BlockLoader: A Comprehensive Evaluation Framework for Blockchain Performance Under Various Workload Patterns
Abstract
:1. Introduction
- We propose the BlockLoader evaluation framework, which offers various workload distribution patterns, including uniform, linear, single-peak, and multi-peak patterns, to simulate sudden changes or periodic workloads. These patterns provide more realistic performance evaluations, addressing the limitations of existing frameworks that rely solely on fixed workload patterns.
- We perform qualitative and quantitative analyses of the impact of different endorsement policies on blockchain performance. Compared to previous research focusing on the effects of system configuration parameters and consensus algorithms, we fill this gap in the literature and provide new insights for optimizing blockchain systems.
- We propose a dynamic crash fault tolerance evaluation scheme that evaluates the performance of the blockchain system under node dynamics while ensuring that the system continues to operate normally. This scheme addresses the shortcomings of existing frameworks regarding crash fault tolerance evaluation.
2. Background
2.1. Hyperledger Fabric
2.2. Hyperledger Caliper
3. Related Work
3.1. Performance Evaluation Tools
3.2. Fabric Performance Evaluation
4. System Architecture
4.1. Overview and Key Components
4.2. Execution Workflow
4.2.1. Preparation Phase
4.2.2. Execution Phase
4.2.3. Report Generation Phase
5. Workload Design
5.1. Workflow of Workload Executor
5.2. Workload Distribution Pattern
6. Endorsement Policies and Dynamic Changes in Nodes
6.1. Endorsement Policies
6.2. Dynamic Changes in Nodes
7. Evaluation
7.1. Performance Evaluation of HLF Under Different Workload Patterns
7.2. Comparing the Performance Under Different Endorsement Policies
7.3. Analyzing the Impact of Node Dynamics on Hyperledger Fabric Performance
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Chu, X. Performance characterization and bottleneck analysis of hyperledger fabric. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 1281–1286. [Google Scholar]
- Fabric, H. Hyperledger Fabric Documentation; The Linux Foundation: San Francisco, LA, USA, 2023. [Google Scholar]
- Huawei. Hyperledger Caliper. 2017. Available online: https://www.hyperledger.org/projects/caliper (accessed on 2 August 2023).
- Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017; pp. 1085–1100. [Google Scholar]
- Wang, G.; Zhang, Y.; Ying, C.; Li, X.; Yu, G. Hammer: A General Blockchain Evaluation Framework. In Proceedings of the 44th IEEE International Conference on Distributed Computing Systems, ICDCS 2024, Jersey City, NJ, USA, 23–26 July 2024; pp. 391–402. [Google Scholar]
- Saingre, D.; Ledoux, T.; Menaud, J.M. BCTMark: A framework for benchmarking blockchain technologies. In Proceedings of the 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA), Antalya, Turkey, 2–5 November 2020; pp. 1–8. [Google Scholar]
- Nasrulin, B.; De Vos, M.; Ishmaev, G.; Pouwelse, J. Gromit: Benchmarking the performance and scalability of blockchain systems. In Proceedings of the 2022 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Newark, CA, USA, 15–18 August 2022; pp. 56–63. [Google Scholar]
- Sedlmeir, J.; Ross, P.; Luckow, A.; Lockl, J.; Miehle, D.; Fridgen, G. The DLPS: A new framework for benchmarking blockchains. In Proceedings of the 54th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2021. [Google Scholar]
- Chacko, J.A.; Mayer, R.; Jacobsen, H.A. Why do my blockchain transactions fail? A study of hyperledger fabric. In Proceedings of the 2021 International Conference on Management of Data, Xi’an, China, 20–25 June 2021; pp. 221–234. [Google Scholar]
- Enare Abang, J.; Takruri, H.; Al-Zaidi, R.; Al-Khalidi, M. Latency performance modelling in hyperledger fabric blockchain: Challenges and directions with an IoT perspective. Internet Things 2024, 26, 101217. [Google Scholar] [CrossRef]
- Piao, X.; Ding, H.; Song, H. Performance Analysis of Endorsement in Hyperledger Fabric Concerning Endorsement Policies. Electronics 2023, 12, 4322. [Google Scholar] [CrossRef]
- Melo, C.; Gonçalves, G.; Silva, F.A.; Soares, A. A comprehensive hyperledger fabric performance evaluation based on resources capacity planning. Clust. Comput. 2024, 27, 12395–12410. [Google Scholar] [CrossRef]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Kreps, J.; Narkhede, N.; Rao, J. Kafka: A distributed messaging system for log processing. In Proceedings of the NetDB, Athens, Greece, 12–16 June 2011; pp. 1–7. [Google Scholar]
- Castro, M.; Liskov, B. Practical Byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, LA, USA, 22–25 February 1999; pp. 173–186. [Google Scholar]
- Dean, J.; Ghemawat, S. LevelDB. 2020. Available online: https://github.com/google/leveldb (accessed on 24 February 2021).
- Apache CouchDB. CouchDB. 2020. Available online: https://couchdb.apache.org/ (accessed on 24 February 2021).
