Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions
Abstract
:1. Introduction
2. Contributions of This Study
- Introduction to Quantum Computing Fundamentals: This paper commences with a concise yet comprehensive discussion of the rudimentary principles of quantum computing. This foundation equips readers with the essential knowledge required to comprehend the advanced topics discussed in subsequent sections.
- Exploration of QML: A comprehensive explanation of QML is presented that highlights historical background in addition to the existing state. As a distinct section, this concept presents methodologies of data encoding in QML and can thus be considered valuable for readers.
- In-depth Analysis of Data Encoding Methods: This study offers an extensive analysis of the most common data encoding practices in QML at the time. Finally, an evaluation of the technique and its application in the current literature from the period of 2020 to 2024 is presented.
- Challenges and Future Directions: Finally, this paper discusses the most significant issues that exist in the encoding stage for QML at the present time. It also describes what future work may be worth pursuing that has the potential to further advance these techniques and, in turn, the overall field of quantum technology.
Organization of the Work
3. Quantum Computing Fundamentals
3.1. Quantum Bits (Qubits)
3.2. Superposition
3.3. Entanglement
3.4. Quantum Gates
3.5. Measurement
3.6. The No-Cloning Theorem
3.7. Decoherence in Quantum Systems
4. Quantum Machine Learning and the Role of Data Encoding
- Classical–Classical (CC): Classical algorithms with classical datasets.
- Quantum–Classical (QC): Classical algorithms processing quantum datasets.
- Classical–Quantum (CQ): Classical datasets processed on quantum hardware.
- Quantum–Quantum (QQ): Quantum algorithms with quantum datasets.
4.1. Pure Quantum ML
4.2. Quantum-Inspired ML
4.3. Hybrid Classical-Quantum ML
4.4. Basis Encoding
4.5. Amplitude Encoding
4.6. Angle Encoding
4.7. Time-Evolution Encoding
4.8. Hamiltonian Encoding
4.9. Feature Map Encoding
4.10. Unary Amplitude Encodings
4.11. Entangler-Enhanced Encoding
4.12. Variational Encoding
4.13. Scaled Encoding
4.14. Directional Encoding
4.15. Chebyshev Encoding
4.16. Fourier Encoding
4.17. Projected Unitary Encoding
4.18. Block-Encoding
5. Review and Discussion of Existing Studies (2020–2024)
- Data Encoding: Classical data were converted into quantum states by amplitude encoding. This method enables the simultaneous representation of many data points by encoding them into the amplitudes of a quantum state.
- Quantum Feature Map: We utilized a quantum feature map to embed the classical data into a higher-dimensional Hilbert space. This mapping improves the distinguishability of the data, facilitating the quantum algorithm’s accurate classification.
- The Quantum Support Vector Machine (QSVM) was executed through a sequence of quantum gates that manipulate the stored information. The circuit’s architecture is engineered to enhance classification according to the support vectors recognized during training.
- Exponential Speedup: In contrast to classical algorithms, QSVM can attain an exponential acceleration in specific situations, especially when managing extensive datasets.
- Quantum Interference: The method utilizes quantum interference to augment the likelihood of accurate classifications while diminishing the chances of erroneous ones, resulting in enhanced precision.
- Scalability: The inherent parallelism of quantum computing allows the algorithm to scale more effectively with increased data complexity, providing a robust solution for high-dimensional datasets.
6. Challenges and Future Directions
6.1. Scalability of Quantum Computers for QML Applications
References | Year | Notable Progress in Quantum Computing | Number of Qubits |
---|---|---|---|
[109] | 2019 I | IBM 27 qubits | 27 |
2020 | IBM 65 qubits | 65 | |
2021 | IBM 127 qubits | 127 | |
2022 | IBM 433 qubits | 433 | |
2023 S | IBM 133 qubits, IBM 1121 qubits | 133, 1121 | |
2024 T | IBM 408 qubits, IBM 1386 qubits | 408, 1386 | |
[113] | 2016 | RIGETTI 3 qubits | 3 |
2016 | IBM 5 qubits | 5 | |
2017 | IBM 50 qubits | 50 | |
2018 | INTEL 49 qubits | 49 | |
2019 | GOOGLE 72 qubits | 72 | |
2019 | RIGETTI 128 qubits | 128 |
6.2. Advancements in Quantum Data Encoding
6.3. Innovations in Encoding-Based Quantum Algorithms
6.4. Optimization of Quantum Encodings for Emerging Hardware
6.5. Harnessing Entanglement for Feature Encoding in QML
- Exploring the Theoretical Foundations: Deepening our understanding of how entanglement can be harnessed to improve data representation in high-dimensional spaces.
- Designing Entanglement-Rich Feature Maps: Creating novel quantum feature maps that intrinsically generate highly entangled states, potentially leading to more powerful QML models.
- Investigating Entanglement Measures: Studying various measures of entanglement as a resource for QML to ascertain which aspects most significantly contribute to enhanced learning capabilities.
- Optimizing for Quantum Hardware: Tailoring entanglement-based encodings to align with the capabilities and limitations of current and future quantum hardware.
