Next Article in Journal
Capsule Endoscopy Image Enhancement for Small Intestinal Villi Clarity
Previous Article in Journal
OLG Model Analysis of Delayed Retirement and Social Pension Effects on Family-Based Elderly Care in China
Previous Article in Special Issue
Approximation Properties of the Vector Weak Rescaled Pure Greedy Algorithm
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties

by
Abdullah Alotaibi
Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Mathematics 2024, 12(21), 3310; https://doi.org/10.3390/math12213310
Submission received: 5 September 2024 / Revised: 12 October 2024 / Accepted: 15 October 2024 / Published: 22 October 2024
(This article belongs to the Special Issue Advances in Approximation Theory and Numerical Functional Analysis)

Abstract

:
In this article, a novel Schurer form of λ -Bernstein operators augmented by Bézier basis functions is presented by utilizing the features of shifted knots. The shifted knots form of Bernstein operators and the Schurer form of the Bézier basis function are used in this article, then, new operators, the Schurer type λ -Bernstein shifted knots operators are constructed in terms of the Bézier basis function. First, the test functions are calculated and the central moments for these operators are obtained. Then, Korovkin’s type approximation properties are studied by the use of a modulus of continuity of orders one and two. Finally, the convergence theorems for these new operators are obtained by using Peetre’s K-functional and Lipschitz continuous functions. In the end, some direct approximation theorems are also obtained.

1. Introduction and Preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by { B s } s 1 . The famous Bernstein operators, defined in [1], were found to be a function that uniformly approximates every continuous function on [ 0 , 1 ] that is g C [ 0 , 1 ] . These finding were made in Bernstein’s study. Thus, for any y [ 0 , 1 ] , the well-known Bernstein operators defined by
B s ( g ; y ) = i = 0 s g i s b s , i ( y ) ,
where the Bernstein polynomials with a maximum degree of s are expressed as b s , i ( y ) and s N (positive integers):
b s , i ( y ) = s i y i ( 1 y ) s i i = 0 , 1 , , s ; y 0 , 1
and
b s , i ( y ) = 0 ( i > s or i < 0 ) .
The Bernstein polynomials have an extremely simple recursive relation to check. For Bernstein polynomials b s , i ( y ) , it is quite simple to prove the recursive relationship:
b s , i ( y ) = ( 1 y ) b s 1 , i ( y ) + y b s 1 , i 1 ( y ) .
By using a positive integer, the operators were defined and known as the Bernstein–Schurer operators. Suppose S n , k μ : C 0 , 1 + μ C [ 0 , 1 ] , and Schurer [2] presented modification of Bernstein operators in 1962 as follows:
S n , k μ ( g ; y ) = k = 0 n + μ g k n s n , μ , k ( y ) ( y [ 0 , 1 ] ) ,
where μ is a fixed positive integer and s n , μ , k ( y ) is referred to as the basic Bernstein–Schurer polynomials so that
s n , μ , k ( y ) = n + μ k y k ( 1 y ) n + μ k ( k = 0 , 1 , , n + μ ) .
The Bernstein operators were introduced in 2010 by Cai et al. [3] by using λ [ 1 , 1 ] . These operators are referred to as λ -Bernstein operators:
B s , λ ( g ; y ) = i = 0 s g i s b ˜ s , i ( λ ; y ) ,
where the Bernstein polynomial b s , i ( y ) defined by Ye et al. [4] is expressed in terms of the new Bernstein basis function b ˜ s , i ( λ ; y ) as follows:
b ˜ s , 0 ( λ ; y ) = b s , 0 ( y ) λ s + 1 b s + 1 , 1 ( y ) , b ˜ s , i ( λ ; y ) = b s , i ( y ) + λ ( s 2 i + 1 s 2 1 b s + 1 , i ( y ) s 2 i 1 s 2 1 b s + 1 , i + 1 ( y ) ) , for 1 i s 1 b ˜ s , s ( λ ; y ) = b s , s ( y ) λ s + 1 b s + 1 , s ( y ) .
Cai [5] and Cai and Xu [6] have also introduced the Kantorovich form of the λ -Bernstein–Bézier operators and studied shape preserving properties of generalized Bernstein operators, respectively.
Using the shifted knots properties, the following are the recent Bernstein-type Stancu operators, which were first introduced by Gadjiev et al. in 2010 [7]:
S s , μ , β ( g ; y ) = s + ν 2 m m i = 0 s s i y μ 2 s + ν 2 i s + μ 2 m + ν 2 y s i g i + μ 1 s + ν 1 ,
given that y [ μ 2 m + ν 2 , s + μ 2 s + ν 2 ] , and given that 0 μ 2 μ 1 ν 1 ν 2 , μ i , ν i , i = 1 , 2 are positive real numbers.
Through approximation procedures, researchers have recently developed Bernstein-type operators. Among them are Bernstein–Kantorovich–Stancu shifted knots operators [8], q-Bernstein operators associated with the λ shape parameter [9], the Bernstein–Kantorovich operators in Stancu variation [10], the q-Bernstein–Stancu–Kantorovich operators [11], the Lupaş–Durrmeyer operators in Pólya distribution form [12], the new family of Bernstein–Kantorovich operators [13] and in a fractional sense [14], Bézier bases with Schurer polynomials [15], q-Bernstein shifted operators [16], α -Bernstein–Schurer operators [17], and generalized Bernstein–Schurer operators [18]. Based on Bézier bases, there are Bernstein operators [19], approximations of Bernstein-type operators [20], and others such as [21,22,23].
Most recently, Mursaleen et al. [24] constructed the shifted knots of λ -Bernstein operators by applying Bézier bases functions. For all κ 1 s + κ 2 y s + κ 1 s + κ 2 and the real number 0 κ 1 κ 2 , the λ -Bernstein shifted knots operators B s , λ κ 1 , κ 2 were defined by:
B s , λ κ 1 , κ 2 ( g ; y ) = s + κ 2 s s i = 0 s b ˜ s , i κ 1 , κ 2 ( λ ; y ) g i s ,
where
b ˜ s , 0 κ 1 , κ 2 ( λ ; y ) = b s , 0 κ 1 , κ 2 ( y ) λ s + 1 b s + 1 , 1 κ 1 , κ 2 ( y ) , b ˜ s , i κ 1 , κ 2 ( λ ; y ) = b s , i κ 1 , κ 2 ( y ) + λ ( s 2 i + 1 s 2 1 b s + 1 , i κ 1 , κ 2 ( y ) s 2 i 1 s 2 1 b s + 1 , i + 1 κ 1 , κ 2 ( y ) ) , for 1 i s 1 b ˜ s , s κ 1 , κ 2 ( λ ; y ) = b s , s κ 1 , κ 2 ( y ) λ s + 1 b s + 1 , s κ 1 , κ 2 ( y ) ;
and
b s , i κ 1 , κ 2 ( y ) = s i y κ 1 s + κ 2 i s + κ 1 s + κ 2 y s i .

