Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise
Abstract
:1. Introduction
2. Preliminaries and Main Assumptions
3. Temporal and Spatial Regularities in the Solution of (1)
4. Spatial Discretization
5. Time Discretization
6. Numerical Experiments
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gunzburger, M.; Li, B.; Wang, J. Sharp convergence rates of time discretization for stochastic time-fractional pdes subject to additive space-time white noise. Math. Comp. 2019, 88, 1715–1741. [Google Scholar] [CrossRef]
- Nie, D.; Deng, W. A unified convergence analysis for the fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(0,1). SIAM J. Numer. Anal. 2022, 60, 1548–1573. [Google Scholar] [CrossRef]
- Diethelm, K. An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 1997, 5, 1–6. [Google Scholar]
- Lubich, C.; Sloan, I.H.; Thomée, V. Nonsmooth data error estimate for approximations of an evolution equation with a positive-type memory term. Math. Comp. 1996, 65, 1–17. [Google Scholar] [CrossRef]
- Thomée, V. Galerkin Finite Element Methods for Parabolic Problems; Springer: Berlin, Germany, 2007. [Google Scholar]
- Yan, Y.; Khan, M.; Ford, N.J. An analysis of the modified scheme for the time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 2018, 56, 210–227. [Google Scholar] [CrossRef]
- Nigmatulin, R. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 1986, 133, 425–430. [Google Scholar] [CrossRef]
- Adams, E.E.; Gelhar, L.W. Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Res. Res. 1992, 28, 3293–3307. [Google Scholar] [CrossRef]
- Hatano, Y.; Hatano, N. Dispersive transport of ions in column experiments: An explanation of long-tailed profiles. Water Res. Res. 1998, 34, 1027–1033. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Random walk models for space fractional diffusion processes. Fract. Calc. Appl. Anal. 1998, 1, 167–191. [Google Scholar]
- Chen, Z.-Q.; Kim, K.-H.; Kim, P. Fractional time stochastic partial differential equations. Stoch. Process. Appl. 2015, 125, 1470–1499. [Google Scholar] [CrossRef]
- Duan, Y.; Jiang, Y.; Wei, Y.; Zheng, Z. Fractional stochastic parabolic equations with fractional noise. Discret. Contin. Dyn. Syst.-Ser. D 2024. [Google Scholar] [CrossRef]
- Anh, V.V.; Leonenko, N.N.; Ruiz-Medina, M. Space-time fractional stochastic equations on regular bounded open domains. Fract. Calc. Appl. Anal. 2016, 19, 1161–1199. [Google Scholar] [CrossRef]
- Mijena, J.B.; Nane, E. Space-time fractional stochastic partial differential equations. Stoch. Process. Appl. 2015, 125, 3301–3326. [Google Scholar] [CrossRef]
- Mijena, J.B.; Nane, E. Intermittence and space-time fractional stochastic partial differential equations. Potential Anal. 2016, 44, 295–312. [Google Scholar] [CrossRef]
- Liu, W.; Röckner, M.; da Silva, J.L. Quasi-linear (stochastic) partial differential equations with time-fractional derivatives. SIAM J. Math. Anal. 2018, 50, 2588–2607. [Google Scholar] [CrossRef]
- Chen, L. Nonlinear stochastic time-fractional diffusion equations on R: Moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. 2017, 369, 8497–8535. [Google Scholar] [CrossRef]
- Foondun, M.; Mijena, J.; Nane, E. Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains. Fract. Calc. Appl. Anal. 2016, 19, 1527–1553. [Google Scholar] [CrossRef]
- Chen, L.; Hu, Y.; Nualart, D. Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd. Stoch. Process. Appl. 2019, 129, 5073–5112. [Google Scholar] [CrossRef]
- Shukla, A.; Panda, S.K.; Vijayakumar, V.; Kumar, K.; Thilagavathi, K. Approximate controllability of Hilfer fractional stochastic evolution inclusions of order 1 < q < 2. Fractal Fract. 2024, 8, 499. [Google Scholar]