- Benchmarking Against Classical Methods: Comparing the performance of entanglement-based encodings with classical encoding methods to quantify the advantages offered by quantum approaches.
6.6. Strategies to Overcome Barren Plateaus in Quantum Feature Maps
- Constrained Variational Models: Developing variational quantum models that avoid large, unstructured Hilbert spaces prone to barren plateaus.
- Quantum Supremacy in Feature Maps: Investigating the potential of quantum supremacy to create feature maps that can efficiently solve industry-relevant problems.
- Data-Driven Learning: Utilizing data-driven techniques to optimize the form and parameters of quantum kernels, which is a nascent yet promising area of research.
- Performance Across Data Types: Assessing the performance of parameterized quantum circuits (PQCs) on diverse types of data, both classical and quantum, to establish benchmarks and identify best practices.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DiVincenzo, D.P. Quantum computation. Science 1995, 270, 255–261. [Google Scholar] [CrossRef]
- Aharonov, D. Quantum computation. Annu. Rev. Comput. Phys. VI 1999, 259–346. [Google Scholar] [CrossRef]
- Vedral, V.; Plenio, M.B. Basics of quantum computation. Prog. Quantum Electron. 1998, 22, 1–39. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Deutch, D. The Fabric of Reality: The Science of Parallel Universes and Its Implications; Viking Penguin: New York, NY, USA, 1998. [Google Scholar]
- Yan, A.; Li, Z.; Gao, Z.; Zhang, J.; Huang, Z.; Ni, T.; Cui, J.; Wang, X.; Girard, P.; Wen, X. MURLAV: A multiple-node-upset recovery latch and algorithm-based verification method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2024, 43, 7. [Google Scholar] [CrossRef]
- Yan, A.; Wang, L.; Cui, J.; Huang, Z.; Ni, T.; Girard, P.; Wen, X. Nonvolatile latch designs with node-upset tolerance and recovery using magnetic tunnel junctions and CMOS. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2023. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Y.; Gao, Z.; Ni, T.; Huang, Z.; Cui, J.; Girard, P.; Wen, X. FeMPIM: A FeFET-based multifunctional processing-in-memory cell. IEEE Trans. Circuits Syst. II Express Briefs 2023, 71, 2299–2303. [Google Scholar] [CrossRef]
- Alpaydin, E. Machine Learning; MIT press: Cambridge, MA, USA, 2021. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning Adaptive Computation and Machine Learning Series; MIT Press: Cambridge, MA, USA, 2017; pp. 321–359. [Google Scholar]
- Nguyen, H.; Calantone, R.; Krishnan, R. Influence of social media emotional word of mouth on institutional investors’ decisions and firm value. Manag. Sci. 2020, 66, 887–910. [Google Scholar] [CrossRef]
- Mari, A.; Bromley, T.R.; Izaac, J.; Schuld, M.; Killoran, N. Transfer learning in hybrid classical-quantum neural networks. Quantum 2020, 4, 340. [Google Scholar] [CrossRef]
- Guarasci, R.; De Pietro, G.; Esposito, M. Quantum natural language processing: Challenges and opportunities. Appl. Sci. 2022, 12, 5651. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 2015, 56, 172–185. [Google Scholar] [CrossRef]
- Ciliberto, C.; Herbster, M.; Ialongo, A.D.; Pontil, M.; Rocchetto, A.; Severini, S.; Wossnig, L. Quantum machine learning: A classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170551. [Google Scholar] [CrossRef]
- Lorenz, R.; Pearson, A.; Meichanetzidis, K.; Kartsaklis, D.; Coecke, B. QNLP in practice: Running compositional models of meaning on a quantum computer. J. Artif. Intell. Res. 2023, 76, 1305–1342. [Google Scholar] [CrossRef]
- Mishra, N.; Kapil, M.; Rakesh, H.; Anand, A.; Mishra, N.; Warke, A.; Sarkar, S.; Dutta, S.; Gupta, S.; Prasad Dash, A.; et al. Quantum machine learning: A review and current status. In Data Management, Analytics and Innovation: Proceedings of ICDMAI 2021; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2, pp. 101–145. [Google Scholar]
- Gamble, S. Quantum computing: What it is, why we want it, and how we’re trying to get it. In Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2018 Symposium; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Sun, G.; Li, Y.; Liao, D.; Chang, V. Service function chain orchestration across multiple domains: A full mesh aggregation approach. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1175–1191. [Google Scholar] [CrossRef]
- Rong, Y.; Xu, Z.; Liu, J.; Liu, H.; Ding, J.; Liu, X.; Luo, W.; Zhang, C.; Gao, J. Du-bus: A realtime bus waiting time estimation system based on multi-source data. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24524–24539. [Google Scholar] [CrossRef]
- Zou, X.; Yuan, J.; Shilane, P.; Xia, W.; Zhang, H.; Wang, X. From hyper-dimensional structures to linear structures: Maintaining deduplicated data’s locality. ACM Trans. Storage (TOS) 2022, 18, 1–28. [Google Scholar] [CrossRef]
