Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties
Abstract
:1. Introduction and Preliminaries
2. Generalized Operators and Related Lemmas
- 1.
- 2.
- 3.
- 4.
- For the choice , and , our operators were reduced to classical Bernstein operators by [1].
3. Global and Local Approximation
- 1.
- Consequently, for all and all ℓ
- 2.
- Thus, for every and every
4. Directs Theorem of Operators
5. Conclusions and Observation
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernstein, S.N. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow 2012, 2, 1–2. [Google Scholar]
- Schurer, F. Linear Positive Operators in Approximation Theory; Mathematics Institute Technology University Delft Report; Springer: New York, NY, USA, 1962. [Google Scholar]
- Cai, Q.B.; Lian, B.Y.; Zhou, G. Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018, 2018, 61. [Google Scholar] [CrossRef]
- Ye, Z.; Long, X.; Zeng, X.M. Adjustment algorithms for Bézier curve and surface. In Proceedings of the 2010 5th International Conference on Computer Science & Education, Hefei, China, 24–27 August 2010; pp. 1712–1716. [Google Scholar]
- Cai, Q.B. The Bézier variant of Kantorovich type λ-Bernstein operators. J. Inequal. Appl. 2018, 2018, 90. [Google Scholar] [CrossRef]
- Cai, Q.B.; Xu, X.W. Shape-preserving properties of a new family of generalized Bernstein operators. J. Inequal. Appl. 2018, 2018, 241. [Google Scholar] [CrossRef] [PubMed]
- Gadjiev, A.D.; Ghorbanalizadeh, A.M. Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables. Appl. Math. Comput. 2010, 216, 890–901. [Google Scholar] [CrossRef]
- Alotaibi, A.; Nasiruzzaman, M.; Mohiuddine, S.A. On the convergence of Bernstein-Kantorovich-Stancu shifted knots operators involving Schurer parameter. Complex Anal. Oper. Theory 2024, 18, 4. [Google Scholar] [CrossRef]
- Cai, Q.B.; Aslan, R. Note on a new construction of Kantorovich form q-Bernstein operators related to shape parameter λ. CMES Comput. Model. Eng. Sci. 2021, 130, 1479–1493. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
- Mursaleen, M.A.; Kiliçman, A.; Nasiruzzaman, M. Approximation by q-Bernstein-Stancu-Kantorovich operators with shifted knots of real parameters. Filomat 2022, 36, 1179–1194. [Google Scholar] [CrossRef]
- Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution. Math. Meth. Appl. Sci. 2021, 44, 9407–9418. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Acar, T.; Alotaibi, A. Construction of a new family of Bernstein-Kantorovich operators. Math. Meth. Appl. Sci. 2017, 40, 7749–7759. [Google Scholar] [CrossRef]
- Berwal, S.; Mohiuddine, S.A.; Kajla, A.; Alotaibi, A. Approximation by Riemann–Liouville type fractional α-Bernstein–Kantorovich operators. Math. Meth. Appl. Sci. 2024, 47, 8275–8288. [Google Scholar] [CrossRef]
- Özger, F. On new Bézier bases with Schurer polynomials and corresponding results in approximation theory. Commun. Fac. Sci. Univ. Ank. Ser. A Math. Stat. 2020, 69, 376–393. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Approximation properties and error estimation of q-Bernstein shifted operators. Numer. Algorithms 2020, 84, 207–227. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Aljohani, A.F. Approximation by α-Bernstein–Schurer operators and shape preserving properties via q-analogue. Math. Meth. Appl. Sci. 2023, 46, 2354–2372. [Google Scholar] [CrossRef]
- Özger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein–Schurer operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 173. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Özger, F.; Mohiuddine, S.A. Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 2019, 11, 316. [Google Scholar] [CrossRef]
- Zeng, X.M.; Cheng, F. On the rates of approximation of Bernstein type operators. J. Approx. Theory. 2001, 109, 242–256. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Ahmad, N.; Özger, F.; Alotaibi, A.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 593–605. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Singh, K.K.; Alotaibi, A. On the order of approximation by modified summation-integral-type operators based on two parameters. Demonstr. Math. 2023, 56, 20220182. [Google Scholar] [CrossRef]
- Rao, N.; Nasiruzzaman, M.; Heshamuddin, M.; Shadab, M. Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter α. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1457–1465. [Google Scholar] [CrossRef]
- Mursaleen, M.A.; Nasiruzzaman, M.; Rao, N.; Dilshad, M.; Nisar, K.S. Approximation by the modified λ-Bernstein-polynomial in terms of basis function. AIMS Math. 2024, 9, 4409–4426. [Google Scholar] [CrossRef]
- Ansari, K.J.; Özger, F.; Özger, Ö.Z. Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter λ. Comp. Appl. Math. 2022, 41, 181. [Google Scholar] [CrossRef]
- Aslan, R. Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators. Kuwait J. Sci. 2024, 51, 100168. [Google Scholar] [CrossRef]
- Aslan, R. Approximation properties of univariate and bivariate new class λ-Bernstein-Kantorovich operators and its associated GBS operators. Comp. Appl. Math. 2023, 42, 34. [Google Scholar] [CrossRef]
- Su, L.T.; Aslan, R.; Zheng, F.S.; Mursaleen, M. On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ. J. Inequal. Appl. 2023, 2023, 56. [Google Scholar] [CrossRef]
- Francesco, A. Korovkin-type Theorems and Approximation by Positive Linear Operators. arXiv 2010, arXiv:1009.2601v1. [Google Scholar]
- Korovkin, P.P. Convergence of linear positive operators in the spaces of continuous functions (Russian). Doklady Akad. Nauk. SSSR 1953, 90, 961–964. [Google Scholar]
- Gadziev, A.D. Theorems of the type of P.P. Korovkin’s theorems. Mat. Zametki 1976, 20, 781–786. (In Russian); reprinted in Math. Notes. 1976, 20, 995–998. (English Translation) [Google Scholar]
- Gadjiev, A.D. The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 1974, 218, 1001–1004. [Google Scholar]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: New York, NY, USA, 1993. [Google Scholar]
- Shisha, O.; Bond, B. The degree of convergence of sequences of linear positive operators. Proc. Nat. Acad. Sci. USA 1968, 60, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Ozarslan, M.A.; Aktuğlu, H. Local approximation for certain King type operators. Filomat 2013, 27, 173–181. [Google Scholar] [CrossRef]
- Lenze, B. On Lipschitz type maximal functions and their smoothness spaces. Nederl. Akad. Indag. Math. 1988, 50, 53–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, A. Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties. Mathematics 2024, 12, 3310. https://doi.org/10.3390/math12213310
Alotaibi A. Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties. Mathematics. 2024; 12(21):3310. https://doi.org/10.3390/math12213310
Chicago/Turabian StyleAlotaibi, Abdullah. 2024. "Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties" Mathematics 12, no. 21: 3310. https://doi.org/10.3390/math12213310
APA StyleAlotaibi, A. (2024). Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties. Mathematics, 12(21), 3310. https://doi.org/10.3390/math12213310