Estimating Asset Pricing Models in the Presence of Cross-Sectionally Correlated Pricing Errors
Abstract
:1. Introduction
1.1. Factor Pricing Models
1.2. Definition of Multifactor Models
1.3. Unsupervised Learning Problem for the Multifactor Models
1.4. Notation
2. Motivation
3. Related Work and Our Contributions
Our Contributions
4. The Proposed Estimator of the K Factor Models
4.1. The Proposed Min-Max Problem
Algorithm 1: Proposed factor model estimator |
4.2. The Minimization Part
Algorithm 2: Alternating minimization |
5. Experiments
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Basic Facts
Appendix B. Derivations of the First-Order Optimality Conditions
Appendix C. Proof of Proposition 1
References
- Cochrane, J.H. Asset Pricing, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Harvey, C.R.; Liu, Y.; Zhu, H. … and the Cross-Section of Expected Returns. Rev. Financ. Stud. 2016, 29, 5–68. [Google Scholar] [CrossRef]
- Asness, C.S.; Frazzini, A.; Pedersen, L.H. Quality Minus Junk. Rev. Account. Stud. 2019, 24, 34–112. [Google Scholar] [CrossRef]
- Kim, S. Enhanced Factor Investing in the Korean Stock Market. Pac. Basin Financ. J. 2021, 67, 101558. [Google Scholar] [CrossRef]
- Kim, S. Factor Investing: A Unified View. Appl. Econ. 2023, 55, 1567–1580. [Google Scholar] [CrossRef]
- Van Gelderen, E.; Huij, J.; Kyosev, G. Factor Investing from Concept to Implementation. J. Portf. Manag. 2019, 45, 123–140. [Google Scholar] [CrossRef]
- Yan, J.; Yu, J. Cross-Stock Momentum and Factor Momentum. J. Financ. Econ. 2023, 150, 103716. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Common Risk Factors in the Returns on Stocks and Bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A Five-Factor Asset Pricing Model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef]
- Back, K.E. Asset Pricing and Portfolio Choice Theory, 2nd ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- French, K.R. Kenneth French’s Data Library. 2022. Available online: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (accessed on 1 October 2022).
- Bartlett, M.S. The Effect of Standardization on a χ2 Approximation in Factor Analysis. Biometrika 1951, 38, 337–344. [Google Scholar] [CrossRef]
- Fama, E.F.; MacBeth, J.D. Risk, Return, and Equilibrium: Empirical Tests. J. Political Econ. 1973, 81, 607–636. [Google Scholar] [CrossRef]
- Gibbons, M.R.; Ross, S.A.; Shanken, J. A Test of the Efficiency of a Given Portfolio. Econometrica 1989, 57, 1121–1152. [Google Scholar] [CrossRef]
- Ross, S.A. The Arbitrage Theory of Capital Asset Pricing. J. Econ. Theory 1976, 13, 341–360. [Google Scholar] [CrossRef]
- Chamberlain, G.; Rothschild, M. Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets. Econometrica 1983, 51, 1281–1304. [Google Scholar] [CrossRef]
- Connor, G.; Korajczyk, R.A. Performance Measurement with the Arbitrage Pricing Theory: A New Framework for Analysis. J. Financ. Econ. 1986, 15, 373–394. [Google Scholar] [CrossRef]
- Fan, J.; Liao, Y.; Wang, W. Projected Principal Component Analysis in Factor Models. Ann. Stat. 2016, 44, 219–254. [Google Scholar] [CrossRef]