- Xia, W.; Pu, L.; Zou, X.; Shilane, P.; Li, S.; Zhang, H.; Wang, X. The design of fast and lightweight resemblance detection for efficient post-deduplication delta compression. ACM Trans. Storage 2023, 19, 1–30. [Google Scholar] [CrossRef]
- Yan, A.; Cao, A.; Huang, Z.; Cui, J.; Ni, T.; Girard, P.; Wen, X.; Zhang, J. Two double-node-upset-hardened flip-flop designs for high-performance applications. IEEE Trans. Emerg. Top. Comput. 2023, 11, 1070–1081. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J.; Li, R. Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets. Etri J. 2017, 39, 621–631. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Abohashima, Z.; Elhosen, M.; Houssein, E.H.; Mohamed, W.M. Classification with quantum machine learning: A survey. arXiv 2020, arXiv:2006.12270. [Google Scholar]
- Zhang, Y.; Ni, Q. Recent advances in quantum machine learning. Quantum Eng. 2020, 2, e34. [Google Scholar] [CrossRef]
- Houssein, E.H.; Abohashima, Z.; Elhoseny, M.; Mohamed, W.M. Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision. Expert Syst. Appl. 2022, 194, 116512. [Google Scholar] [CrossRef]
- Tychola, K.A.; Kalampokas, T.; Papakostas, G.A. Quantum machine learning—An overview. Electronics 2023, 12, 2379. [Google Scholar] [CrossRef]
- Pande, M.B. A Comprehensive Review of Data Encoding Techniques for Quantum Machine Learning Problems. In Proceedings of the 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE), Vellore, India, 22–23 February 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Fan, F.; Shi, Y.; Guggemos, T.; Zhu, X.X. Hybrid quantum-classical convolutional neural network model for image classification. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef] [PubMed]
- Feit, M.; Fleck Jr, J.; Steiger, A. Solution of the Schrodinger equation by a spectral method. J. Comput. Phys. 1982, 47, 412–433. [Google Scholar] [CrossRef]
- Berezin, F.A.; Shubin, M. The Schrodinger Equation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 66. [Google Scholar]
- Tsutsumi, Y. Schrodinger equation. Funkc. Ekvacioj 1987, 30, 115–125. [Google Scholar]
- Zurek, W.H. Probabilities from entanglement, Born’s rule pk from envariance. Phys. Rev. A 2005, 71, 052105. [Google Scholar] [CrossRef]
- Park, D.K.; Moussa, O.; Laflamme, R. Three path interference using nuclear magnetic resonance: A test of the consistency of Born’s rule. New J. Phys. 2012, 14, 113025. [Google Scholar] [CrossRef]
- Prajapat, S.; Kumar, P.; Kumar, D.; Das, A.K.; Hossain, M.S.; Rodrigues, J.J. Quantum Secure Authentication Scheme for Internet of Medical Things Using Blockchain. IEEE Internet Things J. 2024. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar]
- Prajapat, S.; Kumar, P.; Kumar, S.; Das, A.K.; Shetty, S.; Hossain, M.S. Designing high-performance identity-based quantum signature protocol with strong security. IEEE Access 2024, 12, 14647–14658. [Google Scholar] [CrossRef]
- Kumar, P.; Bharmaik, V.; Prajapat, S.; Thakur, G.; Das, A.K.; Shetty, S.; Rodrigues, J.J. A Secure and Privacy-Preserving Signature Protocol Using Quantum Teleportation in Metaverse Environment. IEEE Access 2024, 12, 96718–96728. [Google Scholar] [CrossRef]
- Prajapat, S.; Kumar, P.; Kumar, S. A privacy preserving quantum authentication scheme for secure data sharing in wireless body area networks. Clust. Comput. 2024, 27, 9013–9029. [Google Scholar] [CrossRef]
- Lindblad, G. A general no-cloning theorem. Lett. Math. Phys. 1999, 47, 189–196. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; Courier Corporation: North Chelmsford, MA, USA, 2014. [Google Scholar]
- Zeh, H.D. On the interpretation of measurement in quantum theory. Found. Phys. 1970, 1, 69–76. [Google Scholar] [CrossRef]
- Prajapat, S.; Kumar, D.; Kumar, P. Quantum image encryption protocol for secure communication in healthcare networks. Clust. Comput. 2025, 28, 3. [Google Scholar] [CrossRef]
- Prajapat, S.; Dhiman, A.; Kumar, S.; Kumar, P. A practical convertible quantum signature scheme with public verifiability into universal quantum designated verifier signature using self-certified public keys. Quantum Inf. Process. 2024, 23, 331. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Aïmeur, E.; Brassard, G.; Gambs, S. Machine learning in a quantum world. In Proceedings of the Advances in Artificial Intelligence: 19th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2006, Québec City, QC, Canada, 7–9 June 2006; Proceedings 19. Springer: Berlin/Heidelberg, Germany, 2006; pp. 431–442. [Google Scholar]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Melucci, M. Towards a quantum-inspired binary classifier. IEEE Access 2019, 7, 42354–42372. [Google Scholar] [CrossRef]
- Sergioli, G.; Giuntini, R.; Freytes, H. A new quantum approach to binary classification. PLoS ONE 2019, 14, e0216224. [Google Scholar] [CrossRef]
- Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [Google Scholar] [CrossRef]
- Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum circuit learning. Phys. Rev. A 2018, 98, 032309. [Google Scholar] [CrossRef]
