Multiexposed Image-Fusion Strategy Using Mutual Image Translation Learning with Multiscale Surround Switching Maps
Abstract
:1. Introduction
- To address halo effects that occur between bright and dark areas when using a limited number of multi-exposure images without reference images, we estimate the ME image to preserve boundary information and generate high-mid and mid-low images to reduce the exposure gap.
- To improve consistency in exposure levels during CycleGAN-based bidirectional learning using a paired dataset, we incorporate the SMap as an additional channel in the generator, assigning weighted importance to specific features during learning to achieve improved consistency and quality.
- To simultaneously address side effects such as halo artifacts and color distortion, along with tone compression, we combine CycleGAN with the Retinex algorithm, allowing HDR images to be synthesized in a single process.
- To tailor the Retinex algorithm for tone compression according to varying image characteristics, we apply it in a multiscale manner and use the trans-SMap, adjusting it to each scale’s specific features for optimized fusion.
2. Related Work
2.1. Conventional Multi-Image Fusion
2.2. Cycle-Consistent Generative Adversarial Networks
3. Proposed Method
- The CycleGAN framework is modified by adding the SMap channel to perform effective bidirectional translations between LE and HE images.
- The images transformed through MITM are processed with separate maps tailored to their specific characteristics, allowing the estimation of the ME image and the preservation of fine detail information at the boundaries of different exposure levels.
- The ME image is fused with the actual LE and HE images using the TSMap. Through this process, the generated high-mid and mid-low images help reduce the large exposure gaps present in the input images.
- The SSR tone compression algorithm is applied in a multilayer manner to ensure consistent tonal quality.
3.1. CycleGAN-Based Mutual Image Translation Module
3.1.1. SMap Generation and Application
3.1.2. Mutual Image Translation Module
3.2. High-Mid and Mid-Low Fusion
3.2.1. Middle-Exposure Estimation
3.2.2. Trans-Switching Map for High-Mid and Mid-Low Fusion
3.3. SSR Multilayer Fusion
4. Simulation Results
4.1. Comparative Experiments
4.2. Quantitative Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Debevec, P.E.; Malik, J. Recovering high dynamic range radiance maps from photographs. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH 1997, Los Angeles, CA, USA, 3–8 August 1997; ACM Press: New York, NY, USA, 1997; pp. 369–378. [Google Scholar] [CrossRef]
- Nayar, S.K.; Mitsunaga, T. High dynamic range imaging: Spatially varying pixel exposures. In Proceedings of the Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Hilton Head, SC, USA, 15 June 2000; pp. 472–479. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Sun, L.; Liang, Z.; Zeng, H.; Zhang, L. Joint HDR Denoising and Fusion: A Real-World Mobile HDR Image Dataset. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 13966–13975. [Google Scholar] [CrossRef]
- Song, B.; Gao, R.; Wang, Y.; Yu, Q. Enhanced LDR Detail Rendering for HDR Fusion by TransU-Fusion Network. Symmetry 2023, 15, 1463. [Google Scholar] [CrossRef]
- Yoon, H.; Uddin, S.M.N.; Jung, Y.J. Multi-Scale Attention-Guided Non-Local Network for HDR Image Reconstruction. Sensors 2022, 22, 7044. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, S.-H. U-Net-Based Learning Using Enhanced Lane Detection with Directional Lane Attention Maps for Various Driving Environments. Mathematics 2024, 12, 1206. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J. IID-MEF: A multi-exposure fusion network based on intrinsic image decomposition. Inf. Fusion 2023, 95, 326–340. [Google Scholar] [CrossRef]
- Land, E.H. The Retinex Theory of Color Vision. Sci. Am. 1977, 237, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 2017, 33, 100–112. [Google Scholar] [CrossRef]
- Xu, F.; Liu, J.; Song, Y.; Sun, H.; Wang, X. Multi-Exposure Image Fusion Techniques: A Comprehensive Review. Remote Sens. 2022, 14, 771. [Google Scholar] [CrossRef]
- Pajares, G.; de la Cruz, J.M. A wavelet-based image fusion tutorial. Pattern Recognit. 2004, 37, 1855–1872. [Google Scholar] [CrossRef]
- Petrovic, V.S.; Xydeas, C.S. Gradient-Based Multiresolution Image Fusion. IEEE Trans. Image Process. 2004, 13, 228–237. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian Pyramid as a Compact Image Code. In Readings in Computer Vision; Elsevier: Amsterdam, The Netherlands, 1987; pp. 671–679. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Wang, Z.; Wang, Z.J.; Ward, R.K.; Wang, X. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 2018, 42, 158–173. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Tang, H.; Liu, H.; Xu, D.; Torr, P.H.S.; Sebe, N. AttentionGAN: Unpaired Image-to-Image Translation Using Attention-Guided Generative Adversarial Networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 1972–1987. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2868–2876. [Google Scholar] [CrossRef]
- Connolly, C.; Fleiss, T. A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans. Image Process. 1997, 6, 1046–1048. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.; Kornprobst, P.; Tumblin, J.; Durand, F. Bilateral Filtering: Theory and Applications; Now Foundations and Trends: Boston, MA, USA, 2009; Volume 4, pp. 1–75. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar] [CrossRef]
- Braun, G.J. Image lightness rescaling using sigmoidal contrast enhancement functions. J. Electron. Imaging 1999, 8, 380. [Google Scholar] [CrossRef]
- Sun, L.; Shen, D.; Feng, H. Theoretical Insights into CycleGAN: Analyzing Approximation and Estimation Errors in Unpaired Data Generation. arXiv 2024, arXiv:2407.11678v1. [Google Scholar] [CrossRef]
- Robertson, M.A.; Borman, S.; Stevenson, R.L. Dynamic range improvement through multiple exposures. In Proceedings of the Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), Kobe, Japan, 24–28 October 1999; pp. 159–163. [Google Scholar] [CrossRef]
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef]
- Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic tone reproduction for digital images. ACM Trans. Graph. 2002, 21, 267–276. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef]
- Ibrahim, M.; Shuaibu, Z.; Nura, M. Enhancement of Retinex Algorithm using Fast Fourier Transform. Int. J. Comput. Appl. 2019, 177, 26–31. [Google Scholar] [CrossRef]
- Jang, H.; Bang, K.; Jang, J.; Hwang, D. Dynamic Range Expansion Using Cumulative Histogram Learning for High Dynamic Range Image Generation. IEEE Access 2020, 8, 38554–38567. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex Decomposition for Low-Light Enhancement. arXiv 2018, arXiv:1808.04560. [Google Scholar] [CrossRef]
- Zhang, X. Benchmarking and comparing multi-exposure image fusion algorithms. Inf. Fusion 2021, 74, 111–131. [Google Scholar] [CrossRef]
- GYHrlt, GYHrlt/Dataimg_MEF/Self_Image. 2024. Available online: https://github.com/GYHrlt/dataimg_MEF/tree/main/self_image (accessed on 19 September 2024).