2. Generalized Operators and Related Lemmas

For any positive integer ϝ , we take the Schurer variant of Bernstein basis function b s , i κ 1 , κ 2 by using shifted knots as follows:
b s , i , ϝ κ 1 , κ 2 ( y ) = s + ϝ i y κ 1 s + ϝ + κ 2 i s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ i .
In case of ϝ = 0 , the Bernstein basis function b s , i κ 1 , κ 2 reduced to b s , i κ 1 , κ 2 by equality (6).
Moreover, the Schurer variant of Bézier bases function b ˜ s , i κ 1 , κ 2 by means of Bernstein basis function b s , i κ 1 , κ 2 (see [15]) is as follows:
b ˜ s , 0 , ϝ κ 1 , κ 2 ( λ ; y ) = b s , 0 , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + 1 b s + 1 , 1 , ϝ κ 1 , κ 2 ( y ) , b ˜ s , j , ϝ κ 1 , κ 2 ( λ ; y ) = b s , j , ϝ κ 1 , κ 2 ( y ) + λ ( s + ϝ 2 j + 1 ( s + ϝ ) 2 1 b s + 1 , j , ϝ κ 1 , κ 2 ( y ) s + ϝ 2 j 1 ( s + ϝ ) 2 1 b s + 1 , j + 1 , ϝ κ 1 , κ 2 ( y ) ) , for 1 j s + ϝ 1 b ˜ s , s , ϝ κ 1 , κ 2 , ϝ ( λ ; y ) = b s , s , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + 1 b s + 1 , s , ϝ κ 1 , κ 2 ( y ) .
Thus, for all κ 1 s + ϝ + κ 2 y s + ϝ + κ 1 s + ϝ + κ 2 and real 0 κ 1 κ 2 , we define the Schurer operators of new λ -Bernstein shifted knots operators B s , λ , ϝ κ 1 , κ 2 in terms of Bézier bases function b ˜ s , i , ϝ κ 1 , κ 2 as follows:
B s , λ , ϝ κ 1 , κ 2 ( g ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) g i s ,
where s N (the set of positive integers) and g C [ 0 , 1 + ϝ ] (the collection of all continuously defined functions on [ 0 , 1 + ϝ ] . Özger [15] constructed the Schurer variant of the classical λ -Bernstein–Bézier bases function, and he defined the Schurer variant of λ -Bernstein–Bézier bases function b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) . In addition, for the choice of Schurer parameter ϝ = 0 in b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) , the classical λ -Bernstein–Bézier bases function b ˜ s , i ( λ ; y ) was obtained by [4]. Other types of operators include the λ -Schurer–Stancu [25], λ -Schurer–Kantorovich [26], GBS-type [27] and λ -Durrmeyer [28].
Remark 1. 
For the operators B s , λ , ϝ κ 1 , κ 2 , we obtain the following observations:
1. 
Our new operators clearly reduced to the operators [24] by the choice of ϝ = 0 in (8).
2. 
In the equality (8), for the choice κ 1 = κ 2 = 0 , our new operators reduced to the operators defined by Özger [15].
3. 
Our new operators minimized to the operators by Cai et al. [3] defined in equality (6) for the choices κ 1 = κ 2 = 0 and ϝ = 0 in equality (8).
4. 
For the choice κ 1 = κ 2 = 0 , ϝ = 0 and λ = 0 , our operators were reduced to classical Bernstein operators by [1].
The main format of this paper is the Schurer form of λ -Bernstein operators using Bézier basis functions. Our goal is to construct the Schurer form of the shifted knots type operators of λ -Bernstein operators by Bézier bases functions. We use the clasical form of Bernstein shifted knots operators and λ -Bernstein–Bézier bases functions and then introduce the Schurer form of these operators. We take here the Schure parameter ϝ and in the case of ϝ = 0 , we obtain previous operators by [24]. Finally, we compute the convergence by use of Korovkin’s theorem, establish a theorem of local approximation and a theorem of convergence for Lipschitz continuous functions and some direct approximations.
Lemma 1. 
For all s N { 1 } , if g ( ξ ) = 1 , ξ , ξ 2 , then the operators B s , λ , ϝ κ 1 , κ 2 defined by (8) have the following equalities:
B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) = 1 ; B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) = s + ϝ + κ 2 s + ϝ 2 λ s ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 + λ s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ + 1 λ s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 + λ s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ ;
B s , λ , ϝ κ 1 , κ 2 ( ξ 2 ; y ) = s + ϝ s 2 [ s + ϝ + κ 2 s + ϝ s + ϝ + 2 λ s + ϝ 1 ] y κ 1 s + ϝ + κ 2 + s + ϝ + κ 2 s + ϝ [ s + ϝ 1 s s + ϝ + κ 2 s 4 λ s 2 ] y κ 1 s + κ 2 2 + λ s + ϝ + κ 2 s + ϝ s + ϝ [ ( s + ϝ + 1 ) 2 s 2 ( s + ϝ 1 ) + 1 s + ϝ + 1 s + ϝ s 2 ] × y κ 1 s + ϝ + κ 2 s + ϝ + 1 + λ s 2 ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 λ s 2 ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ .
Proof. 
We proof the equalities as follows:
B s , λ κ 1 , κ 2 ( 1 ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ { i = 0 s + ϝ b s , i , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + 1 b s + 1 , 1 , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ 2 + 1 ( s + ϝ ) 2 1 b s + 1 , 1 , ϝ κ 1 , κ 2 ( y ) λ s + ϝ 2 1 ( s + ϝ ) 2 1 b s + 1 , 2 , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ 4 + 1 ( s + ϝ ) 2 1 b s + 1 , 2 , ϝ κ 1 , κ 2 ( y ) λ s + ϝ 4 1 ( s + ϝ ) 2 1 b s + 1 , 3 , ϝ κ 1 , κ 2 ( y ) + + λ s + ϝ 2 ( s + ϝ 1 ) + 1 ( s + ϝ ) 2 1 b s + 1 , s 1 , ϝ κ 1 , κ 2 ( y ) λ s + ϝ 2 ( s + ϝ 1 ) 1 ( s + ϝ ) 2 1 b s + 1 , s , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + 1 b s + 1 , s , ϝ κ 1 , κ 2 ( y ) } = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b s , i , ϝ κ 1 , κ 2 ( y ) = s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 + s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ = 1
B s , λ κ 1 , κ 2 ( ξ ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i s b ˜ s , i κ 1 , κ 2 ( λ ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ [ i = 0 s + ϝ 1 i s { b s , i , ϝ κ 1 , κ 2 ( y ) + λ ( s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i , ϝ κ 1 , κ 2 ( y ) s + ϝ 2 i 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) ) } + b s , s , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + 1 b s + 1 , s , ϝ κ 1 , κ 2 ( y ) ] = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i s b s , i , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i s s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + κ 2 s + ϝ s + ϝ i = 1 s + ϝ 1 i s s + ϝ 2 i 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) ,
where the following can be examined:
s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i s b s , i , ϝ κ 1 , κ 2 ( y ) = s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ s y κ 1 s + ϝ + κ 2 × i = 0 s + ϝ 1 b s 1 , i , ϝ κ 1 , κ 2 ( y ) = s + ϝ + κ 2 s + ϝ s + ϝ s y κ 1 s + ϝ + κ 2 ,
and