- Kozak, S.; Nagel, S.; Santosh, S. Interpreting Factor Models. J. Financ. 2018, 73, 1183–1223. [Google Scholar] [CrossRef]
- Kelly, B.T.; Pruitt, S.; Su, Y. Characteristics Are Covariances: A Unified Model of Risk and Return. J. Financ. Econ. 2019, 134, 501–524. [Google Scholar] [CrossRef]
- Pukthuanthong, K.; Roll, R.; Subrahmanyam, A. A Protocol for Factor Identification. Rev. Financ. Stud. 2019, 32, 1573–1607. [Google Scholar] [CrossRef]
- Lettau, M.; Pelger, M. Estimating Latent Asset-Pricing Factors. J. Econom. 2020, 218, 1–31. [Google Scholar] [CrossRef]
- Giglio, S.; Xiu, D. Asset Pricing with Omitted Factors. J. Political Econ. 2021, 129, 1947–1990. [Google Scholar] [CrossRef]
- Bryzgalova, S.; DeMiguel, V.; Li, S.; Pelger, M. Asset-Pricing Factors with Economic Targets. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Srebro, N.; Jaakkola, T. Weighted Low-Rank Approximations. In Proceedings of the International Conference on Machine Learning, Washington DC, USA, 21–24 August 2003. [Google Scholar]
- Recht, B.; Re, C.; Tropp, J.; Bittorf, V. Factoring Nonnegative Matrices with Linear Programs. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Udell, M.; Horn, C.; Zadeh, R.; Boyd, S. Generalized Low Rank Models. Found. Trends® Mach. Learn. 2016, 9, 1–118. [Google Scholar] [CrossRef]
- Keshavan, R.; Montanari, A.; Oh, S. Matrix Completion from Noisy Entries. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009. [Google Scholar]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009. [Google Scholar]
- Candès, E.J.; Tao, T. The Power of Convex Relaxation: Near-Optimal Matrix Completion. IEEE Trans. Inf. Theory 2010, 56, 2053–2080. [Google Scholar] [CrossRef]
- Lettau, M.; Pelger, M. Factors That Fit the Time Series and Cross-Section of Stock Returns. Rev. Financ. Stud. 2020, 33, 2274–2325. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 1–9. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 214–223. [Google Scholar]
- Kapsos, M.; Christofides, N.; Rustem, B. Robust Risk Budgeting. Ann. Oper. Res. 2018, 266, 199–221. [Google Scholar] [CrossRef]
- O’Donoghue, B.; Chu, E.; Parikh, N.; Boyd, S. Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding. J. Optim. Theory Appl. 2016, 169, 1042–1068. [Google Scholar] [CrossRef]
- Kozak, S.; Nagel, S.; Santosh, S. Shrinking the Cross-Section. J. Financ. Econ. 2020, 135, 271–292. [Google Scholar] [CrossRef]
- Bai, J.; Ng, S. Determining the Number of Factors in Approximate Factor Models. Econometrica 2002, 70, 191–221. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. Forecasting Using Principal Components from a Large Number of Predictors. J. Am. Stat. Assoc. 2002, 97, 1167–1179. [Google Scholar] [CrossRef]
- Lütkepohl, H. Handbook of Matrices; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Magnus, J.R.; Neudecker, H. Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
SR | RMSα | (%) | ||
---|---|---|---|---|
Panel A: | ||||
FF3 | 0.193 | 0.31 | 17.48 | |
PCA | 0.216 | 3.18 | 13.71 | |
0.216 | 3.18 | 13.71 | ||
0.216 | 3.18 | 13.71 | ||
RP-PCA | 0.257 | 2.89 | 13.72 | |
0.361 | 2.75 | 13.84 | ||
0.397 | 2.80 | 13.91 | ||
Ours | 0.421 | 3.05 | 13.87 | |
0.442 | 2.89 | 14.01 | ||
