Topological Interactions Between Homotopy and Dehn Twist Varieties
Abstract
:1. Introduction
1.1. General Dehn Twist
1.2. Motivation
1.3. Contributions
2. Preliminaries
2.1. Curves and Dehn Twists
2.2. Dehn Twists, Isotopy and Fibration
3. Homotopy Under Dehn Twists: Definitions
4. Topological Properties
4.1. Extended Dehn Twist in Non-Contractible Space
4.2. Homotopic Retraction Under Extended Dehn Twist
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, A.P.O.; Teo, J.C.Y.; Ryu, S. Topological phases on non-orientable surfaces: Twisting by parity Symmetry. New J. Phys. 2016, 18, 035005. [Google Scholar] [CrossRef]
- Zhu, G.; Lavasani, A.; Barkeshli, M. Instantaneous braids and Dehn twists in topologically ordered states. Phys. Rev. B. 2020, 102, 075105. [Google Scholar] [CrossRef]
- Heusler, S.; Schlummer, P.; Ubben, M.S. The topological origin of quantum randomness. Symmetry 2021, 13, 581. [Google Scholar] [CrossRef]
- Ludkowski, S.V. Topologies on smashed twisted wreath products of metagroups. Axioms 2023, 12, 240. [Google Scholar] [CrossRef]
- Donovan, P.; Karoubi, M. Graded Brauer groups and K-theory with local coefficients. Inst. Hautes Études Sci. Publ. Math. 1970, 38, 5–25. [Google Scholar] [CrossRef]
- Hebestreit, F.; Sagave, S. Homotopical and operator algebraic twisted K-theory. Math. Ann. 2020, 378, 1021–1059. [Google Scholar] [CrossRef]
- Farb, B.; Margalit, D. A Primer on Mapping Class Groups (PMS-49); Princeton University Press: Princeton, NJ, USA, 2012; Chapter 3; pp. 64–88. [Google Scholar] [CrossRef]
- Yusuke, K.; Massuyeau, G.; Tsuji, S. Generalized Dehn Twists in Low-Dimensional Topology; Topology & Geometry; EMS Press: Berlin, Germany, 2019; pp. 357–398. [Google Scholar] [CrossRef]
- Słota, D.; Hetmaniok, E.; Wituła, R.; Gromysz, K.; Trawiński, T. Homotopy Approach for Integrodifferential Equations. Mathematics 2019, 7, 904. [Google Scholar] [CrossRef]
- Hartmann, E. Coarse Sheaf Cohomology. Mathematics 2023, 11, 3121. [Google Scholar] [CrossRef]
- Koropecki, A.; Tal, F.A. Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusions. Proc. Am. Math. Soc. 2014, 142, 3483–3490. [Google Scholar] [CrossRef]
- Addas-Zanata, S.; Tal, F.A.; Garcia, B.A. Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergod. Theory Dyn. Syst. 2014, 34, 409–422. [Google Scholar] [CrossRef]
- Doeff, H.E. Rotation measures for homeomorphisms of the torus homotopic to a Dehn twist. Ergod. Theory Dyn. Syst. 1997, 17, 575–591. [Google Scholar] [CrossRef]
- Kuno, Y.; Massuyeau, G. Generalized Dehn twists on surfaces and homology cylinders. Algebr. Geom. Topol. 2021, 21, 697–754. [Google Scholar] [CrossRef]
- Korkmaz, M. Stable commutator length of a Dehn twist. Mich. Math. J. 2004, 52, 23–31. [Google Scholar] [CrossRef]
- Szepietowski, B. On the commutator length of a Dehn twist. C. R. Math. 2010, 348, 923–926. [Google Scholar] [CrossRef]
- MCCullough, D. Homeomorphisms which are Dehn twists on the boundary. Algebr. Geom. Topol. 2006, 6, 1331–1340. [Google Scholar] [CrossRef]
- Stukow, M. Dehn twists on nonorientable surfaces. Fundam. Math. 2006, 189, 117–147. [Google Scholar] [CrossRef]
- Keating, A.M. Dehn twists and free subgroups of symplectic mapping class groups. J. Topol. 2014, 7, 436–474. [Google Scholar] [CrossRef]
- Ishida, A. The structure of subgroup of mapping class groups generated by two Dehn twists. Proc. Jpn. Acad. Ser. A Math. Sci. 1996, 72, 240–241. [Google Scholar] [CrossRef]
- Marden, A.; Masur, H. A foliation of Teichmüller space by twist invariant disks. Math. Scand. 1975, 36, 211–228. [Google Scholar] [CrossRef]
- Hedden, M.; Mark, T.E. Floer homology and fractional Dehn twist. Adv. Math. 2018, 324, 1–39. [Google Scholar] [CrossRef]
- Baykur, R.I.; Kamada, S. Classification of broken Lefschetz fibrations with small fiber genera. Math. Soc. Jpn. 2015, 67, 877–901. [Google Scholar] [CrossRef]
- Lin, J. Isotopy of the Dehn twist on K3#K3 after a single stabilization. Geom. Topol. 2023, 27, 1987–2012. [Google Scholar]
- Kronheimer, P.B.; Mrowka, T.S. The Dehn twist on a sum of two K3 surfaces. Math. Res. Lett. 2020, 27, 1767–1783. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagchi, S. Topological Interactions Between Homotopy and Dehn Twist Varieties. Mathematics 2024, 12, 3282. https://doi.org/10.3390/math12203282
Bagchi S. Topological Interactions Between Homotopy and Dehn Twist Varieties. Mathematics. 2024; 12(20):3282. https://doi.org/10.3390/math12203282
Chicago/Turabian StyleBagchi, Susmit. 2024. "Topological Interactions Between Homotopy and Dehn Twist Varieties" Mathematics 12, no. 20: 3282. https://doi.org/10.3390/math12203282