; Kahane, D.; Odlyzko, A. Finite operator calculus. J. Math. Anal. Appl. 1973, 42, 685–760. [Google Scholar] [CrossRef]
- Karachik, V.V. Normalized system of functions with respect to the Laplace operator and its applications. J. Math. Anal. Appl. 2003, 287, 577–592. [Google Scholar] [CrossRef]
- Karachik, V.V. Method of Normalized Systems of Functions; Publishing Center of SUSU: Chelaybinsk, Russia, 2014. (In Russian) [Google Scholar]
- Karachik, V.V. Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball. Mathematics 2021, 9, 1907. [Google Scholar] [CrossRef]
- Aronszajn, N.; Creese, T.M.; Lipkin, L.J. Polyharmonic Functions; Oxfordmathematics Monographs; The Clarendon Press: New York, NY, USA; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Karachik, V. Solutions of Umbral Dirac-Type Equations. Mathematics 2024, 12, 344. https://doi.org/10.3390/math12020344
Yuan H, Karachik V. Solutions of Umbral Dirac-Type Equations. Mathematics. 2024; 12(2):344. https://doi.org/10.3390/math12020344
Chicago/Turabian StyleYuan, Hongfen, and Valery Karachik. 2024. "Solutions of Umbral Dirac-Type Equations" Mathematics 12, no. 2: 344. https://doi.org/10.3390/math12020344
APA StyleYuan, H., & Karachik, V. (2024). Solutions of Umbral Dirac-Type Equations. Mathematics, 12(2), 344. https://doi.org/10.3390/math12020344