0.445 | 2.89 | 14.02 | ||
Panel B: | ||||
FF5 | 0.317 | 0.26 | 16.02 | |
PCA | 0.317 | 2.52 | 10.31 | |
0.317 | 2.52 | 10.31 | ||
0.317 | 2.52 | 10.31 | ||
RP-PCA | 0.383 | 2.34 | 10.32 | |
0.575 | 1.91 | 10.44 | ||
0.601 | 1.86 | 10.46 | ||
Ours | 0.603 | 1.92 | 10.45 | |
0.630 | 2.00 | 10.45 | ||
0.629 | 1.90 | 10.47 | ||
Panel C: | ||||
PCA | 0.381 | 2.22 | 8.89 | |
0.381 | 2.22 | 8.89 | ||
0.381 | 2.22 | 8.89 | ||
RP-PCA | 0.449 | 2.03 | 8.90 | |
0.596 | 1.78 | 8.96 | ||
0.618 | 1.74 | 8.98 | ||
Ours | 0.618 | 1.79 | 8.97 | |
0.646 | 1.83 | 8.98 | ||
0.644 | 1.76 | 8.98 | ||
Panel D: | ||||
PCA | 0.410 | 2.07 | 7.25 | |
0.410 | 2.07 | 7.25 | ||
0.410 | 2.07 | 7.25 | ||
RP-PCA | 0.461 | 1.97 | 7.25 | |
0.602 | 1.75 | 7.31 | ||
0.625 | 1.71 | 7.32 | ||
Ours | 0.697 | 2.35 | 7.30 | |
0.651 | 1.79 | 7.33 | ||
0.650 | 1.73 | 7.33 | ||
Panel E: | ||||
PCA | 0.507 | 1.70 | 5.42 | |
0.507 | 1.70 | 5.42 | ||
0.507 | 1.70 | 5.42 | ||
RP-PCA | 0.590 | 1.51 | 5.43 | |
0.714 | 1.19 | 5.46 | ||
0.726 | 1.15 | 5.46 | ||
Ours | 0.733 | 1.20 | 5.46 | |
0.740 | 1.14 | 5.47 | ||
0.740 | 1.12 | 5.47 |
SR | RMSα | (%) | ||
---|---|---|---|---|
Panel A: | ||||
FF3 | 0.150 | 0.25 | 16.47 | |
PCA | 0.107 | 3.04 | 15.78 | |
0.107 | 3.04 | 15.78 | ||
0.107 | 3.04 | 15.78 | ||
RP-PCA | 0.133 | 2.96 | 15.70 | |
0.296 | 2.53 | 15.35 | ||
0.325 | 2.45 | 15.32 | ||
Ours | 0.302 | 2.52 | 15.39 | |
0.299 | 2.61 | 15.42 | ||
0.327 | 2.45 | 15.39 | ||
Panel B: | ||||
FF5 | 0.302 | 0.19 | 13.85 | |
PCA | 0.235 | 2.21 | 11.98 | |
0.235 | 2.21 | 11.98 | ||
0.235 | 2.21 | 11.98 | ||
RP-PCA | 0.270 | 2.12 | 11.97 | |
0.486 | 1.75 | 12.04 | ||
0.498 | 1.70 | 12.06 | ||
Ours | 0.422 | 1.78 | 11.98 | |
0.491 | 1.72 | 12.05 | ||
0.500 | 1.69 | 12.06 | ||
Panel C: | ||||
PCA | 0.298 | 2.19 | 10.62 | |
0.298 | 2.19 | 10.62 | ||
0.298 | 2.19 | 10.62 | ||
RP-PCA | 0.368 | 2.07 | 10.64 | |
0.482 | 1.76 | 10.76 | ||
0.489 | 1.74 | 10.77 | ||
Ours | 0.459 | 1.75 | 10.73 | |
0.490 | 1.74 | 10.76 | ||
0.493 | 1.72 | 10.76 | ||
Panel D: | ||||
PCA | 0.346 | 1.84 | 8.97 | |
0.346 | 1.84 | 8.97 | ||
0.346 | 1.84 | 8.97 | ||
RP-PCA | 0.433 | 1.73 | 8.96 | |
0.502 | 1.55 | 9.00 | ||
0.506 | 1.53 | 9.01 | ||
Ours | 0.476 | 1.59 | 9.01 | |
0.507 | 1.53 | 9.01 | ||
0.508 | 1.53 | 9.01 | ||
Panel E: | ||||
PCA | 0.372 | 1.61 | 6.98 | |
0.372 | 1.61 | 6.98 | ||
0.372 | 1.61 | 6.98 | ||
RP-PCA | 0.488 | 1.41 | 6.97 | |
0.549 | 1.23 | 6.97 | ||
0.552 | 1.21 | 6.97 | ||
Ours | 0.525 | 1.26 | 6.97 | |
0.552 | 1.21 | 6.97 | ||
0.553 | 1.21 | 6.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, S. Estimating Asset Pricing Models in the Presence of Cross-Sectionally Correlated Pricing Errors. Mathematics 2024, 12, 3442. https://doi.org/10.3390/math12213442
Kim H, Kim S. Estimating Asset Pricing Models in the Presence of Cross-Sectionally Correlated Pricing Errors. Mathematics. 2024; 12(21):3442. https://doi.org/10.3390/math12213442
Chicago/Turabian StyleKim, Hyuksoo, and Saejoon Kim. 2024. "Estimating Asset Pricing Models in the Presence of Cross-Sectionally Correlated Pricing Errors" Mathematics 12, no. 21: 3442. https://doi.org/10.3390/math12213442