- Lee, G.-Y.; Lee, S.-H.; Kwon, H.-J. DCT-Based HDR Exposure Fusion Using Multiexposed Image Sensors. J. Sens. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Mertens, T.; Kautz, J.; Van Reeth, F. Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography. Comput. Graph. Forum 2009, 28, 161–171. [Google Scholar] [CrossRef]
- Li, S.; Kang, X. Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans. Consum. Electron. 2012, 58, 626–632. [Google Scholar] [CrossRef]
- Shen, R.; Cheng, I.; Shi, J.; Basu, A. Generalized Random Walks for Fusion of Multi-Exposure Images. IEEE Trans. Image Process. 2011, 20, 3634–3646. [Google Scholar] [CrossRef]
- Narvekar, N.D.; Karam, L.J. A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD). IEEE Trans. Image Process. 2011, 20, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Ferzli, R.; Karam, L.J. A No-Reference Objective Image Sharpness Metric Based on the Notion of Just Noticeable Blur (JNB). IEEE Trans. Image Process. 2009, 18, 717–728. [Google Scholar] [CrossRef]
- Wang, Z.; Sheikh, H.R.; Bovik, A.C. No-reference perceptual quality assessment of JPEG compressed images. In Proceedings of the Proceedings International Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002; pp. 477–480. [Google Scholar] [CrossRef]
- Hassen, R.; Wang, Z.; Salama, M.M.A. Image sharpness assessment based on local phase coherence. IEEE Trans. Image Process. 2013, 22, 2798–2810. [Google Scholar] [CrossRef]
- Vu, C.T.; Chandler, D.M. S3: A Spectral and Spatial Sharpness Measure. In Proceedings of the 2009 First International Conference on Advances in Multimedia, Colmar, France, 20–25 July 2009; pp. 37–43. [Google Scholar] [CrossRef]
- Sazzad, Z.M.P.; Kawayoke, Y.; Horita, Y. No reference image quality assessment for JPEG2000 based on spatial features. Signal Process. Image Commun. 2008, 23, 257–268. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 2014, 29, 856–863. [Google Scholar] [CrossRef]
DCT | EF | FMMR | GRW | Proposed | |
---|---|---|---|---|---|
CPBDM | 0.6084 | 0.5635 | 0.5728 | 0.5822 | 0.6196 |
JNBM | 14.9176 | 13.1437 | 13.1647 | 13.5297 | 15.4142 |
NRPQA | 7.2641 | 10.0202 | 8.7677 | 8.8339 | 9.2014 |
LPC-SI | 0.9510 | 0.9484 | 0.9438 | 0.9350 | 0.9642 |
S3 | 0.1991 | 0.2004 | 0.1771 | 0.1668 | 0.2838 |
JPEG_2000 | 80.0224 | 80.1351 | 79.9497 | 79.9450 | 80.2390 |
SSEQ | 38.2991 | 25.1903 | 33.0802 | 33.3395 | 25.0540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, Y.-H.; Lee, S.-H.; Lee, S.-H. Multiexposed Image-Fusion Strategy Using Mutual Image Translation Learning with Multiscale Surround Switching Maps. Mathematics 2024, 12, 3244. https://doi.org/10.3390/math12203244
Go Y-H, Lee S-H, Lee S-H. Multiexposed Image-Fusion Strategy Using Mutual Image Translation Learning with Multiscale Surround Switching Maps. Mathematics. 2024; 12(20):3244. https://doi.org/10.3390/math12203244
Chicago/Turabian StyleGo, Young-Ho, Seung-Hwan Lee, and Sung-Hak Lee. 2024. "Multiexposed Image-Fusion Strategy Using Mutual Image Translation Learning with Multiscale Surround Switching Maps" Mathematics 12, no. 20: 3244. https://doi.org/10.3390/math12203244
APA StyleGo, Y.-H., Lee, S.-H., & Lee, S.-H. (2024). Multiexposed Image-Fusion Strategy Using Mutual Image Translation Learning with Multiscale Surround Switching Maps. Mathematics, 12(20), 3244. https://doi.org/10.3390/math12203244