λ s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i s s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i , ϝ κ 1 , κ 2 ( y ) = λ s + ϝ + κ 2 s + ϝ s + ϝ [ 1 s + ϝ 1 i = 0 s + ϝ i s b s + 1 , i , ϝ κ 1 , κ 2 ( y ) 2 ( s + ϝ ) 2 1 i = 0 s + ϝ i 2 s b s + 1 , i , ϝ κ 1 , κ 2 ( y ) ] = λ s + ϝ + 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 i = 0 s + ϝ 1 b s , i , ϝ κ 1 , κ 2 ( y ) λ 2 s + ϝ 1 s + ϝ s s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 2 i = 0 s + ϝ 2 b s 1 , i , ϝ κ 1 , κ 2 ( y ) λ 2 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 i = 0 s + ϝ 1 b s , i , ϝ κ 1 , κ 2 ( y ) = λ s + ϝ + 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 × [ s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ ] λ 2 s + ϝ 1 s + ϝ s s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 2 × [ s + ϝ s + ϝ + κ 2 s + ϝ 1 y κ 1 s + ϝ + κ 2 s + ϝ 1 ] λ 2 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + κ 2 [ s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ ] = λ 1 s y κ 1 s + ϝ + κ 2 λ 1 s s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ + 1 λ 2 s + ϝ 1 s + ϝ s s + ϝ + κ 2 s + ϝ y κ 1 s + ϝ + κ 2 2 + λ 2 s + ϝ 1 s + ϝ s s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ + 1 .
Moreover,
λ s + ϝ + κ 2 s + ϝ s + ϝ i = 1 s + ϝ 1 i s s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) = λ s + ϝ + κ 2 s + ϝ s + ϝ 1 s y κ 1 s + ϝ + κ 2 i = 1 s + ϝ 1 b s , i , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ + κ 2 s + ϝ s + ϝ 1 s ( s + ϝ + 1 ) i = 1 s + ϝ 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ + κ 2 s + ϝ s + ϝ 2 s + ϝ 1 s + ϝ s y κ 1 s + ϝ + κ 2 2 i = 0 s + ϝ 2 b s 1 , i , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + κ 2 s + ϝ s + ϝ 2 s ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 i = 1 s + ϝ 1 b s , i , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ + κ 2 s + ϝ s + ϝ 2 s ( ( s + ϝ ) 2 1 ) i = 1 s + ϝ 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) = λ s + ϝ + κ 2 s + ϝ s + ϝ 1 s y κ 1 s + ϝ + κ 2 [ s + ϝ s + ϝ + κ 2 s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ ] + λ s + ϝ + κ 2 s + ϝ s + ϝ 1 s ( s + ϝ + 1 ) × [ s + ϝ s + ϝ + κ 2 s + ϝ + 1 s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 y κ 1 s + ϝ + κ 2 s + ϝ + 1 ( s + ϝ + 1 ) y κ 1 s + ϝ + κ 2 s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ ] + λ s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ s 2 s + ϝ 1 y κ 1 s + ϝ + κ 2 2 × [ s + ϝ s + ϝ + κ 2 s + ϝ 1 y κ 1 s + ϝ + κ 2 s + ϝ 1 ] λ s + ϝ + κ 2 s + ϝ s + ϝ 2 s ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 [ s + ϝ s + ϝ + κ 2 s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ ] + λ s + ϝ + κ 2 s + ϝ s + ϝ 2 s ( ( s + ϝ ) 2 1 ) [ s + ϝ s + ϝ + κ 2 s + ϝ + 1 s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 y κ 1 s + ϝ + κ 2 s + ϝ + 1 ( s + ϝ + 1 ) y κ 1 s + κ 2 s + κ 1 s + κ 2 y s ] ,
therefore, we have
λ s + ϝ + κ 2 s + ϝ s + ϝ i = 1 s + ϝ 1 i s s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) = λ s + ϝ + 1 s ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 + λ s + ϝ + κ 2 s + ϝ 2 s + ϝ 1 s + ϝ s y κ 1 s + ϝ + κ 2 2 λ 1 s + ϝ 1 s + ϝ s s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ + 1 λ 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 + λ 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ ,
this explanation gives B s , λ κ 1 , κ 2 , ϝ ( ξ ; y ) .
Similarly, for g ( ξ ) = ξ 2 , we find
B s , λ , ϝ κ 1 , κ 2 ( ξ 2 ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i 2 s 2 b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) = s + ϝ + κ 2 s + ϝ s + ϝ [ i = 0 s + ϝ 1 i 2 s 2 { b s , i , ϝ κ 1 , κ 2 ( y ) + λ ( s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i , ϝ κ 1 , κ 2 ( y ) s + ϝ 2 i 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) ) } + s + ϝ s 2 b s , s , ϝ κ 1 , κ 2 ( y ) s + ϝ s 2 λ s + ϝ + 1 b s + 1 , s , ϝ κ 1 , κ 2 ( y ) ] = s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i 2 s 2 b s , i , ϝ κ 1 , κ 2 ( y ) + λ s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i 2 s 2 s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i , ϝ κ 1 , κ 2 ( y ) λ s + ϝ + κ 2 s + ϝ s + ϝ i = 1 s + ϝ 1 i 2 s 2 s + ϝ 2 i 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) .
We can easily obtain
s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i 2 s 2 b s , i , ϝ κ 1 , κ 2 ( y ) = s + ϝ + κ 2 s + ϝ 2 ( s + ϝ ) ( s + ϝ 1 ) s 2 y κ 1 s + ϝ + κ 2 2 + s + ϝ + κ 2 s + ϝ s + ϝ ( s + ϝ ) s 2 y κ 1 s + ϝ + κ 2 ,
and
λ s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ i 2 s 2 s + ϝ 2 i + 1 ( s + ϝ ) 2 1 b s + 1 , i , ϝ κ 1 , κ 2 ( y ) = λ 1 s 2 y κ 1 s + ϝ + κ 2 + λ s + ϝ + κ 2 s + ϝ ( s + ϝ ) ( s + ϝ 5 ) s 2 ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 2 λ s + ϝ + κ 2 s + ϝ 2 2 ( s + ϝ ) s 2 y κ 1 s + ϝ + κ 2 3 + λ s + ϝ + κ 2 s + ϝ s + ϝ ( s + ϝ + 1 ) 2 s 2 ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 s + ϝ + 1
therefore,
λ s + ϝ + κ 2 s + ϝ s + ϝ i = 1 s + ϝ 1 i 2 s 2 s + ϝ 2 i 1 ( s + ϝ ) 2 1 b s + 1 , i + 1 , ϝ κ 1 , κ 2 ( y ) = λ s + ϝ + 1 s 2 ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 λ s + ϝ + κ 2 s + ϝ s + ϝ s 2 y κ 1 s + ϝ + κ 2 2 + λ s + ϝ + κ 2 s + ϝ 2 2 ( s + ϝ ) s 2 y κ 1 s + ϝ + κ 2 3 + λ s + ϝ + κ 2 s + ϝ s + ϝ 1 s + ϝ + 1 s + ϝ s 2 y κ 1 s + ϝ + κ 2 s + ϝ + 1 + λ s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ s 2 s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 λ s + ϝ + κ 2 s + ϝ 1 s 2 ( s + ϝ 1 ) .
Thus, finally, we obtain B s , λ κ 1 , κ 2 ( ξ 2 ; y ) . □
Lemma 2. 
For the operators B s , λ , ϝ κ 1 , κ 2 , we obtain the following central moments of orders one and two:
B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) = [ s + ϝ + κ 2 s + ϝ 2 s ( s + ϝ 1 ) 1 ] y + 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ × [ y κ 1 s + ϝ + κ 2 s + ϝ + 1 s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 ] + 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ + 2 κ 1 s ( s + ϝ 1 ) ( s + ϝ + κ 2 ) κ 1 s ;
B s , λ , ϝ κ 1 , κ 2 ( ξ y ) 2 ; y ) = s + ϝ s 2 [ s + ϝ + κ 2 s + ϝ s + ϝ + 2 λ s + ϝ 1 ] y κ 1 s + ϝ + κ 2 + s + ϝ + κ 2 s + ϝ [ s + ϝ 1 s s + ϝ + κ 2 s 4 λ s 2 ] y κ 1 s + κ 2 2 + λ s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ + 1 × [ ( s + ϝ + 1 ) 2 s 2 ( s + ϝ 1 ) + 1 s + ϝ + 1 s + ϝ s 2 ] + λ s 2 ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 λ s 2 ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ 2 y s + ϝ + κ 2 s + ϝ 2 λ s ( s + ϝ 1 ) y κ 1 s + ϝ + κ 2 2 λ y s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ y κ 1 s + ϝ + κ 2 s + ϝ + 1 + 2 λ y s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ s + ϝ + κ 1 s + ϝ + κ 2 y s + ϝ + 1 2 λ y s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ + y 2 .