- Fan, C.; Ghaemi, S.; Khazaei, H.; Musilek, P. Performance evaluation of blockchain systems: A systematic survey. IEEE Access 2020, 8, 126927–126950. [Google Scholar] [CrossRef]
- Shah, J.; Sharma, D. Performance Benchmarking Frameworks for Distributed Ledger Technologies. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; pp. 1–5. [Google Scholar]
- Technologies, H.Q. HyperBench: Blockchain Performance Benchmarking Tool. Available online: https://github.com/meshplus/hyperbench (accessed on 19 October 2024).
- Gramoli, V.; Guerraoui, R.; Lebedev, A.; Natoli, C.; Voron, G. Diablo-v2: A Benchmark for Blockchain Systems; Technical Report; EPFL: Lausanne, Switzerland, 2022. [Google Scholar]
- Dong, Z.; Zheng, E.; Choon, Y.; Zomaya, A.Y. Dagbench: A performance evaluation framework for dag distributed ledgers. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019; pp. 264–271. [Google Scholar]
- Krüger, A. Chainhammer: Ethereum Benchmarking. 2017. Available online: https://github.com/drandreaskrueger/chainhammer (accessed on 4 September 2024).
- ConsenSys. Quorum Profiling: Performance Analysis of Quorum. Available online: https://github.com/ConsenSys/quorum-profiling (accessed on 4 September 2024).
- Birim, M.; Ari, H.E.; Karaarslan, E. GoHammer Blockchain Performance Test Tool. J. Emerg. Comput. Technol. 2021, 1, 31–33. [Google Scholar]
- Kuzlu, M.; Pipattanasomporn, M.; Gurses, L.; Rahman, S. Performance analysis of a hyperledger fabric blockchain framework: Throughput, latency and scalability. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 536–540. [Google Scholar]
- Kim, J.W.; Song, J.G.; Lee, T.R.; Jang, J.W. Performance evaluation of NFT trading platform based on hyperledger fabric blockchain. In Proceedings of the 2022 8th International Conference on Computing and Data Engineering, Bangkok, Thailand, 11–13 January 2022; pp. 65–70. [Google Scholar]
- Harris, C. Performance Evaluation of Ordering Services and Endorsement Policies in Hyperledger Fabric. In Proceedings of the 2023 33rd Conference of Open Innovations Association (FRUCT), Zilina, Slovakia, 24–26 May 2023; pp. 63–69. [Google Scholar]
- Al-Sumaidaee, G.; Alkhudary, R.; Zilic, Z.; Swidan, A. Performance analysis of a private blockchain network built on Hyperledger Fabric for healthcare. Inf. Process. Manag. 2023, 60, 103160. [Google Scholar] [CrossRef]
- Ke, Z.; Park, N. Performance modeling and analysis of Hyperledger Fabric. Clust. Comput. 2023, 26, 2681–2699. [Google Scholar] [CrossRef]
- Stoltidis, A.; Choumas, K.; Korakis, T. Performance Optimization of High-Conflict Transactions within the Hyperledger Fabric Blockchain. arXiv 2024, arXiv:2407.19732. [Google Scholar]
- Volz, J.; Brian, B.; Conor, B.; Matt, L.; Steve, D. Prometheus: Monitoring System and Time Series Database. 2012. Available online: https://prometheus.io/ (accessed on 6 June 2024).
- Ödegaard, T. Grafana: The Open Platform for Analytics and Monitoring. Available online: https://grafana.com/ (accessed on 6 June 2024).
- Alibaba Cloud. Cloud Computing Services. 2024. Available online: https://www.alibabacloud.com (accessed on 1 October 2024).
Workload Distribution Patterns | Latency (s) | ||
---|---|---|---|
Max | Min | Avg | |
0.45 | 0.04 | 0.14 | |
2.09 | 0.04 | 0.41 | |
0.53 | 0.04 | 0.09 | |
2.05 | 0.04 | 0.21 | |
0.31 | 0.04 | 0.09 | |
2.08 | 0.04 | 0.09 | |
2.04 | 0.04 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhang, Y.; Ying, C.; Zhang, Q.; Peng, Z.; Li, X.; Yu, G. BlockLoader: A Comprehensive Evaluation Framework for Blockchain Performance Under Various Workload Patterns. Mathematics 2024, 12, 3403. https://doi.org/10.3390/math12213403
Wang G, Zhang Y, Ying C, Zhang Q, Peng Z, Li X, Yu G. BlockLoader: A Comprehensive Evaluation Framework for Blockchain Performance Under Various Workload Patterns. Mathematics. 2024; 12(21):3403. https://doi.org/10.3390/math12213403
Chicago/Turabian StyleWang, Gang, Yanfeng Zhang, Chenhao Ying, Qinnan Zhang, Zhiyuan Peng, Xiaohua Li, and Ge Yu. 2024. "BlockLoader: A Comprehensive Evaluation Framework for Blockchain Performance Under Various Workload Patterns" Mathematics 12, no. 21: 3403. https://doi.org/10.3390/math12213403
APA StyleWang, G., Zhang, Y., Ying, C., Zhang, Q., Peng, Z., Li, X., & Yu, G. (2024). BlockLoader: A Comprehensive Evaluation Framework for Blockchain Performance Under Various Workload Patterns. Mathematics, 12(21), 3403. https://doi.org/10.3390/math12213403