A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials
Abstract
:1. Introduction
- Introducing the shifted Lucas polynomials.
- Deriving the essential formulas of these polynomials, particularly their series representation and inversion formula.
- Deriving the integer derivatives and FDs of these polynomials.
- Studying the convergence of our approximate solution using the shifted Lucas expansion.
- Designing the collocation procedure for treating the TFFNDE.
- Testing our numerical algorithm by presenting some examples.
- A new theoretical background to the shifted Lucas polynomials. More precisely, new forms of their power form representation, inversion formula, and integer- and fractional-derivative formulas will be developed.
- These new formulas provide new insights into using these polynomials in numerical analysis.
- The study of the convergence of the double-shifted Lucas expansion is new.
- In addition, we expect that the introduced polynomials will open new horizons for using other non-orthogonal polynomials in numerical analysis.
- By choosing the shifted Lucas polynomials as the basis functions, a few terms of the retained modes make it possible to produce approximations with excellent precision.
- Less calculation is required to obtain the desired approximate solution.
2. Some Fundamentals and Important Formulas
2.1. An Account on Caputo’s FD
2.2. A Brief Account of Lucas Polynomials
3. Introducing Shifted Lucas Polynomials
4. Collocation Procedure for the TFFNDE
The Algorithm of the Method
5. The Convergence and Error Analysis
6. Illustrative Examples
Method in [59] | Gaussians [38] | Our Method at | |||||
---|---|---|---|---|---|---|---|
Exact | |||||||
(0.1,0.2) | 0.492678192949 | 0.427418 | 0.454935 | 0.492466 | 0.492564 | 0.492678192917 | 0.492678192905 |
(0.1,0.4) | 0.467722618671 | 0.411555 | 0.429688 | 0.467632 | 0.467645 | 0.467722618641 | 0.467722618639 |
(0.1,0.6) | 0.442927492940 | 0.401291 | 0.410894 | 0.442952 | 0.442910 | 0.442927492914 | 0.442927492915 |
(0.1,0.6) | 0.418413552133 | 0.393583 | 0.395550 | 0.418448 | 0.418426 | 0.418413552108 | 0.418413552111 |
(0.3,0.2) | 0.528003672504 | 0.461640 | 0.489905 | 0.527493 | 0.527735 | 0.528003672408 | 0.528003672375 |
(0.3,0.4) | 0.503032971388 | 0.445267 | 0.464133 | 0.502797 | 0.502842 | 0.503032971299 | 0.503032971292 |
(0.3,0.6) | 0.478047131210 | 0.434619 | 0.444777 | 0.478089 | 0.477992 | 0.478047131130 | 0.478047131136 |
(0.3,0.8) | 0.453170661978 | 0.426595 | 0.428860 | 0.453249 | 0.453186 | 0.453170661904 | 0.453170661915 |
(0.5,0.2) | 0.563050917309 | 0.496159 | 0.524966 | 0.562434 | 0.562736 | 0.563050917145 | 0.563050917089 |
(0.5,0.4) | 0.538313096311 | 0.479367 | 0.498899 | 0.538014 | 0.538083 | 0.538313096160 | 0.538313096152 |
(0.5,0.6) | 0.513385148789 | 0.468375 | 0.479131 | 0.513427 | 0.513312 | 0.513385148654 | 0.513385148666 |
(0.5,0.8) | 0.488390434671 | 0.460051 | 0.462744 | 0.488485 | 0.488400 | 0.488390434546 | 0.488390434567 |
(0.7,0.2) | 0.597479692513 | 0.530655 | 0.559780 | 0.596963 | 0.597225 | 0.597479692278 | 0.597479692199 |
(0.7,0.4) | 0.573213594762 | 0.513551 | 0.533657 | 0.572956 | 0.573026 | 0.573213594547 | 0.573213594540 |
(0.7,0.6) | 0.548589854921 | 0.502269 | 0.513645 | 0.548627 | 0.548530 | 0.548589854730 | 0.548589854751 |
(0.7,0.8) | 0.523725855053 | 0.493674 | 0.496910 | 0.523812 | 0.523734 | 0.523725854878 | 0.523725854911 |
(0.9,0.2) | 0.630973661925 | 0.564813 | 0.594013 | 0.630756 | 0.630870 | 0.630973661699 | 0.630973661623 |
(0.9,0.4) | 0.607399960009 | 0.547522 | 0.568079 | 0.607291 | 0.607325 | 0.607399959803 | 0.607399959800 |
(0.9,0.6) | 0.583314828533 | 0.536019 | 0.548003 | 0.583335 | 0.583293 | 0.583314828350 | 0.583314828375 |
(0.9,0.8) | 0.558825335316 | 0.527198 | 0.531062 | 0.558867 | 0.558831 | 0.558825335148 | 0.558825335184 |
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyd, J.P. Chebyshev and Fourier Spectral Methods; Courier Corporation: Chelmsford, MA, USA, 2001. [Google Scholar]