3. Global and Local Approximation

In this section, we derive several global and local approximation theorems for operators (8). We first define the uniform convergence property for our operators using the Ditzian–Totik uniform modulus of smoothness, from which we derive the local and global approximations. We then prove a few simple theorems based on Peetre’s K-functional property and the maximal approximation property of the Lipschitz type. We can substitute a real-valued function that endowed the normed function f C [ 0 , 1 ] = sup y [ 0 , 1 ] f ( y ) for a continuous function f in C [ 0 , 1 ] on [ 0 , 1 ] .
Theorem 1 
([29,30]). For every j = 0 , 1 , 2 , let lim s L s ξ j ; y = y j be a uniform series of positive linear operators on [ a , b ] . Then, lim s L s ( f ) = f is uniformly convergent for any compact subset included in [ a , b ] for each f C [ a , b ] .
Theorem 2. 
Considering each f in C [ 0 , 1 + ϝ ] , then we obtain
lim s B s , λ , ϝ κ 1 , κ 2 f ; y = f ( y )
is uniformly convergent on [ 0 , 1 ] .
Proof. 
According to Lemma 1, it is evident that for any j = 0 , 1 , 2 ,
lim s B s , λ , ϝ κ 1 , κ 2 ξ j ; y = y j ,
thus, by applying the famous Bohman–Korovkin–Popoviciu theorem, then B s , λ , ϝ κ 1 , κ 2 f ; y uniformly converges to set f C [ 0 , 1 + ϝ ] . □
Theorem 3 
([31,32]). Let the operators { L s } s 1 : C [ 0 , 1 ] C [ 0 , 1 ] , such that lim s | | L s ( ξ j ) y j | | C [ 0 , 1 ] = 0 , for all j = 0 , 1 , 2 . Then for any f C [ 0 , 1 ] , we obtain
lim s | | L s ( f ) f | | C [ 0 , 1 ] = 0 .
Theorem 4. 
Suppose that B s , λ , ϝ κ 1 , κ 2 assigns as a function C [ 0 , 1 + ϝ ] C [ 0 , 1 + ϝ ] such that lim s | | B s , λ , ϝ κ 1 , κ 2 ( ξ j ) y j | | C [ 0 , 1 + ϝ ] = 0 . Then, for all ℓ in C [ 0 , 1 + ϝ ] , we obtain
lim s B s , λ , ϝ κ 1 , κ 2 ( ) C [ 0 , 1 + ϝ ] = 0 .
Proof. 
We take in account Theorem 3 and the famous Bohman–Korovkin–Popoviciu theorem, then, easily, we lead to show for all j = 0 , 1 , 2 that
lim s B s , λ , ϝ κ 1 , κ 2 ( ξ j ) y j C [ 0 , 1 + ϝ ] = 0 .
According to Lemma 1, it is easy to obtain B s , λ , ϝ κ 1 , κ 2 ( 1 ) 1 C [ 0 , 1 + ϝ ] = sup y [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 1 = 0 . For j = 1 , it is easy to see
B s , λ , ϝ κ 1 , κ 2 ( ξ ) y C [ 0 , 1 + ϝ ] = sup y [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) y max y [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) s + ϝ + κ 2 s + ϝ 2 s ( s + ϝ 1 ) 1 + | 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ s + ϝ [ 1 κ 1 s + ϝ + κ 2 s + ϝ + 1 s + ϝ + κ 1 s + ϝ + κ 2 1 s + ϝ + 1 ] | + 1 s ( s + ϝ 1 ) s + ϝ + κ 2 s + ϝ + 2 κ 1 s ( s + ϝ 1 ) ( s + ϝ + κ 2 ) κ 1 s
Since s then 1 s + ϝ + κ 2 0 , s + ϝ + κ 1 s + ϝ + κ 2 1 , s + ϝ + κ 2 s + ϝ 1 ; therefore, we obtain B s , λ , ϝ κ 1 , κ 2 ( ξ ) y C [ 0 , 1 + ϝ ] 0 . Similarly for j = 2 , we see
B s , λ , ϝ κ 1 , κ 2 ( ξ 2 ) y 2 C [ 0 , 1 + ϝ ] = sup y [ 0 , 1 ] ) B s , λ , ϝ κ 1 , κ 2 ( ξ 2 ; y ) y 2 ,
which leads to B s , λ , ϝ κ 1 , κ 2 ( ξ 2 ) y 2 C [ 0 , 1 + ϝ ] 0 as s . These observations lead to our proof. □
Theorem 5. 
For any ξ C m [ 0 , 1 + ϝ ] , the operators B s , λ , ϝ κ 1 , κ 2 satisfy the following equality:
lim s sup 0 y 1 | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | ( 1 + y 2 ) 1 + k = 0 ,
where C m [ 0 , 1 + ϝ ) denotes the m t h -order continuously differentiable function on [ 0 , 1 + ϝ ] and k is a positive number.
Proof. 
If we consider the inequality | ξ ( y ) | ( 1 + y 2 ) | | ξ | | , we can obtain equality for every real y 0 [ 0 , 1 + ϝ ] :
lim s sup 0 y 1 | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | ( 1 + y 2 ) 1 + k sup y y 0 | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | ( 1 + y 2 ) 1 + k + sup y y 0 | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | ( 1 + y 2 ) 1 + k | | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | | C [ 0 , y 0 ] + | | ζ | | sup y y 0 | B s , λ , ϝ κ 1 , κ 2 ( 1 + t 2 ; y ) ξ ( y ) | ( 1 + y 2 ) 1 + k + sup y y 0 | ξ ( y ) | ( 1 + y 2 ) 1 + k = R 1 + R 2 + R 3 , ( we   suppose ) .
Thus, we have
R 3 = sup y y 0 | ξ ( y ) | ( 1 + y 2 ) 1 + k sup y y 0 | | ζ | | ( 1 + y 2 ) ( 1 + y 2 ) 1 + k | | ξ | | ( 1 + y 0 2 ) k .
Therefore,
lim s sup y y 0 B s , λ , ϝ κ 1 , κ 2 ( 1 + t 2 ; y ) 1 + y 2 = 1 .
Hence, for any ϵ * > 0 , there are positive integers s 1 for every s s 1 , and we obtain the equality.
sup y y 0 B s , λ , ϝ κ 1 , κ 2 ( 1 + t 2 ; y ) 1 + y 2 ( 1 + y 0 2 ) k | | ξ | | ϵ * 3 + 1 .
For all s s 1
R 2 = | | ζ | | sup y y 0 B s , λ , ϝ κ 1 , κ 2 ( 1 + t 2 ; y ) ( 1 + y 2 ) 1 + k | | ξ | | ( 1 + y 0 2 ) k + ϵ * 3 .
It is evident to us that (9) and (10) are equal.
R 2 + R 3 2 | | ξ | | ( 1 + y 0 2 ) k + ϵ * 3 .
Selecting any real y 0 , if it is sufficiently large, then | | ξ | | ( 1 + y 0 2 ) k ϵ * 6 ; thus, we obtain for all s s 1
R 2 + R 3 2 ϵ * 3 .
On the other side, if we take s 2 s , then it is obvious that
R 1 = | | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | | C [ 0 , y 0 ] ϵ * 3 .
When we combine the equalities (11) and (12) finally, we can easily obtain the outcomes of Theorem 5, which is as follows:
lim s sup 0 y 1 | B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ξ ( y ) | ( 1 + y 2 ) 1 + k < ϵ * .
We provide some results concerning the uniform Ditzian–Totik modulus of smoothness in global approximations. We address the fundamental characteristic of the uniform property of modulus of smoothness for orders one and two, which is
ω ( φ , δ ) : = sup 0 < | ρ | δ sup y , y + ρ ψ ( y ) [ 0 , 1 ] { | φ ( y + ρ ψ ( y ) ) φ ( y ) | } ;
ω 2 ψ ( φ , δ ) : = sup 0 < | ρ | δ sup y , y ± ρ ψ ( y ) [ 0 , 1 ] { | φ ( y + ρ ψ ( y ) ) 2 φ ( y ) + φ ( y ρ ψ ( y ) ) | } ,