- Islam, M.; Chowdhury, M.; Khan, Z.; Khan, S.M. Hybrid quantum-classical neural network for cloud-supported in-vehicle cyberattack detection. IEEE Sens. Lett. 2022, 6, 6001204. [Google Scholar] [CrossRef]
- Koya, S.; Laskar, M.R.; Dutta, A.K. A Proposed Quantum Classification Algorithm for Symbol Detection with Noisy Observation. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–6. [Google Scholar]
- Ho, R.; Hung, K. Empirical Mode Decomposition Method Based on Cardinal Spline and its Application on Electroencephalogram Decomposition. In Proceedings of the 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang Island, Malaysia, 21–22 May 2022; pp. 17–21. [Google Scholar]
- Fastovets, D.V.; Bogdanov, Y.I.; Bantysh, B.I.; Lukichev, V.F. Machine learning methods in quantum computing theory. In Proceedings of the International Conference on Micro-and Nano-Electronics 2018, Zvenigorod, Russia, 1–5 October 2018; Volume 11022, pp. 752–761. [Google Scholar]
- Araujo, I.F.; Park, D.K.; Petruccione, F.; da Silva, A.J. A divide-and-conquer algorithm for quantum state preparation. Sci. Rep. 2021, 11, 6329. [Google Scholar] [CrossRef] [PubMed]
- Mottonen, M.; Vartiainen, J.J.; Bergholm, V.; Salomaa, M.M. Transformation of quantum states using uniformly controlled rotations. arXiv 2004, arXiv:quant-ph/0407010. [Google Scholar] [CrossRef]
- Maheshwari, D.; Sierra-Sosa, D.; Garcia-Zapirain, B. Variational quantum classifier for binary classification: Real vs synthetic dataset. IEEE Access 2021, 10, 3705–3715. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, P.; Kumar, P. Effect of noise on the performance of clustering techniques. In Proceedings of the 2010 International Conference on Networking and Information Technology, Hiroshima, Japan, 17–19 November 2010; pp. 504–506. [Google Scholar]
- Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2018; Volume 17. [Google Scholar]
- Grant, E.; Benedetti, M.; Cao, S.; Hallam, A.; Lockhart, J.; Stojevic, V.; Green, A.G.; Severini, S. Hierarchical quantum classifiers. NPJ Quantum Inf. 2018, 4, 65. [Google Scholar] [CrossRef]
- Cao, S.; Wossnig, L.; Vlastakis, B.; Leek, P.; Grant, E. Cost-function embedding and dataset encoding for machine learning with parametrized quantum circuits. Phys. Rev. A 2020, 101, 052309. [Google Scholar] [CrossRef]
- Modi, A.; Jasso, A.V.; Ferrara, R.; Deppe, C.; Noetzel, J.; Fung, F.; Schaedler, M. Testing of Hybrid Quantum-Classical K-Means for Nonlinear Noise Mitigation. arXiv 2023, arXiv:2308.03540. [Google Scholar]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef] [PubMed]
- LaRose, R.; Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. A 2020, 102, 032420. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef]
- Saxena, N.; Nigam, A. Utilizing Non Linear Functions Based Quantum Kernels to Categorize Small Datasets. In Proceedings of the 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Bhubaneswar, India, 9–12 August 2023; pp. 1–6. [Google Scholar]
- Lloyd, S.; Schuld, M.; Ijaz, A.; Izaac, J.; Killoran, N. Quantum embeddings for machine learning. arXiv 2020, arXiv:2001.03622. [Google Scholar]
- Pushpak, S.N.; Jain, S. An Implementation of Quantum Machine Learning Technique to Determine Insurance Claim Fraud. In Proceedings of the 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 13–14 October 2022; pp. 1–5. [Google Scholar]
- Kerenidis, I.; Prakash, A. Quantum machine learning with subspace states. arXiv 2022, arXiv:2202.00054. [Google Scholar]
- Johri, S.; Debnath, S.; Mocherla, A.; Singk, A.; Prakash, A.; Kim, J.; Kerenidis, I. Nearest centroid classification on a trapped ion quantum computer. NPJ Quantum Inf. 2021, 7, 122. [Google Scholar] [CrossRef]
- Suzuki, T.; Katouda, M. Predicting toxicity by quantum machine learning. J. Phys. Commun. 2020, 4, 125012. [Google Scholar]
- Chen, S.Y.C.; Yoo, S. Federated quantum machine learning. Entropy 2021, 23, 460. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.; Aspuru-Guzik, A. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions. Adv. Quantum Technol. 2021, 4, 2000003. [Google Scholar] [CrossRef]
- Lockwood, O.; Si, M. Reinforcement learning with quantum variational circuit. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Online, 19–23 October 2020; Volume 16, pp. 245–251. [Google Scholar]
- Trefethen, L.N. Approximation Theory and Approximation Practice, Extended Edition; SIAM: Philadelphia, PA, USA, 2019. [Google Scholar]
- Kyriienko, O.; Paine, A.E.; Elfving, V.E. Solving nonlinear differential equations with differentiable quantum circuits. Phys. Rev. A 2021, 103, 052416. [Google Scholar] [CrossRef]
- Paine, A.; Elfving, V.; Kyriienko, O. Quantum Quantile Mechanics: Solving Stochastic Differential Equations for Generating Time-Series. arXiv 2021, arXiv:2108.03190. [Google Scholar] [CrossRef]
- Williams, C.A.; Paine, A.E.; Wu, H.Y.; Elfving, V.E.; Kyriienko, O. Quantum Chebyshev Transform: Mapping, Embedding, Learning and Sampling Distributions. arXiv 2023, arXiv:2306.17026. [Google Scholar]