- Jin, B.; Yan, Y.; Zhou, Z. Numerical approximation of stochastic time-fractional diffusion. ESAIM Math. Model. Numer. Anal. 2019, 53, 1245–1268. [Google Scholar] [CrossRef]
- Gunzburger, M.; Li, B.; Wang, J. Convergence of fnite element solution of stochastic partial integral-differential equations driven by white noise. Numer. Math. 2019, 141, 1043–1077. [Google Scholar] [CrossRef]
- Wu, X.; Yan, Y.; Yan, Y. An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise. Appl. Numer. Math. 2020, 157, 69–87. [Google Scholar] [CrossRef]
- Cao, Y.; Hong, J.; Liu, Z. Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion. IMA J. Numer. Anal. 2018, 38, 184–197. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Deng, W. Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal. 2017, 55, 3173–3202. [Google Scholar] [CrossRef]
- Wang, X.; Qi, R.; Jiang, F. Sharp mean-square regularity results for SPDEs with fractional noise and optimal convergence rates for the numerical approximations. BIT 2017, 57, 557–585. [Google Scholar] [CrossRef]
- Dai, X.; Hong, J.; Sheng, D. Mittag–Leffler Euler Integrator and Large Deviations for Stochastic Space-Time Fractional Diffusion Equations. Potential Anal. 2024, 60, 1333–1367. [Google Scholar] [CrossRef]
- Liu, X. Error analysis of a fully discrete method for time-fractional diffusion equations with a tempered fractional Gaussian noise. J. Comput. Appl. Math. 2024, 449, 115953. [Google Scholar] [CrossRef]
- Yan, Y. Galerkin fnite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 2005, 43, 1363–1384. [Google Scholar] [CrossRef]
- Kruse, R. Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 2014, 34, 217–251. [Google Scholar] [CrossRef]
- Jentzen, A.; Kloeden, P.E. Taylor Approximations for Stochastic Partial Differential Equations; CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 2011. [Google Scholar]
- Chen, Z.; Gan, S.; Wang, X. A full-discrete exponential Euler approximation of the invariant measure for parabolic stochastic partial differential equations. Appl. Numer. Math. 2020, 157, 135–158. [Google Scholar] [CrossRef]
- Qiu, W.; Nikan, O.; Avazzadeh, Z. Numerical investigation of generalized tempered-type integro-differential equations with respect to another function. Fract. Calc. Appl. Anal. 2023, 26, 2580–2601. [Google Scholar] [CrossRef]
- Guo, T.; Nikan, O.; Avazzadeh, Z.; Qiu, W. Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro-differential problems. Comp. Appl. Math. 2022, 41, 236. [Google Scholar] [CrossRef]
- Cao, Y.; Hong, J.; Liu, Z. Approximating stochastic evolution equations with additive white and rough noises. SIAM J. Numer. Anal. 2017, 55, 1958–1981. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin, Germany, 1992. [Google Scholar]
- Mishura, I.S. Stochastic Calculus for Fractional Brownian Motion and Related Processes; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kang, W.; Yan, Y.; Pani, A.K. Galerkin finite element approximation for a semilinear stochastic space time fractional subdiffusion with fractionally integrated additive noise. IMA J. Numer. Anal. 2022, 42, 2301–2335. [Google Scholar] [CrossRef]
m | 4 | 8 | 16 | 32 | 64 | Rate | CPU Time | |
---|---|---|---|---|---|---|---|---|
0 | 0.3 | 4.45 × 10−0 | 4.36 × 10−0 | 4.23 × 10−0 | 4.22 × 10−0 | 3.52 × 10−0 | 0.08 (−0.27) | 165 s |
0.5 | 2.04 × 10−0 | 1.93 × 10−0 | 1.81 × 10−0 | 1.75 × 10−0 | 1.37 × 10−0 | 0.11 (−0.12) | 165 s | |
0.7 | 8.36 × 10−1 | 7.41 × 10−1 | 6.45 × 10−1 | 5.73 × 10−1 | 4.23 × 10−1 | 0.15 (0.02) | 165 s | |
0.9 | 3.35 × 10−1 | 2.81 × 10−1 | 2.26 × 10−1 | 1.87 × 10−1 | 1.34 × 10−1 | 0.20 (0.17) | 165 s | |