and the step-weight function ψ on [ 0 , 1 ] . Let us consider ψ on [ α , β ] such that ψ ( y ) = [ ( y α ) ( β y ) ] 1 / 2 if y [ α , β ] (see [33]). If we choose C * to represent the set of all absolutely continuous functions, then the approximate K-functional property of Peetre is as follows:
K 2 ψ ( φ , δ ) = inf ζ ϝ 2 ( ψ ) δ | | ψ 2 ζ | | C [ 0 , 1 ] + | | φ ζ | | C [ 0 , 1 ] , for all ζ C 2 [ 0 , 1 ] ,
and for any δ > 0 , ϝ 2 ( ψ ) = { ζ C [ 0 , 1 ] such that ζ C * [ 0 , 1 ] , ψ 2 ζ C [ 0 , 1 ] } and C 2 [ 0 , 1 ] = { ζ C [ 0 , 1 ] : ζ , ζ C [ 0 , 1 ] } .
Remark 2 
([34]). For a positive real constant M, one has the inequality
M 1 ω 2 ψ ( φ , δ ) K 2 ψ ( φ , δ ) M ω 2 ψ ( φ , δ ) .
Theorem 6 
([35]). Provided C [ β 1 , β 2 ] C [ x 1 , x 2 ] , let { R } s 1 be any series of operators such that [ β 1 , β 2 ] [ x 1 , x 2 ]
1. 
Consequently, for all y [ x 1 , x 2 ] , and all ℓ C [ β 1 , β 2 ]
| R s ( ; y ) ( y ) | | ( y ) | | R s ( 1 ; y ) 1 | + { R s ( 1 ; y ) + 1 δ R s ( ( ξ y ) 2 ; y ) R s ( 1 ; y ) } ω ( ; δ ) ,
2. 
Thus, for every y [ x 1 , x 2 ] , and every C [ β 1 , β 2 ]
| K s ( ; y ) ( y ) | | ( y ) | | R s ( 1 ; y ) 1 | + | ( y ) | | R s ( ξ y ; y ) | + R s ( ( ξ y ) 2 ; y ) { R s ( 1 ; y ) + 1 δ R s ( ( ξ y ) 2 ; y ) } ω ( ; δ ) .
Theorem 7. 
Considering each C [ 0 , 1 + ϝ ] where y [ 0 , 1 ] , then B s , λ , ϝ κ 1 , κ 2 defined by (8) yields the following inequality:
| B s , λ , ϝ κ 1 , κ 2 ( ; y ) ( y ) | 2 ω ; δ s , λ , ϝ κ 1 , κ 2 ( y ) ,
where δ s , λ , ϝ κ 1 , κ 2 ( y ) = B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) and ω is a first-order modulus of continuity.
Proof. 
By applying Lemma 1, Lemma 2, and considering (1) from Theorem 6 we obtain
| B s , λ , ϝ κ 1 , κ 2 ( ; y ) ( y ) | | ( y ) | | B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 1 | + { B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) + 1 δ B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) } ω ( ; δ )
we suppose δ = B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) = δ s , λ , ϝ κ 1 , κ 2 ( y ) , which is the outcome we need. □
Theorem 8. 
If y [ 0 , 1 ] and in C [ 0 , 1 + ϝ ] then operator B s , λ , ϝ κ 1 , κ 2 is followed by
| B s , λ , ϝ κ 1 , κ 2 ( ; y ) ( y ) | | ( y ) | ζ s , λ , ϝ κ 1 , κ 2 ( y ) + 2 δ s , λ , ϝ κ 1 , κ 2 ( y ) ω ( ; δ s , λ , ϝ κ 1 , κ 2 ( y ) ) ,
where ζ s , λ , ϝ κ 1 , κ 2 ( y ) = max y [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) ; y ) and δ s , λ , ϝ κ 1 , κ 2 ( y ) specified by Theorem 7.
Proof. 
It is simple to arrive at this conclusion if we take (2) from Theorem 6 and Lemma 1, Lemma 2.
| B s , λ , ϝ κ 1 , κ 2 ( ; y ) ( y ) | | ( y ) | | B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 1 | + | ( y ) | | B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) | + B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) { 1 + B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) δ } ω ( ; δ ) | ( y ) | ζ s , λ , ϝ κ 1 , κ 2 ( y ) + 2 δ s , λ , ϝ κ 1 , κ 2 ( y ) ω ( ; δ s , λ , ϝ κ 1 , κ 2 ( y ) ) ,
where we let ζ s , λ , ϝ κ 1 , κ 2 ( y ) = max y [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) ; y ) . □
Theorem 9. 
Let γ ( y )   ( γ 0 ) be any step-weight function γ 2 that is concave such that γ ( y ) = [ ( β y ) ( y α ) ] 1 / 2 if y [ α , β ] ; then, for all f C [ 0 , 1 + ϝ ] and s [ 0 , 1 ] operators B s , λ , ϝ κ 1 , κ 2 satisfying
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | M ω 2 γ f , [ ϕ s , λ , ϝ κ 1 , κ 2 ( y ) + ψ s , λ , ϝ κ 1 , κ 2 ( y ) ] 1 / 2 2 γ ( y ) + ω f , ψ s , λ , ϝ κ 1 , κ 2 ( y ) γ ( y ) ,
where ψ s , λ , ϝ κ 1 , κ 2 ( y ) = B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) and ϕ s , λ , ϝ κ 1 , κ 2 ( y ) = B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) .
Proof. 
Taking into account the following auxiliary operators
Ω s , λ , ϝ κ 1 , κ 2 ( f ; y ) = B s , λ , ϝ κ 1 , κ 2 f ; y + f ( y ) f ψ s , λ , ϝ κ 1 , κ 2 ( y ) + y ,
where f C [ 0 , 1 + ϝ ] , y [ 0 , 1 ] , then by the virtue of Lemma 1, it is easy to obtain the following relations
Ω s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) = 1 and Ω s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) = y ,
Ω s , λ , ϝ κ 1 , κ 2 ( y ) ( ξ y ; y ) = 0 .
Let = ρ y + ( 1 ρ ) t for ρ [ 0 , 1 ] . Following the property γ 2 ( y ) ρ γ 2 ( y ) + ( 1 ρ ) γ 2 ( ξ ) as γ 2 is concave on [ 0 , 1 ] and
| ξ | γ 2 ( y ) ρ | y t | ρ γ 2 ( y ) + ( 1 ρ ) γ 2 ( ξ ) | ξ y | γ 2 ( y ) .
We obtain the following identities:
| Ω s , λ , ϝ κ 1 , κ 2 ( f ; y ) f ( y ) | | Ω s , λ , ϝ κ 1 , κ 2 ( f ζ ; y ) | + | Ω s , λ , ϝ κ 1 , κ 2 ( ζ ; y ) ζ ( y ) | + | f ( y ) ζ ( y ) | 4 f ζ C [ 0 , 1 ] + | Ω s , λ , ϝ κ 1 , κ 2 ( ζ ; y ) ζ ( y ) | .
By use of Taylor’s series, we can conclude that
| Ω s , λ , ϝ κ 1 , κ 2 ( ζ ; y ) ζ ( y ) | B s , λ , ϝ κ 1 , κ 2 | y ξ | ξ | | ζ ( ) | d | ; y + | y ψ s , λ , ϝ κ 1 , κ 2 ( y ) + y | ψ s , λ , ϝ κ 1 , κ 2 ( y ) + y | | ζ ( ) | d | γ 2 ζ C [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 | y ξ | ξ | γ 2 ( ) d | ; y + γ 2 ζ C [ 0 , 1 ] × | y ψ s , λ , ϝ κ 1 , κ 2 ( y ) + y | ψ s , λ ϰ 1 , ϰ 2 ( y ) + y | d γ 2 ( y ) | γ 2 ( y ) γ 2 ζ C [ 0 , 1 ] B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) + γ 2 ( y ) ψ s , λ , ϝ κ 1 , κ 2 ( y ) γ 2 ζ C [ 0 , 1 ] .
We use the Peetre’s K-functional properties and the relations (13) and (16); then, it is easy to obtain
| Ω s , λ , ϝ κ 1 , κ 2 ( y ) ( f ; y ) f ( y ) | 4 f ζ C [ 0 , 1 ] + γ 2 ( y ) γ 2 ζ C [ 0 , 1 ] ϕ s , λ , ϝ κ 1 , κ 2 ( y ) + ψ s , λ , ϝ κ 1 , κ 2 ( y ) M ω 2 γ f , 1 2 ϕ s , λ , ϝ κ 1 , κ 2 ( y ) + ψ s , λ , ϝ κ 1 , κ 2 ( y ) γ ( y ) .
It is obvious that
| f ψ s , λ , ϝ κ 1 , κ 2 ( y ) + y f ( y ) | = | f ψ s , λ , ϝ κ 1 , κ 2 ( y ) + y f ( y ) | ω f , ψ s , λ , ϝ κ 1 , κ 2 ( y ) γ ( y ) .
Thus, finally, we obtain the inequality