- Gilyén, A.; Su, Y.; Low, G.H.; Wiebe, N. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, Phoenix, AZ, USA, 23–26 June 2019; pp. 193–204. [Google Scholar]
- Gouveia, A.; Correia, M. Towards quantum-enhanced machine learning for network intrusion detection. In Proceedings of the 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 24–27 November 2020; pp. 1–8. [Google Scholar]
- Kim, H.J.; Song, G.J.; Jang, K.B.; Seo, H.J. Cryptanalysis of caesar using quantum support vector machine. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Gangwon, Republic of Korea, 1–3 November 2021; pp. 1–5. [Google Scholar]
- Payares, E.; Martínez-Santos, J.C. Quantum machine learning for intrusion detection of distributed denial of service attacks: A comparative overview. Quantum Comput. Commun. Simul. 2021, 11699, 35–43. [Google Scholar]
- Stein, S.A.; L’Abbate, R.; Mu, W.; Liu, Y.; Baheri, B.; Mao, Y.; Qiang, G.; Li, A.; Fang, B. A hybrid system for learning classical data in quantum states. In Proceedings of the 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX, USA, 29–31 October 2021; pp. 1–7. [Google Scholar]
- Dilip, R.; Liu, Y.J.; Smith, A.; Pollmann, F. Data compression for quantum machine learning. Phys. Rev. Res. 2022, 4, 043007. [Google Scholar] [CrossRef]
- Hur, T.; Kim, L.; Park, D.K. Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 2022, 4, 3. [Google Scholar] [CrossRef]
- Nikoloska, I.; Simeone, O. Training hybrid classical-quantum classifiers via stochastic variational optimization. IEEE Signal Process. Lett. 2022, 29, 977–981. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, X.; Du, Y.; Wu, X.; Tao, D. The dilemma of quantum neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Bar, N.F.; Yetis, H.; Karakose, M. A Quantum-Classical Hybrid Classifier Using Multi-Encoding Method for Images. In Proceedings of the 2023 27th International Conference on Information Technology (IT), Zabljak, Montenegro, 15–18 February 2023; pp. 1–4. [Google Scholar]
- Qu, Z.; Li, Y.; Liu, B.; Gupta, D.; Tiwari, P. Dtqfl: A digital twin-assisted quantum federated learning algorithm for intelligent diagnosis in 5G mobile network. IEEE J. Biomed. Health Inform. 2023. [Google Scholar] [CrossRef]
- Satpathy, S.K.; Vibhu, V.; Behera, B.K.; Al-Kuwari, S.; Mumtaz, S.; Farouk, A. Analysis of quantum machine learning algorithms in noisy channels for classification tasks in the iot extreme environment. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Tscharke, K.; Issel, S.; Debus, P. Semisupervised Anomaly Detection using Support Vector Regression with Quantum Kernel. In Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Bellevue, WA, USA, 17–22 September 2023; Volume 1, pp. 611–620. [Google Scholar]
- Jiaxiang, H.; Jiale, L. QGFORMER: Quantum-Classical Hybrid Transformer Architecture for Gravitational Wave Detection. In Proceedings of the 2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 15–17 December 2023; pp. 1–5. [Google Scholar]
- Hu, F.; Khan, S.A.; Bronn, N.T.; Angelatos, G.; Rowlands, G.E.; Ribeill, G.J.; Türeci, H.E. Overcoming the Coherence Time Barrier in Quantum Machine Learning on Temporal Data. arXiv 2023, arXiv:2312.16165. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Liang, Z.; Guan, Q.; Griffin, P.; Wen, X.; Lin, Y.; Wang, Y. VIOLET: Visual Analytics for Explainable Quantum Neural Networks. arXiv 2023, arXiv:2312.15276. [Google Scholar] [CrossRef] [PubMed]
- Alomari, A.; Kumar, S.A. DEQSVC: Dimensionality Reduction and Encoding Technique for Quantum Support Vector Classifier Approach to Detect DDoS Attacks. IEEE Access 2023. [Google Scholar] [CrossRef]
- Rathi, L.; Tretschk, E.; Theobalt, C.; Dabral, R.; Golyanik, V. 3D-QAE: Fully Quantum Auto-Encoding of 3D Point Clouds. arXiv 2023, arXiv:2311.05604. [Google Scholar]
- Alomari, A.; Kumar, S.A. Hybrid Classical-Quantum Neural Network for Improving Space Weather Detection and Early Warning Alerts. In Proceedings of the 2023 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Cleveland, OH, USA, 20–22 June 2023; pp. 1–6. [Google Scholar]
- Nguyen, T.; Paik, I.; Sagawa, H.; Thang, T.C. Towards Quantum Scalable Data for Heterogeneous Computing Environments. In Proceedings of the 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 18–23 September 2022; pp. 886–889. [Google Scholar]
- Fan, F.; Shi, Y.; Zhu, X.X. Urban Land Cover Classification from Sentinel-2 Images with Quantum-Classical Network. In Proceedings of the 2023 Joint Urban Remote Sensing Event (JURSE), Heraklion Crete, Greece, 17–19 May 2023; pp. 1–4. [Google Scholar]
- Zhou, X.; Yu, J.; Tan, J.; Jiang, T. Quantum kernel estimation-based quantum support vector regression. Quantum Inf. Process. 2024, 23, 1–25. [Google Scholar] [CrossRef]
- IBM Quantum. IBM Quantum Roadmap for 2025. Available online: https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025 (accessed on 5 June 2024).
- Herbster, M.; Mountney, P.; Piat, S.; Severini, S. Data Encoding and Classification. U.S. Patent 10,977,558, 13 April 2021. [Google Scholar]
- Preskill, J. Quantum computing 40 years later. In Feynman Lectures on Computation; CRC Press: Boca Raton, FL, USA, 2023; pp. 193–244. [Google Scholar]
- Perdomo-Ortiz, A.; Benedetti, M.; Realpe-Gómez, J.; Biswas, R. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 2018, 3, 030502. [Google Scholar] [CrossRef]
- Inter-American Development Bank. Quantum Technologies: Digital Transformation, Social Impact, and Cross-sector Disruption. Available online: https://arxiv.org/abs/2309.13036 (accessed on 5 June 2024).
- Cao, S.; Zhang, W.; Tilly, J.; Agarwal, A.; Bakr, M.; Campanaro, G.; Fasciati, S.D.; Wills, J.; Shteynas, B.; Chidambaram, V.; et al. Encoding optimization for quantum machine learning demonstrated on a superconducting transmon qutrit. arXiv 2023, arXiv:2309.13036. [Google Scholar] [CrossRef]
Year | Reference | A | B | C | D | E | F | Limitations |
---|---|---|---|---|---|---|---|---|
2018 | Biamonte et al. [27] | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | The work’s discussion of QML methodologies is limited, lacking basic quantum computing concepts, making it high-level for readers, and it restricts future scope to hardware challenges, ignoring other significant issues in QML. |
2020 | Abohashima et al. [28] | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | While aiming for a comprehensive survey, this paper’s coverage of 30 publications is insufficient for recent QML advances, lacks detailed methodology, overemphasizes classification over other areas, and focuses too much on hardware limitations, neglecting algorithmic efficiency, error correction, scalability, and integration with classical systems. |
2020 | Zhang et al. [29] | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | The paper is not a comprehensive review as it focuses solely on quantum versions of specific supervised and unsupervised algorithms based on the quantum circuit model and insufficiently covers recent advancements by reviewing only a limited number of publications. |
2022 | Houssein et al. [30] | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | The work is similar to that by [28] and lacks novelty. Despite being published in 2022, it only discusses papers up to 2020, hindering its ability to present recent innovations. This limited scope and outdated coverage diminish the paper’s relevance and contribution to current research. |
2023 | Tychola et al. [31] | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | The review focuses solely on SVM and QSVM, overlooking other quantum algorithms like QNN and QkNN, and lacks specific future research directions or practical steps for advancing QML in unsupervised learning and generative models. |
2024 | Pande et al. [32] | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | The review overlooks some novel data-encoding techniques and lacks detailed discussion on practical implementation challenges, including required quantum resources and computational complexity. |
− | Our Study | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | − |
Abbreviation | Full Forms | Abbreviation | Full Forms |
---|---|---|---|
AEs | Autoencoders | AI | Artificial Intelligence |
ANN | Artificial Neural Network | APM | Autonomous Perceptron Model |
APS | American Physical Society | AUC | Area under the ROC Curve |
CAN | Control Area Network | CFMs | Classical Feature Maps |
CML | Classical Machine Learning | CNNs | Convolutional Neural Networks |
CNOT | Controlled NOT | DDoS | Distributed Denial of Service |
DEQSVC | Dimensionality Reduction and Encoding Technique for Quantum Support Vector Classifier | DL | Deep Learning |
DQL | Deep Quantum Learning | DT | Digital Twin |
DTQFL | Digital Twin-Assisted Quantum Federated Learning Algorithm | EF-QAE | Enhanced Feature Quantum Autoencoder |
EO | Earth Observation | FL | Federated Learning |
HHL | Harrow Hassidim Lloyd | HQCA | Hybrid Quantum Classical Architecture |
HCQCs | Hybrid Classical–Quantum Classifiers | HC-QNN | Hybrid Classical–Quantum Neural Network |
HQCNN | Hybrid Quantum–Classical Neural Network | IBM | International Business Machines |
IoMT | Internet of Medical Things | IoT | Internet of Things |
ML | Machine Learning | NIDS | Network Intrusion Detection System |
NISQ | Noisy Intermediate Scale Quantum | NISQRC | Noisy Intermediate Scale Quantum Reservoir Computing |
NNs | Neural Networks | PQCs | Parametrized Quantum Circuits |
QA | Quantum Annealer | QC | Quantum Computing |
QCC | Quality Control Circle | QC-CNN | Quantum Classical Convolutional Neural Network |
QCL | Quantum Circuit Learning | QC-NNs | Quantum Convolutional Neural Networks |
QENN | Quantum Embedding Neural Network | QFMs | Quantum Feature Maps |
QGAN | Quantum Generative Adversarial Network | QGLMs | Quantum Generalized Linear Models |
QGFormer | Quantum Gravitational Transformer | QKAR | Quantum Kernel Alignment based Regression |
QKE-QSVR | Quantum Kernel Estimation-based Quantum Support Vector Regression | QKNN | Quantum k-Nearest Neighbour |
QLDA | Quick Look Display Area | QML | Quantum Machine Learning |
QNN | Quantum Neural Network | QNNN | Quantum Naive Neural Network |
QPCA | Quantum Principal Component Analysis | QRAM | Quantum Random Access Memory |
QSVR | Quantum Support Vector Regression | QSVM | Quantum Support Vector Machine |
QuBits | Quantum Bits | RBF | Radial Basis Function |
RS | Remote Sensing | SciML | Scientific Machine Learning |
SVMs | Support Vector Machines | SVR | Support Vector Regression |
UCI | University of California Intelligence | VQC | Variational Quantum Classifier |
VQE | Variational Quantum Eigensolver | VQNN | Variational Quantum Neural Network |
VQP | Variational Quantum Pulses | 3D-QAE | 3D-Quantum Autoencoder |
Gate Type | Gate Name | Matrix | Working Principle |
---|---|---|---|
One-Qubit Gates | Identity Gate | It turns |0〉 to |0〉 and |1〉 to |1〉. | |
Pauli-X | It converts |0〉 to |1〉 and |1〉 to |0〉. It is similar to the NOT gate. | ||
Pauli-Y | It turns |0〉 to and |1〉 to . | ||
Pauli-Z | It turns |1〉 to and leaves the basis state |0〉 unchanged. It is also called the phase-flip. | ||
Hadamard | It converts |0〉 to superposition state and |1〉 to . | ||
Two-Qubit Gates | Phase shift | It turns |1〉 to and |0〉 remains unchanged. | |
T gate | It turns |1〉 to and |0〉 remains unchanged. | ||
Controlled I | It leaves |00〉, |01〉, |10〉, |11〉 unchanged. | ||
Controlled NOT | It turns |10〉 to |11〉, |11〉 to |10〉 and leaves |00〉, |01〉 unchanged. | ||
SWAP Gate | It turns |10〉 to |01〉, |01〉 to |10〉 and leaves |00〉, |11〉 unchanged. | ||
Controlled Z | It turns |11〉 to and |00〉, |01〉, |10〉 remain unchanged. | ||
Controlled S | It turns |11〉 to and |00〉, |01〉, |10〉 remain unchanged. | ||
Controlled T | It turns |11〉 to and |00〉, |01〉, |10〉 remain unchanged. | ||
Three-Qubit Gates | Toffoli Gate | It turns |110〉 to |111〉, |111〉 to |110〉 and |000〉, |001〉, |010〉, |011〉, |100〉, |101〉 remain unchanged. | |
Fredkin Gate | It turns |101〉 to |110〉, |110〉 to |101〉 and |000〉, |001〉, |010〉, |011〉, |100〉, |111〉 remain unchanged. |
References | Year | QML Model | Encoding | Dataset | Task | Result Findings |
---|---|---|---|---|---|---|
Gouveia and Correia [88] | 2020 | QSVM | Autoencode (Basis and Amplitude Encoding) | KDD-NSL and NB15 datasets | Classification | QASVM generated 76.75% accuracy, 82.3% recall, 86.15% precision, and 77.2% F-score. |
Cao et al. [68] | 2020 | PQCs | Qubit Encoding | Canonical Iris flower dataset | Classification | – |
Lloyd et al. [75] | 2020 | QGAN | Feature Map Encoding | 2D moons dataset | Classification | – |
Payares et al. [90] | 2021 | QSVM | Angle Encoding | DDoS Evaluation Dataset | Classification | QSVM generated 97.14% accuracy, 96.14% recall, 97.19% precision, and 96% F-score. |
Stein et al. [91] | 2021 | GenQu | Quantum Encoding | MNIST and circle datasets | Classification | – |
Kim et al. [89] | 2021 | QSVM | Feature Map Encoding | Caesar cipher dataset | Classification | – |
Maheshwari et al. [64] | 2021 | Amplitude Encoding based VQC | Amplitude Encoding | Synthetic, Sonar, and diabetes datasets | Binary Classification | Results of proposed amplitude encoding based VQC on three datasets are 98.4%, 67.3%, and 74.4% accuracy, respectively. |
Islam et al. [58] | 2022 | HQ-CNN | Basis Encoding | In-vehicle control area network (CAN) dataset | Classification | For both the training and testing datasets, the hybrid quantum-classical NN shows 98.7% and 93.9% accuracy, respectively. |
Rohit Dilip et al. [92] | 2022 | QCC | Amplitude Encoding | Fashion-MNIST dataset | Classification | – |
Hur et al. [93] | 2022 | QCNNs | Amplitude, Qubit, and Dense Encoding | MNIST and Fashion MNIST datasets | Classification | – |
Pushpak and Jain [76] | 2022 | QSVM | Quantum Feature Map | – | Classification | QSVM generated 91.15%, 92.66%, and 92.67% accuracy with linear, circular, and full kernels, respectively. |
Nikoloska and Simeone [94] | 2022 | HCQC | Amplitude Encoding | Prototypical image dataset | Classification | The proposed SVO scheme achieved higher classification accuracy for all response functions. |
Qian et al. [95] | 2022 | QNNN, QENN, and QCNN | Qubit Encoding | Quantum synthetic, the wine, and MNIST datasets | Classification | – |
Bar et al. [96] | 2023 | 2 and 4-layer VQC | Multi-Amplitude Encoding | MNIST and face datasets | Image Classification | MNIST dataset achieved 79.26% accuracy in 2-layer VQC and 92.04% in 4-layer VQC. The face dataset achieved 71.05% accuracy in 2-layer VQC and 84.12% in 4-layer VQC. |
Qu et al. [97] | 2023 | DTQFL | Amplitude and Angle Encodings | Breast Cancer Wisconsin and Fetal Health datasets | Fetal Health Classification | – |
Satpathy et al. [98] | 2023 | classifier, Variational classifier, and QNN | – | TWTDUS and SDWTT18 Datasets | Classification | For the TWTDUS dataset, variational with analytical clustering methods achieved 98.10% accuracy. For the SDWTT18 dataset, the method with k-means clustering achieved 94.43% accuracy. |
Fan et al. [33] | 2023 | QC-CNN | Amplitude Encoding | Five different EO datasets (Overhead-MNIST, So2Sat LCZ42, PatternNet, RSI-CB256, and NaSC-TG2) | Image Classification | – |
Jiaxiang and Jiale [100] | 2023 | QGFORMER | – | Gravity Spy project dataset | Glitch Classification | QGFormer generated 94.27% accuracy and 94.13% F-score. |
Alomari et al. [105] | 2023 | HC-QNN | Angle Encoding | Solar radiation space weather dataset | Classification | Results of HCQNN on the IBM Quantum Computer: 95% accuracy, recall, precision, F-score, and 5% error rate. |
Tscharke et al. [99] | 2023 | QSVR | Amplitude and Angle Encoding | Toy dataset | Regression | QSVR generated 100% AUC, 94% accuracy, 100% recall, 89% precision, and 94% F-score. |
Hu et al. [101] | 2023 | NISQRC | Hamiltonian Encoding | Temporal Data | Logistic Regression | – |
Ruan et al. [102] | 2023 | VIOLET | Angle Encoding | – | Classification | – |
Alomari et al. [103] | 2023 | DEQSVC | Quantum Feature Map | DDoS Evaluation Dataset (CIC-DDoS2019) | Classification | DEQSVC generated 99.49% detection accuracy, 99% recall, 99% precision, and 99% F-score. |
Rathi et al. [104] | 2023 | 3D-QAE | Amplitude Encoding | AMASS dataset | Classification | – |
Nguyen et al. [106] | 2023 | HQCA | Angle Encoding | MNIST and FashionMNIST datasets | Image Classification | The accuracy values of MNIST are over 95% while the accuracy values of FashionMNIST are below 90%. |
Fan et al. [107] | 2023 | FQCNN and MQCNN | – | LCZ42 dataset | Classification | MQCNN model is superior to the FQCNN model (from 0.899 to 0.913). |
Zhou et al. [108] | 2024 | QKE-QSVR | Quantum Feature Map | NASA airfoil self-noise dataset | Regression | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranga, D.; Rana, A.; Prajapat, S.; Kumar, P.; Kumar, K.; Vasilakos, A.V. Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions. Mathematics 2024, 12, 3318. https://doi.org/10.3390/math12213318
Ranga D, Rana A, Prajapat S, Kumar P, Kumar K, Vasilakos AV. Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions. Mathematics. 2024; 12(21):3318. https://doi.org/10.3390/math12213318
Chicago/Turabian StyleRanga, Deepak, Aryan Rana, Sunil Prajapat, Pankaj Kumar, Kranti Kumar, and Athanasios V. Vasilakos. 2024. "Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions" Mathematics 12, no. 21: 3318. https://doi.org/10.3390/math12213318
APA StyleRanga, D., Rana, A., Prajapat, S., Kumar, P., Kumar, K., & Vasilakos, A. V. (2024). Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions. Mathematics, 12(21), 3318. https://doi.org/10.3390/math12213318