−1 | 0.3 | 4.25 × 10−0 | 4.15 × 10−0 | 4.05 × 10−0 | 4.04 × 10−0 | 3.35 × 10−0 | 0.08 (−0.20) | 165 s |
0.5 | 1.79 × 10−0 | 1.65 × 10−0 | 1.57 × 10−0 | 1.53 × 10−0 | 1.16 × 10−0 | 0.11 (0.00) | 165 s | |
0.7 | 6.13 × 10−1 | 4.89 × 10−1 | 4.03 × 10−1 | 3.68 × 10−1 | 2.48 × 10−1 | 0.30 (0.20) | 165 s | |
0.9 | 1.92 × 10−1 | 1.29 × 10−1 | 7.82 × 10−2 | 5.98 × 10−2 | 3.56 × 10−2 | 0.50 (0.40) | 165 s |
m | 4 | 8 | 16 | 32 | 64 | Rate | CPU Time | |
---|---|---|---|---|---|---|---|---|
0 | 0.3 | 2.75 × 10−1 | 2.57 × 10−1 | 2.46 × 10−1 | 2.25 × 10−1 | 1.67 × 10−1 | 0.10 (0.02) | 169 s |
0.5 | 1.59 × 10−1 | 1.35 × 10−1 | 1.18 × 10−1 | 9.91 × 10−2 | 6.73 × 10−2 | 0.25 (0.17) | 169 s | |
0.7 | 8.63 × 10−2 | 6.47 × 10−2 | 4.71 × 10−2 | 3.40 × 10−2 | 2.11 × 10−2 | 0.45 (0.33) | 169 s | |
0.9 | 4.49 × 10−2 | 3.03 × 10−2 | 1.88 × 10−2 | 1.22 × 10−2 | 7.16 × 10−3 | 0.60 (0.48) | 169 s | |
−1 | 0.3 | 2.63 × 10−1 | 2.45 × 10−1 | 2.36 × 10−1 | 2.17 × 10−1 | 1.60 × 10−1 | 0.17 (0.10) | 169 s |
0.5 | 1.44 × 10−1 | 1.18 × 10−1 | 1.04 × 10−1 | 8.85 × 10−2 | 5.84 × 10−2 | 0.32 (0.30) | 169 s | |
0.7 | 7.24 × 10−2 | 4.81 × 10−2 | 3.17 × 10−2 | 2.25 × 10−2 | 1.29 × 10−2 | 0.62 (0.50) | 169 s | |
0.9 | 3.33 × 10−2 | 1.91 × 10−2 | 8.98× 10−3 | 4.84 × 10−3 | 2.42 × 10−3 | 0.90 (0.70) | 169 s |
m | 4 | 8 | 16 | 32 | 64 | Rate | CPU Time | |
---|---|---|---|---|---|---|---|---|
0 | 0.3 | 2.68 × 10−3 | 1.80 × 10−3 | 1.26 × 10−3 | 1.16 × 10−3 | 7.20 × 10−4 | 0.40 (0.30) | 165 s |
0.5 | 5.73 × 10−3 | 23.62 × 10−3 | 2.20 × 10−3 | 1.89 × 10−3 | 1.06 × 10−3 | 0.60 (0.50) | 165 s | |
0.7 | 8.15 × 10−3 | 4.87 × 10−3 | 2.36 × 10−3 | 1.72 × 10−3 | 8.99 × 10−4 | 0.74 (0.70) | 165 s | |
0.9 | 8.74 × 10−3 | 5.08 × 10−3 | 2.19 × 10−3 | 1.34 × 10−3 | 7.14 × 10−4 | 0.92 (0.90) | 165 s | |
−1 | 0.3 | 2.67 × 10−3 | 1.79 × 10−3 | 1.25 × 10−3 | 1.16 × 10−3 | 7.18 × 10−4 | 0.47 (0.30) | 165 s |
0.5 | 5.69 × 10−3 | 3.56 × 10−3 | 2.15 × 10−3 | 1.86 × 10−3 | 1.04 × 10−3 | 0.61 (0.50) | 165 s | |
0.7 | 8.03 × 10−3 | 4.71 × 10−3 | 2.18 × 10−3 | 1.62 × 10−3 | 8.45 × 10−4 | 0.80 (0.60) | 165 s | |
0.9 | 8.51 × 10−3 | 4.84 × 10−3 | 1.98 × 10−3 | 1.22 × 10−3 | 6.51 × 10−4 | 0.92 (0.80) | 165 s |
m | 4 | 8 | 16 | 32 | 64 | Rate | CPU Time | |
---|---|---|---|---|---|---|---|---|
0 | 0.3 | 4.12 × 10−4 | 2.34 × 10−4 | 1.19 × 10−4 | 7.66 × 10−5 | 4.10 × 10−5 | 0.80 (0.30) | 169 s |
0.5 | 9.27 × 10−4 | 5.23 × 10−4 | 2.47 × 10−4 | 1.40 × 10−4 | 6.91 × 10−5 | 0.93 (0.50) | 169 s | |
0.7 | 1.48 × 10−3 | 8.19 × 10−4 | 3.55 × 10−4 | 1.79 × 10−4 | 8.57 × 10−5 | 1.02 (0.70) | 169 s | |
0.9 | 1.85 × 10−3 | 1.00 × 10−3 | 4.35 × 10−4 | 2.11 × 10−4 | 9.91 × 10−5 | 1.05 (0.90) | 169 s | |
−1 | 0.3 | 4.11 × 10−4 | 2.33 × 10−4 | 1.19 × 10−4 | 7.64 × 10−5 | 4.09 × 10−5 | 0.83 (0.30) | 169 s |
0.5 | 9.24 × 10−4 | 5.19 × 10−4 | 2.44 × 10−4 | 1.38 × 10−4 | 6.83 × 10−5 | 0.93 (0.50) | 169 s | |
0.7 | 1.47 × 10−3 | 8.08 × 10−4 | 3.46 × 10−4 | 1.74 × 10−4 | 8.33 × 10−5 | 1.03 (0.70) | 169 s | |
0.9 | 1.83 × 10−3 | 9.82 × 10−4 | 4.23 × 10−4 | 2.05 × 10−4 | 9.65 × 10−5 | 1.06 (0.90) | 169 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Yan, Y. Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise. Mathematics 2024, 12, 3579. https://doi.org/10.3390/math12223579
Wu X, Yan Y. Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise. Mathematics. 2024; 12(22):3579. https://doi.org/10.3390/math12223579
Chicago/Turabian StyleWu, Xiaolei, and Yubin Yan. 2024. "Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise" Mathematics 12, no. 22: 3579. https://doi.org/10.3390/math12223579
APA StyleWu, X., & Yan, Y. (2024). Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise. Mathematics, 12(22), 3579. https://doi.org/10.3390/math12223579