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | | Ω s , λ , ϝ κ 1 , κ 2 ( f ; y ) f ( y ) | + | f ψ s , λ ϰ 1 , ϰ 2 ( y ) + y f ( y ) | M ω 2 γ f , 1 2 ϕ s , λ , ϝ κ 1 , κ 2 ( y ) + ψ s , λ , ϝ κ 1 , κ 2 ( y ) ( y u ) ( v y ) + ω f , ψ s , λ , ϝ κ 1 , κ 2 ( y ) γ ( y ) ,
which completes the desired proof of Theorem 9. □
Theorem 10. 
Assuming y [ 0 , 1 ] and f C [ 0 , 1 + ϝ ] , then we obtain the following inequality:
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | ϕ s , λ , ϝ κ 1 , κ 2 ( y ) | f ( y ) | + 2 ϕ s , λ , ϝ κ 1 , κ 2 ( y ) ω f , ϕ s , λ , ϝ κ 1 , κ 2 ( y ) .
Proof. 
We are aware of the relationship
f ( ξ ) = f ( y ) + f ( y ) ( ξ y ) + y ξ ( f ( z ) f ( y ) ) d z ,
for all t , y [ 0 , 1 ] . Upon applying the operators B s , λ , ϝ κ 1 , κ 2 to equality (17), we obtain
B s , λ , ϝ κ 1 , κ 2 ( f ( ξ ) f ( y ) ; y ) = f ( y ) B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) + B s , λ , ϝ κ 1 , κ 2 y ξ ( f ( z ) f ( y ) ) d z ; y .
Given any f C [ 0 , 1 + ϝ ] , when y [ 0 , 1 ] , then one possesses
| f ( ξ ) f ( y ) | 1 + | ξ y | δ ω ( f , δ ) , δ > 0 .
Given the inequality above, we have
| ξ y ( f ( y ) f ( z ) ) d z | | ξ y | + ( ξ y ) 2 δ ω ( f , δ ) .
Therefore, it is easy to obtain
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | | f ( y ) | | B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) | + ω ( f , δ ) 1 δ B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) + B s , λ , ϝ κ 1 , κ 2 ( | ξ y | ; y ) .
The Cauchy–Schwarz inequality yields
B s , λ , ϝ κ 1 , κ 2 ( | ξ y | ; y ) B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 1 2 B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) 1 2 = B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) 1 2 .
Thus, we have
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | f ( y ) B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) + 1 δ B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) + 1 B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) 1 2 ω ( f , δ ) ,
by use of δ = B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) , then we obtain the desired results. □
Next, recalling [36], we estimate the local direct approximation by means of a Lipschitz-type maximum function.
Theorem 11. 
Let f L i p K ( κ ) : = { f C [ 0 , 1 + ϝ ] s u c h t h a t | f ( ξ ) f ( y ) | K | ξ y | κ ( ξ 1 y 2 + ξ 2 y + t ) κ 2 ; y , t [ 0 , 1 ] } . Then, for any κ ( 0 , 1 ] , we have
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | K [ ϕ s , λ , ϝ κ 1 , κ 2 ( y ) ] κ ( ξ 1 y 2 + ξ 2 y ) κ ,
where ξ 1 0 , ξ 2 > 0 , κ ( 0 , 1 ] and K > 0 for any constant (see [36]).
Proof. 
For every κ ( 0 , 1 ] , consider f L i p K ( κ ) . Initially, we aim to demonstrate the validity of our result for κ = 1 . Thus, we obtain for any f L i p K ( 1 )
| B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) | | B s , λ , ϝ κ 1 , κ 2 ( | f ( ξ ) f ( y ) | ; y ) | + f ( y ) | B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 1 | s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) | f ( ξ ) f ( y ) | K s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) | ξ y | ( ξ 1 y 2 + ξ 2 y + t ) 1 2 .
By using
( ξ 1 y 2 + ξ 2 y + t ) 1 / 2 ( ξ 1 y 2 + ξ 2 y ) 1 / 2 ( ξ 1 0 , ξ 2 > 0 )
and by the Cauchy–Schwarz inequality, we see
| S s , λ ϰ 1 , ϰ 2 f ; y f ( y ) | K s + ϝ + κ 2 s + ϝ s + ϝ ( ξ 1 y 2 + ξ 2 y ) 1 / 2 i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) | ξ y | = K ( ξ 1 y 2 + ξ 2 y ) 1 / 2 | B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) | K ( ξ 1 y 2 + ξ 2 y ) 1 / 2 B s , λ , ϝ κ 1 , κ 2 ( | ξ y | ; y ) K B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) 1 2 ( ξ 1 y 2 + ξ 2 y ) 1 / 2 .
Our result is therefore true for κ = 1 . Furthermore, by introducing the Hölder’s inequality and applying the monotonicity property to operators B s , λ , ϝ κ 1 , κ 2 for κ ( 0 , 1 ] , the following requirements will also be satisfied, thus
B s , λ , ϝ κ 1 , κ 2 f ; y f ( y ) s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) | f ( ξ ) f ( y ) | s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) | f ( ξ ) f ( y ) | ) κ 2 B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 2 κ 2 K s + ϝ + κ 2 s + ϝ s + ϝ i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) ξ y 2 ξ 1 y 2 + ξ 2 y + t ) κ 2 K i = 0 s + ϝ b ˜ s , i , ϝ κ 1 , κ 2 ( λ ; y ) ξ y 2 κ 2 ( ξ 1 y 2 + ξ 2 y + t ) κ / 2 K s + ϝ + κ 2 s + ϝ s + ϝ ( ξ 1 y 2 + ξ 2 y ) κ / 2 B s , λ , ϝ κ 1 , κ 2 ( ( ξ y ) 2 ; y ) κ 2 = K [ ϕ s , λ , ϝ κ 1 , κ 2 ( y ) ] κ ( ξ 1 y 2 + ξ 2 y ) κ .
Here, we also prove another local approximation property for the operators of B s , λ , ϝ κ 1 , κ 2 by using the Lipschitz maximal function. Suppose Ψ is the maximal functions of Lipschitz type such that Ψ C B [ 0 , 1 ] . For all t , y [ 0 , 1 ] the class of Lipschitz-type functions Ψ is defined by (see [37])
ω ϑ ( Ψ ; y ) = sup t y , t [ 0 , 1 ] Ψ ( ξ ) Ψ ( y ) ξ y ϑ ,
where 0 < ϑ 1 .
Theorem 12. 
Considering Ψ C B [ 0 , 1 + ϝ ] and y [ 0 , 1 ] , then operators B s , λ , ϝ κ 1 , κ 2 fulfill
B s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) Ψ ( y ) δ s , λ , ϝ κ 1 , κ 2 ( y ) ϑ 2 ω ϑ ( Ψ ; y ) ,
where δ s , λ , ϝ κ 1 , κ 2 ( y ) is obtained by Theorem 7 and ω ϑ ( Ψ ; y ) is defined by (18). Moreover, C B [ 0 , 1 + ϝ ] denotes the set of all continuously bounded functions on [ 0 , 1 + ϝ ] .
Proof. 
By using the Hölder’s inequality, we obtain
B s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) Ψ ( y ) B s , λ , ϝ κ 1 , κ 2 Ψ ( ξ ) Ψ ( y ) ; y ω ϑ ( Ψ ; y ) B s , λ , ϝ κ 1 , κ 2 ξ y ϑ ; y ω ϑ ( Ψ ; y ) B s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) 2 ϑ 2 B s , λ , ϝ κ 1 , κ 2 ( ξ y 2 ; y ) ϑ 2 = B s , λ , ϝ κ 1 , κ 2 ( ξ y ) 2 ; y ϑ 2 ω ϑ ( Ψ ; y ) .
This completes the proof. □