- Hesthaven, J.; Gottlieb, S.; Gottlieb, D. Spectral Methods for Time-Dependent Problems; Cambridge University Press: Cambridge, UK, 2007; Volume 21. [Google Scholar]
- Dattoli, G.; Srivastava, H.M.; Zhukovsky, K. Theory and Applications of Special Functions: A Volume Dedicated to Mizan Rahman; Springer: New York, NY, USA, 2017. [Google Scholar]
- Gil, A.; Segura, J.; Temme, N.M. Special Functions of Mathematical Physics: A Unified Introduction with Applications; Birkhäuser: Basel, Switzerland, 2018. [Google Scholar]
- Nalli, A.; Haukkanen, P. On generalized Fibonacci and Lucas polynomials. Chaos Solitons Fractals 2009, 42, 3179–3186. [Google Scholar] [CrossRef]
- Kizilateş, C. Explicit, determinantal, recursive formulas, and generating functions of generalized Humbert–Hermite polynomials via generalized Fibonacci polynomials. Math. Meth. Appl. Sci. 2023, 46, 9205–9216. [Google Scholar] [CrossRef]
- Ali, I.; Haq, S.; Nisar, K.S.; Arifeen, S.U. Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and Fibonacci polynomials. Arab. J. Math. 2021, 10, 513–526. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Abd-Elhameed, W.M.; Atta, A.G. Spectral Galerkin treatment of linear one-dimensional telegraph type problem via the generalized Lucas polynomials. Arab. J. Math. 2022, 11, 601–615. [Google Scholar] [CrossRef]
- Sharma, R.; Rajeev. A numerical approach to solve 2D fractional RADE of variable-order with Vieta–Lucas polynomials. Chin. J. Phys. 2023, 86, 433–446. [Google Scholar] [CrossRef]
- Sharma, R.; Rajeev. An operational matrix approach to solve a 2D variable-order reaction advection diffusion equation with Vieta–Fibonacci polynomials. Spec. Top. Rev. Porous Media Int. J. 2023, 14, 79–96. [Google Scholar] [CrossRef]
- Singh, M.; Das, S.; Rajeev. An innovative Vieta–Fibonacci wavelet collocation method for the numerical solution of three-component Brusselator reaction diffusion system of fractional order. J. Math. Chem. 2024, 62, 1558–1594. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Dabiri, A.; Lopes, A.M.; Machado, J.A.T. Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials. Comput. Appl. Math. 2019, 38, 46. [Google Scholar] [CrossRef]
- Ali, I.; Haq, S.; Aldosary, S.F.; Nisar, K.S.; Ahmad, F. Numerical solution of one-and two-dimensional time-fractional Burgers equation via Lucas polynomials coupled with Finite difference method. Alex. Eng. J. 2022, 61, 6077–6087. [Google Scholar] [CrossRef]
- Oruç, Ö. A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Comput.Math. Appl. 2017, 74, 3042–3057. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Mohamed, D.S. Approximate solution of Cauchy integral equations by using Lucas polynomials. Comput. Appl. Math. 2022, 41, 403. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Redding, CT, USA, 2010. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhang, H.; Zhang, M.; Liu, F.; Shen, M. Review of the fractional Black-Scholes equations and their solution techniques. Fractal Fract. 2024, 8, 101. [Google Scholar] [CrossRef]
- Anwar, M.S.; Alam, M.M.; Khan, M.A.; Abouzied, A.S.; Hussain, Z.; Puneeth, V. Generalized viscoelastic flow with thermal radiations and chemical reactions. Geoenergy Sci. Eng. 2024, 232, 212442. [Google Scholar] [CrossRef]
- Nadeem, M.; Alsayaad, Y. Analytical study of one dimensional time fractional Schrödinger problems arising in quantum mechanics. Sci. Rep. 2024, 14, 12503. [Google Scholar] [CrossRef] [PubMed]
- Alhejili, W.; Khader, M.M.; Lotfy, K.; El-Bary, A.A.; Adel, M. Studying of the Covid-19 model by using the finite element method: Theoretical and numerical simulation. Soft Comput. 2024, 28, 5263–5273. [Google Scholar] [CrossRef]
- Talib, I.; Jarad, F.; Mirza, M.U.; Nawaz, A.; Riaz, M.B. A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations. Alex. Eng. J. 2022, 61, 135–145. [Google Scholar] [CrossRef]
- Usman, M.; Hamid, M.; Zubair, T.; Haq, R.U.; Wang, W.; Liu, M.B. Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials. Appl. Math. Comput. 2020, 372, 124985. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Lopes, A.M.; Babatin, M.M. Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order. Chaos Solitons Fract. 2020, 134, 109721. [Google Scholar] [CrossRef]
