A Vector-Product Lie Algebra of a Reductive Homogeneous Space and Its Applications
Abstract
:1. Introduction
2. 6-Dimensional Vector-Product Lie Algebra G and Its Applications
3. Nonisospectral Integrable Hierarchies
4. Pseudo-Hamiltonian Structure of the Isospectral Integrable Hierarchy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tu, G.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30, 330–338. [Google Scholar] [CrossRef]
- Ma, W.X. A hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math. 1992, 13, 79–89. [Google Scholar]
- Tu, G.Z.; Meng, D.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems (II). Acta Math. Appl. Sin. 1989, 5, 89–96. [Google Scholar] [CrossRef]
- Ma, W.X. A hierarchy of Liouville integrable finite-dimensional Hamiltonian systems. Appl. Math. Mech. 1992, 13, 369–377. [Google Scholar]
- Ju, L.; Zhou, J.; Zhang, Y.F. Conservation laws analysis of nonlinear partial differential equations and their linear soliton solutions and Hamiltonian structures. Commun. Anal. Mech. 2023, 15, 24–49. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.; Zhao, S.Y.; Feng, L.B. Integrable Coupling of Expanded Isospectral and Non-Isospectral Dirac Hierarchy and Its Reduction. Symmetry 2022, 14, 2489. [Google Scholar] [CrossRef]
- Zhou, J.; Ju, L.; Zhao, S.Y.; Zhang, Y.F. Exact Solutions of Nonlinear Partial Differential Equations Using the Extended Kudryashov Method and Some Properties. Symmetry 2023, 15, 2122. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A new multi-component integrable coupling and its application to isospectral and nonisospec- tral problems. Commun. Nonlinear Sci. 2022, 105, 106075. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems. Commun. Nonlinear Sci. 2021, 99, 105822. [Google Scholar] [CrossRef]
- Tu, G.Z.; Andrushkiw, R.I.; Huang, X.C. A trace identity and its application to integrable systems of 1+2 dimensions. J. Math. Phys. 1991, 32, 1900–1907. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Rui, W.J. On generating (2+1)-dimensional hierarchies of evolution equations. Commun. Nonlinear Sci. Numer. Simulat. 2014, 19, 3454–3461. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Gao, J.; Wang, G.M. Two (2+1)-dimensional hierarchies of evolution equations. Appl. Math. Comput. 2014, 244, 672–682. [Google Scholar]
- Zhang, Y.F.; Rui, W.J.; Tam, H.W. An (2+1)-dimensional expanding model of the Davey-Stewartson hierarchy as well as its Hamiltonian structure. Discontinuity Nonlinearity Complex. 2014, 3, 427–434. [Google Scholar] [CrossRef]
- Tu, G.Z.; Feng, B.L.; Zhang, Y.F. Binormial and residue representation of (2+1)-dimensional integrable system. J. Weifang Univ. 2014, 4, 1–7. [Google Scholar]
- Zhang, Y.F. Lie algebras for constructing nonlinear integrable couplings. Commun. Theor. Phys. 2011, 56, 805–812. [Google Scholar] [CrossRef]
- Ma, W.X.; Chen, M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebra. J. Phys. A 2006, 39, 10787–10801. [Google Scholar] [CrossRef]
- Guo, F.K.; Zhang, Y.F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A 2005, 38, 8537–8548. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Coupling of completely integrable system: The perturbation bundle. In Applications of Analytic and Geometric Methods to Nonlinear Differential Equations; Clarkson, P.A., Ed.; Kluwer: Dordrecht, The Netherlands, 1993; p. 125. [Google Scholar]
- Ma, W.X. Integrable couplings of soliton equations by perturbation I. A general theory and application to the KdV equation. Methods Appl. Anal. 2000, 7, 21–56. [Google Scholar] [CrossRef]
- Athorne, C.; Dorfman, I.Y. The Hamiltonian structure of the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur hierarchy. J. Math. Phys. 1993, 34, 3507–3517. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wu, L.X.; Rui, W.J. A corresponding Lie algebra of a reductive homogeneous group and its applications. Commun. Theor. Phys. 2015, 63, 535–548. [Google Scholar] [CrossRef]
- Qiao, Z.J. Commutator representations of three isospectral equation hierarchies. Chin. J. Contemp. Math. 1993, 14, 41–51. [Google Scholar]
- Zhang, Y.F.; Tam, H.W. Generation of Nonlinear Evolution Equations by Reductions of the Self-Dual YangCMills Equations. Commun. Theor. Phys. 2014, 61, 203–206. [Google Scholar] [CrossRef]
- Liu, H.Z. Generalized symmetry classifications, integrable properties and exact solutions to the general nonlinear diffusion equations. Commun. Nonlinear Sci. Numer. Simulat. 2016, 36, 21–27. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Mei, J.Q.; Guan, H.Y. A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geomitry Phys. 2020, 147, 103538. [Google Scholar] [CrossRef]
- Li, Y.S. A kind of evolution equations and the deform of spectral. Sci. Sin. A 1982, 25, 385–387. (In Chinese) [Google Scholar]
- Zhang, Y.F.; Zhang, X.Z. A Scheme for generating nonisospectral integrable hierarchies and its related applications. Acta Math. Sin. Engl. Ser. 2021, 37, 707–730. [Google Scholar] [CrossRef]
- Ma, W.X. An approach for constructing non-isospectral hierarchies of evolution equations. J. Phys. A Math. Gen. 1992, 25, L719–L726. [Google Scholar] [CrossRef]
- Ma, W.X. A simple scheme for generating nonisospectral flows from the zero curvature representation. Phys. Lett. A 1993, 179, 179–185. [Google Scholar] [CrossRef]
- Qiao, Z.J. New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Physica A 1998, 252, 377–387. [Google Scholar] [CrossRef]
- Qiao, Z.J. Generation of soliton hierarchy and general structure of its commutator representations. Acta Mathamticae Appl. Sin. 1995, 18, 287–301. [Google Scholar]
- Lu, H.; Zhang, Y. Some generalized isospectral-nonisospectral integrable hierarchies. Commun. Nonlinear Sci. Numer. Simulat. 2021, 100, 105851. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. A nonisospectral integrable model of AKNS hierarchy and KN hierarchy, as well as its extended system. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150156. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Three kinds of nonisospectral integrable model of Wadati-Konno-Ichikawa soliton hierarchies. Rocky Mt. J. Math. 2021, 51, 1489–1502. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhao, S. A Vector-Product Lie Algebra of a Reductive Homogeneous Space and Its Applications. Mathematics 2024, 12, 3322. https://doi.org/10.3390/math12213322
Zhou J, Zhao S. A Vector-Product Lie Algebra of a Reductive Homogeneous Space and Its Applications. Mathematics. 2024; 12(21):3322. https://doi.org/10.3390/math12213322
Chicago/Turabian StyleZhou, Jian, and Shiyin Zhao. 2024. "A Vector-Product Lie Algebra of a Reductive Homogeneous Space and Its Applications" Mathematics 12, no. 21: 3322. https://doi.org/10.3390/math12213322
APA StyleZhou, J., & Zhao, S. (2024). A Vector-Product Lie Algebra of a Reductive Homogeneous Space and Its Applications. Mathematics, 12(21), 3322. https://doi.org/10.3390/math12213322