4. Directs Theorem of Operators B s , λ , ϝ κ 1 , κ 2

For our new operators B s , λ κ 1 , κ 2 by 8 in the space of Peetre’s K-functional, this section can offer some direct approximation results. For every Ψ C [ 0 , 1 ] and any δ > 0 , the basic idea of Peetre’s K-functional K p ( Ψ ; δ ) is defined as follows:
K Ψ ( Ψ ; δ ) = inf δ C [ 0 , 1 ] + Ψ C [ 0 , 1 ] : , , C [ 0 , 1 ]
For a positive absolute constant M, we have [34] that
K Ψ ( Ψ ; δ ) M ω Ψ ( Ψ ; δ ) , δ > 0 ,
K Ψ ( Ψ ; δ ) C { ω Ψ ( Ψ ; δ ) + min ( 1 , δ ) | | Ψ | | C [ 0 , 1 ] } ,
where the modulus of continuity for the second order is determined by ω Ψ ( Ψ ; δ ) , which can be expressed as follows:
ω Ψ ( Ψ ; δ ) = sup 0 < ν < δ sup y [ 0 , 1 ] ) | Ψ ( y ) + Ψ ( y + 2 ν ) 2 Ψ ( y + ν ) | .
Theorem 13. 
Let us define an auxiliary operator A s , λ , ϝ κ 1 , κ 2 for an arbitrary Ψ C [ 0 , 1 + ϝ ] , such that
A s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) = B s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) + Ψ ( y ) Ψ ( B s , λ , ϝ κ 1 , κ 2 ( Φ ; y ) ) ,
subsequently, for each Φ C [ 0 , 1 + ϝ ] we obtain that
B s , λ , ϝ κ 1 , κ 2 ( Φ ; y ) Φ ( y ) C ω Φ ( Φ ; ϕ s , λ , ϝ κ 1 , κ 2 ( y ) + ( ψ s , λ , ϝ κ 1 , κ 2 ( y ) ) 2 2 ) + ω Φ ( Φ ; ψ s , λ , ϝ κ 1 , κ 2 ( y ) )
where ψ s , λ , ϝ κ 1 , κ 2 ( y ) = B s , λ , ϝ κ 1 , κ 2 ( ξ y ) ; y and ϕ s , λ , ϝ κ 1 , κ 2 ( y ) = B s , λ , ϝ κ 1 , κ 2 ( ξ y ) 2 ; y .
Proof. 
It is simple to prove that A s , λ , ϝ κ 1 , κ 2 ( 1 ; y ) = 1 and
A s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) = B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) = y .
The Taylor series statement allows us to infer the equality:
L ( ξ ) = L ( y ) + ( ξ y ) L ( y ) + y ξ ( ξ W ) L ( W ) d W , L C 2 [ 0 , 1 ] .
Apply A s , λ , ϝ κ 1 , κ 2 then
A s , λ , ϝ κ 1 , κ 2 ( L ; y ) L ( y ) = L ( y ) A s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) + A s , λ , ϝ κ 1 , κ 2 y ξ ( ξ W ) L ( W ) d W ; y = A s , λ , ϝ κ 1 , κ 2 y ξ ( ξ W ) L ( W ) d W ; y = B s , λ , ϝ κ 1 , κ 2 y ξ ( ξ W ) L ( W ) d W ; y + y y ( y W ) L ( W ) d W ; y y B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) ( B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) W ) L ( W ) d W
A s , λ , ϝ κ 1 , κ 2 ( L ; y ) L ( y ) | B s , λ , ϝ κ 1 , κ 2 y ξ ( ξ W ) L ( W ) d W ; y | + | y B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) W L ( W ) d W | .
We know the inequality
| y ξ ( ξ W ) L ( W ) d W | ( ξ y ) 2 L
and
| y B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) W L ( W ) d W | ( B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) y ) 2 L .
Thus, we obtain
A s , λ , ϝ κ 1 , κ 2 ( L ; y ) L ( y ) { B s , λ , ϝ κ 1 , κ 2 ( ξ y ) 2 ; y + ( B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) y ) 2 } L .
On the other hand, we deduce that
B s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) Ψ ,
and for any Ψ C [ 0 , 1 + ϝ ] , we have
A s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) B s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) + Ψ ( y ) + | Ψ { B s , λ , ϝ κ 1 , κ 2 ( Ψ ; y ) } | 3 Ψ ,
By accounting for (22) and (23), we arrive at
B s , λ , ϝ κ 1 , κ 2 ( Φ ; y ) Φ ( y ) | A s , λ , ϝ κ 1 , κ 2 ( Φ L ; y ) ( Φ L ) ( y ) | + | A s , λ , ϝ κ 1 , κ 2 ( L ; y ) L ( y ) | + | Φ ( y ) Φ B s , λ , ϝ κ 1 , κ 2 ( ξ ; y ) | 4 Φ L + ω Φ ( Φ ; B s , λ , ϝ κ 1 , κ 2 ( ξ y ) ; y ) + { B s , λ , ϝ κ 1 , κ 2 ( ξ y ) 2 ; y + L ( B s , λ , ϝ κ 1 , κ 2 ( ξ y ; y ) ) 2 } .
Taking infimum over all L C 2 [ 0 , 1 ] and using Peetre’s K-functional properties, we obtain
B s , λ , ϝ κ 1 , κ 2 ( Φ ; y ) Φ ( y ) 4 K Φ ( Φ ; δ s , λ , ϝ κ 1 , κ 2 ( y ) + ( B s , λ , ϝ κ 1 , κ 2 ( ξ y ) ; y ) 2 4 + ω Φ ( Φ ; B s , λ , ϝ κ 1 , κ 2 ( ξ y ) ; y ) C ω Φ ( Φ ; δ s , λ , ϝ κ 1 , κ 2 ( y ) + ( B s , λ , ϝ κ 1 , κ 2 ( ξ y ) ; y ) 2 2 ) + ω Φ ( Φ ; B s , λ , ϝ κ 1 , κ 2 ξ y ; y ) .
Thus, we have our desired proof. □

5. Conclusions and Observation

This paper clearly concludes that the operators (8) are defined as the Schurer parameter of shifted knots operators by the Bézier bases of λ –Bernstein operators [24]. The operators in (8) reduced to [24] if ϝ = 0 . In the event that κ 1 = κ 2 = 0 , operators (8) reduced to [15]. Considering κ 1 = κ 2 = 0 , ϝ = 0 , then (8) reduced to [3]. Also, κ 1 = κ 2 = 0 , when ϝ = 0 and λ = 0 , the operators (8) are simplified to classical Bernstein operators as shown in [1]. Since our operators (8) are expanded variants of the operators described by [1,3,15,24], in conclusion, we can say that these operators represent a particular case of our new operators (8). For future work, one can obtain the approximation of bivariate-type and q-integer-type operators of (8).