- Shah, K.; Khan, Z.A.; Ali, A.; Amin, R.; Khan, H.; Khan, A. Haar Wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative. Alex. Eng. J. 2020, 59, 3221–3231. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Al-Harbi, M.S.; Atta, A.G. New convolved Fibonacci collocation procedure for the Fitzhugh-Nagumo non-linear equation. Nonlinear Eng. 2024, 13, 20220332. [Google Scholar] [CrossRef]
- Yunus, A.O.; Olayiwola, M.O.; Adedokun, K.A.; Adedeji, J.A.; Alaje, I.A. Mathematical analysis of fractional-order Caputo’s derivative of coronavirus disease model via Laplace Adomian decomposition method. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Numerical solutions of distributed order fractional differential equations in the time domain using the Müntz–Legendre wavelets approach. Numer. Methods Partial Differ. Equ. 2021, 37, 707–731. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, S.; Srivastava, N.; Singh, A.; Singh, V.K. Wavelet approximation scheme for distributed order fractional differential equations. Comput. Math. Appl. 2020, 80, 1985–2017. [Google Scholar] [CrossRef]
- Wu, G.C.; Kong, H.; Luo, M.; Fu, H.; Huang, L.L. Unified predictor–corrector method for fractional differential equations with general kernel functions. Fract. Calc. Appl. Anal. 2022, 25, 648–667. [Google Scholar] [CrossRef]
- Saratha, S.R.; Bagyalakshmi, M.; Sai Sundara Krishnan, G. Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations. Comput. Appl. Math. 2020, 39, 1–32. [Google Scholar] [CrossRef]
- Guo, T.; Nikan, O.; Avazzadeh, Z.; Qiu, W. Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems. Comput. Appl. Math. 2022, 41, 236. [Google Scholar] [CrossRef]
- Han, X.; Guo, T.; Nikan, O.; Avazzadeh, Z. Robust implicit difference approach for the time-fractional Kuramoto–Sivashinsky equation with the non-smooth solution. Fractals 2023, 31, 2340061. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, H.; Zheng, X. An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Math. Comput. Simul. 2019, 166, 298–314. [Google Scholar] [CrossRef]
- Jannelli, A. Numerical solutions of fractional differential equations arising in engineering sciences. Mathematics 2020, 8, 215. [Google Scholar] [CrossRef]
- Dwivedi, K.D.; Das, S.; Rajeev; Baleanu, D. Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method. Int. J. Nonlinear Sci. Numer. Simul. 2022, 23, 1157–1172. [Google Scholar] [CrossRef]
- Aronson, D.G.; Weinberger, H.F. Multidimensional nonlinear diffusion arising in population genetics. Advanc. Math. 1978, 30, 33–76. [Google Scholar] [CrossRef]
- Alam, M.; Haq, S.; Ali, I.; Ebadi, M.J.; Salahshour, S. Radial basis functions approximation method for time-fractional FitzHugh–Nagumo Equation. Fractal Fract. 2023, 7, 882. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Ali, K.K.; Maneea, M.; Inc, M.; Yao, S.W. Solution of time fractional Fitzhugh–Nagumo equation using semi analytical techniques. Res. Phys. 2023, 51, 106679. [Google Scholar] [CrossRef]
- Ramani, P.; Khan, A.M.; Suthar, D.L.; Kumar, D. Approximate analytical solution for non-linear Fitzhugh–Nagumo equation of time fractional order through fractional reduced differential transform method. Int. J. Appl. Comput. Math. 2022, 8, 61. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 2018, 91, 307–317. [Google Scholar] [CrossRef]
- Cai, L.; Cao, J.; Jing, F.; Wang, Y. A fast time integral finite difference method for a space-time fractional FitzHugh-Nagumo monodomain model in irregular domains. J. Comput. Phys. 2024, 501, 112744. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Al-Sady, A.M.; Alqubori, O.M.; Atta, A.G. Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials. Aims Math. 2024, 9, 25457–25481. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Alsuyuti, M.M. Numerical treatment of multi-term fractional differential equations via new kind of generalized Chebyshev polynomials. Fractal Fract. 2023, 7, 74. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S. Galerkin operational approach for multi-dimensions fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106608. [Google Scholar] [CrossRef]
- Abd Elaziz, E.A.; Boulaaras, S.; Sweilam, N.H. Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method. Math. Methods Appl. Sci. 2023, 46, 8004–8017. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Alqubori, O.M.; Al-Harbi, A.K.; Alharbi, M.H.; Atta, A.G. Generalized third-kind Chebyshev tau approach for treating the time fractional cable problem. Electron. Res. Arch. 2024, 32, 6200–6224. [Google Scholar] [CrossRef]
- Mostafa, D.; Zaky, M.A.; Hafez, R.M.; Hendy, A.S.; Abdelkawy, M.A.; Aldraiweesh, A.A. Tanh Jacobi spectral collocation method for the numerical simulation of nonlinear Schrödinger equations on unbounded domain. Math. Meth. Appl. Sci. 2023, 46, 656–674. [Google Scholar] [CrossRef]
- Hafez, R.M.; Ezz-Eldien, S.S.; Bhrawy, A.H.; Ahmed, E.A.; Baleanu, D. A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations. Nonlinear Dyn. 2015, 82, 1431–1440. [Google Scholar] [CrossRef]
- Atta, A.G. Two spectral Gegenbauer methods for solving linear and nonlinear time fractional Cable problems. Int. J. Mod. Phys. C 2024, 35, 2450070. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M.; Zaky, M.A.; Hafez, R.M. A new shifted generalized Chebyshev approach for multi-dimensional sinh-Gordon equation. Phys. Scr. 2024, 99, 095269. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M. Tau and Galerkin operational matrices of derivatives for treating singular and Emden–Fowler third-order-type equations. Int. J. Mod. Phys. C 2022, 33, 2250061. [Google Scholar] [CrossRef]
- Baishya, C.; Veeresha, P. Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel. Proc. R. Soc. A 2021, 477, 20210438. [Google Scholar] [CrossRef]
- Agarwal, P.; El-Sayed, A.A.; Tariboon, J. Vieta–Fibonacci operational matrices for spectral solutions of variable-order fractional integro-differential equations. J. Comput. Appl. Math. 2021, 382, 113063. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 51. [Google Scholar]
- Abd-Elhameed, W.M.; Napoli, A. Some novel formulas of Lucas polynomials via different approaches. Symmetry 2023, 15, 185. [Google Scholar] [CrossRef]
- Jameson, G. The incomplete gamma functions. Math. Gaz. 2016, 100, 298–306. [Google Scholar] [CrossRef]
- Patel, H.S.; Patel, T. Applications of Fractional Reduced Differential Transform Method for Solving the Generalized Fractional-order Fitzhugh–Nagumo Equation. Int. J. Appl. Comput. Math. 2021, 7, 188. [Google Scholar] [CrossRef]
t | Gaussians [38] | Our Method at | ||||||
---|---|---|---|---|---|---|---|---|
1 |
3 | 5 | 7 | 9 | 11 | |
---|---|---|---|---|---|
MAE |
Method in [59] | Gaussians [38] | Our Method at | ||||
---|---|---|---|---|---|---|
(0.001, 0.001) | ||||||
(0.002, 0.002) | ||||||
(0.003, 0.003) | ||||||
(0.004, 0.004) | ||||||
(0.005, 0.005) | ||||||
(0.006, 0.006) | ||||||
(0.007, 0.007) | ||||||
(0.008, 0.008) | ||||||
(0.009, 0.009) | ||||||
(0.01, 0.01) |
t | Hardy’s Multiquadric [38] | Our Method at | ||
---|---|---|---|---|
t | Inverse Quadric [38] | Our Method at | ||||||
---|---|---|---|---|---|---|---|---|
1 |
t | Our Method at | ||
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elhameed, W.M.; Alqubori, O.M.; Atta, A.G. A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials. Mathematics 2024, 12, 3672. https://doi.org/10.3390/math12233672
Abd-Elhameed WM, Alqubori OM, Atta AG. A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials. Mathematics. 2024; 12(23):3672. https://doi.org/10.3390/math12233672
Chicago/Turabian StyleAbd-Elhameed, Waleed Mohamed, Omar Mazen Alqubori, and Ahmed Gamal Atta. 2024. "A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials" Mathematics 12, no. 23: 3672. https://doi.org/10.3390/math12233672
APA StyleAbd-Elhameed, W. M., Alqubori, O. M., & Atta, A. G. (2024). A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials. Mathematics, 12(23), 3672. https://doi.org/10.3390/math12233672