Funding

This research received no external funding.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

  1. Bernstein, S.N. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 2012, 2, 1–2. [Google Scholar]
  2. Schurer, F. Linear Positive Operators in Approximation Theory; Mathematics Institute Technology University Delft Report; Springer: New York, NY, USA, 1962. [Google Scholar]
  3. Cai, Q.B.; Lian, B.Y.; Zhou, G. Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018, 2018, 61. [Google Scholar] [CrossRef]
  4. Ye, Z.; Long, X.; Zeng, X.M. Adjustment algorithms for Bézier curve and surface. In Proceedings of the 2010 5th International Conference on Computer Science & Education, Hefei, China, 24–27 August 2010; pp. 1712–1716. [Google Scholar]
  5. Cai, Q.B. The Bézier variant of Kantorovich type λ-Bernstein operators. J. Inequal. Appl. 2018, 2018, 90. [Google Scholar] [CrossRef]
  6. Cai, Q.B.; Xu, X.W. Shape-preserving properties of a new family of generalized Bernstein operators. J. Inequal. Appl. 2018, 2018, 241. [Google Scholar] [CrossRef] [PubMed]
  7. Gadjiev, A.D.; Ghorbanalizadeh, A.M. Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables. Appl. Math. Comput. 2010, 216, 890–901. [Google Scholar] [CrossRef]
  8. Alotaibi, A.; Nasiruzzaman, M.; Mohiuddine, S.A. On the convergence of Bernstein-Kantorovich-Stancu shifted knots operators involving Schurer parameter. Complex Anal. Oper. Theory 2024, 18, 4. [Google Scholar] [CrossRef]
  9. Cai, Q.B.; Aslan, R. Note on a new construction of Kantorovich form q-Bernstein operators related to shape parameter λ. CMES Comput. Model. Eng. Sci. 2021, 130, 1479–1493. [Google Scholar] [CrossRef]
  10. Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
  11. Mursaleen, M.A.; Kiliçman, A.; Nasiruzzaman, M. Approximation by q-Bernstein-Stancu-Kantorovich operators with shifted knots of real parameters. Filomat 2022, 36, 1179–1194. [Google Scholar] [CrossRef]
  12. Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution. Math. Meth. Appl. Sci. 2021, 44, 9407–9418. [Google Scholar] [CrossRef]
  13. Mohiuddine, S.A.; Acar, T.; Alotaibi, A. Construction of a new family of Bernstein-Kantorovich operators. Math. Meth. Appl. Sci. 2017, 40, 7749–7759. [Google Scholar] [CrossRef]
  14. Berwal, S.; Mohiuddine, S.A.; Kajla, A.; Alotaibi, A. Approximation by Riemann–Liouville type fractional α-Bernstein–Kantorovich operators. Math. Meth. Appl. Sci. 2024, 47, 8275–8288. [Google Scholar] [CrossRef]
  15. Özger, F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A Math. Stat. 2020, 69, 376–393. [Google Scholar] [CrossRef]
  16. Mursaleen, M.; Ansari, K.J.; Khan, A. Approximation properties and error estimation of q-Bernstein shifted operators. Numer. Algorithms 2020, 84, 207–227. [Google Scholar] [CrossRef]
  17. Nasiruzzaman, M.; Aljohani, A.F. Approximation by α-Bernstein–Schurer operators and shape preserving properties via q-analogue. Math. Meth. Appl. Sci. 2023, 46, 2354–2372. [Google Scholar] [CrossRef]
  18. Özger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein–Schurer operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 173. [Google Scholar] [CrossRef]
  19. Srivastava, H.M.; Özger, F.; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 2019, 11, 316. [Google Scholar] [CrossRef]
  20. Zeng, X.M.; Cheng, F. On the rates of approximation of Bernstein type operators. J. Approx. Theory. 2001, 109, 242–256. [Google Scholar] [CrossRef]
  21. Mohiuddine, S.A.; Ahmad, N.; Özger, F.; Alotaibi, A.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 593–605. [Google Scholar] [CrossRef]
  22. Mohiuddine, S.A.; Singh, K.K.; Alotaibi, A. On the order of approximation by modified summation-integral-type operators based on two parameters. Demonstr. Math. 2023, 56, 20220182. [Google Scholar] [CrossRef]
  23. Rao, N.; Nasiruzzaman, M.; Heshamuddin, M.; Shadab, M. Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter α. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1457–1465. [Google Scholar] [CrossRef]
  24. Mursaleen, M.A.; Nasiruzzaman, M.; Rao, N.; Dilshad, M.; Nisar, K.S. Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Math. 2024, 9, 4409–4426. [Google Scholar] [CrossRef]
  25. Ansari, K.J.; Özger, F.; Özger, Ö.Z. Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter λ. Comp. Appl. Math. 2022, 41, 181. [Google Scholar] [CrossRef]
  26. Aslan, R. Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators. Kuwait J. Sci. 2024, 51, 100168. [Google Scholar] [CrossRef]
  27. Aslan, R. Approximation properties of univariate and bivariate new class λ-Bernstein-Kantorovich operators and its associated GBS operators. Comp. Appl. Math. 2023, 42, 34. [Google Scholar] [CrossRef]
  28. Su, L.T.; Aslan, R.; Zheng, F.S.; Mursaleen, M. On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ. J. Inequal. Appl. 2023, 2023, 56. [Google Scholar] [CrossRef]
  29. Francesco, A. Korovkin-type Theorems and Approximation by Positive Linear Operators. arXiv 2010, arXiv:1009.2601v1. [Google Scholar]
  30. Korovkin, P.P. Convergence of linear positive operators in the spaces of continuous functions (Russian). Doklady Akad. Nauk. SSSR 1953, 90, 961–964. [Google Scholar]
  31. Gadziev, A.D. Theorems of the type of P.P. Korovkin’s theorems. Mat. Zametki 1976, 20, 781–786. (In Russian); reprinted in Math. Notes. 1976, 20, 995–998. (English Translation) [Google Scholar]
  32. Gadjiev, A.D. The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 1974, 218, 1001–1004. [Google Scholar]
  33. Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
  34. DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: New York, NY, USA, 1993. [Google Scholar]
  35. Shisha, O.; Bond, B. The degree of convergence of sequences of linear positive operators. Proc. Nat. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
  36. Ozarslan, M.A.; Aktuğlu, H. Local approximation for certain King type operators. Filomat 2013, 27, 173–181. [Google Scholar] [CrossRef]
  37. Lenze, B. On Lipschitz type maximal functions and their smoothness spaces. Nederl. Akad. Indag. Math. 1988, 50, 53–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alotaibi, A. Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties. Mathematics 2024, 12, 3310. https://doi.org/10.3390/math12213310

AMA Style

Alotaibi A. Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties. Mathematics. 2024; 12(21):3310. https://doi.org/10.3390/math12213310

Chicago/Turabian Style

Alotaibi, Abdullah. 2024. "Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties" Mathematics 12, no. 21: 3310. https://doi.org/10.3390/math12213310

APA Style

Alotaibi, A. (2024). Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties. Mathematics, 12(21), 3310. https://doi.org/10.3390/math12213310

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop