EGNAS: Efficient Graph Neural Architecture Search Through Evolutionary Algorithm
Abstract
:1. Introduction
2. Related Works
2.1. Evolutionary Neural Architecture Search
2.2. Graph Neural Network Architecture Search
3. Graph Neural Network Architecture Search
3.1. Problem Statement
3.2. Search Space
4. EGNAS
4.1. Overall Algorithm
Algorithm 1 EGNAS |
Input: Population size K, the number of generations T, the number of parent candidates N, the number of parent pairs M, training set , validation set Output: Best fitness GNN
|
4.2. Combined Evolutionary Search
Algorithm 2 Combined Evolutionary Search |
Input: Parents , the length of structure genes s, the length of hyperparameter genes h, mutation probability Output: Offsprings generated by crossover and mutation
|
4.3. Inherited Parameter Sharing
5. Experiments
5.1. Datasets
5.2. Experimental Settings
5.3. Baseline Selection
5.4. Results
5.5. Ablation Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Huang, R.; Huang, C.; Liu, Y.; Dai, G.; Kong, W. LSGCN: Long short-term traffic prediction with graph convolutional networks. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Yokohama, Japan, 7–15 January 2021; pp. 2355–2361. [Google Scholar] [CrossRef]
- Fout, A.; Byrd, J.; Shariat, B.; Ben-Hur, A. Protein interface prediction using graph convolutional networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2017; Volume 30. [Google Scholar]
- Zoph, B.; Le, Q. Neural architecture search with reinforcement learning. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Xu, H.; Wang, S.; Cai, X.; Zhang, W.; Liang, X.; Li, Z. Curvelane-nas: Unifying lane-sensitive architecture search and adaptive point blending. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XV 16. pp. 689–704. [Google Scholar]
- Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; Hu, Y. Graph neural architecture search. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Yokohama, Japan, 7–15 January 2021; pp. 1403–1409. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Z.; Wang, Y.; Xu, C. One-shot graph neural architecture search with dynamic search space. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 8510–8517. [Google Scholar]
- Shi, M.; Tang, Y.; Zhu, X.; Huang, Y.; Wilson, D.; Zhuang, Y.; Liu, J. Genetic-GNN: Evolutionary architecture search for graph neural networks. Knowl.-Based Syst. 2022, 247, 108752. [Google Scholar] [CrossRef]
- Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 4095–4104. [Google Scholar]
- Zhang, H.; Jin, Y.; Cheng, R.; Hao, K. Efficient evolutionary search of attention convolutional networks via sampled training and node inheritance. IEEE Trans. Evol. Comput. 2020, 25, 371–385. [Google Scholar] [CrossRef]
- Zhou, K.; Huang, X.; Song, Q.; Chen, R.; Hu, X. Auto-gnn: Neural architecture search of graph neural networks. Front. Big Data 2022, 5, 1029307. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chen, X.; Bi, K.; Wei, L.; Xu, Y.; Wang, L.; Chen, Z.; Xiao, A.; Chang, J.; Zhang, X.; et al. Weight-sharing neural architecture search: A battle to shrink the optimization gap. ACM Comput. Surv. (CSUR) 2021, 54, 183. [Google Scholar] [CrossRef]
- Xia, X.; Xiao, X.; Wang, X.; Zheng, M. Progressive automatic design of search space for one-shot neural architecture search. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 2455–2464. [Google Scholar]
- Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017. [Google Scholar]
- Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4780–4789. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [Google Scholar]
- Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable architecture search. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Schaffer, J.D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms; Technical Report; Vanderbilt University: Nashville, TN, USA, 1985. [Google Scholar]
- Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.H.; Patton, R.M. Optimizing deep learning hyper-parameters through an evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1–5. [Google Scholar]
- Yang, Z.; Wang, Y.; Chen, X.; Shi, B.; Xu, C.; Xu, C.; Tian, Q.; Xu, C. Cars: Continuous evolution for efficient neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1829–1838. [Google Scholar]
- Moriya, T.; Tanaka, T.; Shinozaki, T.; Watanabe, S.; Duh, K. Evolution-strategy-based automation of system development for high-performance speech recognition. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2018, 27, 77–88. [Google Scholar] [CrossRef]
- Wu, M.; Su, W.; Chen, L.; Liu, Z.; Cao, W.; Hirota, K. Weight-adapted convolution neural network for facial expression recognition in human-robot interaction. IEEE Trans. Syst. Man, Cybern. Syst. 2019, 51, 1473–1484. [Google Scholar] [CrossRef]
- Lu, Z.; Whalen, I.; Boddeti, V.; Dhebar, Y.; Deb, K.; Goodman, E.; Banzhaf, W. Nsga-net: Neural architecture search using multi-objective genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13–17 July 2019; pp. 419–427. [Google Scholar]
- Chen, Y.; Yang, T.; Zhang, X.; Meng, G.; Xiao, X.; Sun, J. Detnas: Backbone search for object detection. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2019; Volume 32. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Huan, Z.; Quanming, Y.; Weiwei, T. Search to aggregate neighborhood for graph neural network. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; pp. 552–563. [Google Scholar]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008, 29, 93. [Google Scholar] [CrossRef]
- Yang, Z.; Cohen, W.; Salakhudinov, R. Revisiting semi-supervised learning with graph embeddings. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; Volume 48, pp. 40–48. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
Structure Component | Search Space |
---|---|
Attention Function | const, gcn, gat, sym-gat, cos, linear, gene-linear |
Aggregation Function | sum, mean-pooling, max-pooling, mlp |
Activation Function | sigmoid, tanh, relu, linear, softplus, leaky_relu, relu6, elu |
Attention Head | 1, 2, 4, 6, 8, 16 |
Hidden Unit | 4, 8, 16, 32, 64, 128, 256 |
Hyperparameter Component | Search Space |
---|---|
Dropout Rate | 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 |
Learning Rate | |
Weight Decay |
Dataset | # Nodes | # Edges | # Features | # Classes |
---|---|---|---|---|
Cora | 2708 | 5429 | 1433 | 7 |
Citeseer | 3327 | 4732 | 3703 | 6 |
PubMed | 19,717 | 44,338 | 500 | 3 |
Algorithm | Cora | Citeseer | PubMed | |
---|---|---|---|---|
Handcrafted | GCN | |||
GAT | ||||
GNN NAS | GraphNAS | |||
SANE | ||||
Genetic-GNN | ||||
Ours | EGNAS | |||
EGNAS-10 |
Algorithm | Cora | Citeseer | PubMed |
---|---|---|---|
GraphNAS | 119.5 | 153.3 | 256.4 |
SANE | 39.1 | 61.7 | 40.2 |
Genetic-GNN | 862.9 | 3937.8 | 4378.1 |
EGNAS | 33.3 | 87.0 | 91.9 |
EGNAS-10 | 9.1 | 17.2 | 44.4 |
Algorithm | Cora | Citeseer | PubMed | ||||||
---|---|---|---|---|---|---|---|---|---|
Params (M) | Time (ms) | Latency (ms) | Params (M) | Time (ms) | Latency (ms) | Params (M) | Time (ms) | Latency (ms) | |
GCN | 0.02 | 4.64 | 2.57 | 0.06 | 4.55 | 2.52 | 0.01 | 4.39 | 1.99 |
GAT | 0.09 | 8.19 | 3.15 | 0.24 | 8.70 | 3.22 | 0.03 | 9.79 | 3.15 |
GraphNAS | 1.36 | 9.95 | 3.82 | 7.53 | 22.01 | 9.28 | 0.10 | 7.32 | 2.99 |
SANE | 0.73 | 8.94 | 3.07 | 1.31 | 10.66 | 4.53 | 0.04 | 8.99 | 3.14 |
Genetic-GNN | 0.14 | 4.37 | 1.38 | 10.76 | 42.19 | 16.58 | 0.05 | 4.90 | 1.51 |
EGNAS | 0.10 | 5.32 | 1.45 | 5.71 | 21.74 | 8.49 | 0.20 | 11.45 | 3.83 |
EGNAS-10 | 0.38 | 5.27 | 1.52 | 0.48 | 7.78 | 1.93 | 0.52 | 21.12 | 8.13 |
Algorithm | Cora | Citeseer | PubMed |
---|---|---|---|
EGNAS | |||
Separate | OOM | ||
No PS | |||
Fully PS |
Algorithm | Cora | Citeseer | PubMed |
---|---|---|---|
EGNAS | 33.3 | 87.0 | 91.9 |
Separate | 476.0 | OOM | 1299.9 |
No PS | 50.2 | 67.5 | 149.0 |
Fully PS | 28.0 | 33.7 | 90.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jwa, Y.; Ahn, C.W.; Kim, M.-J. EGNAS: Efficient Graph Neural Architecture Search Through Evolutionary Algorithm. Mathematics 2024, 12, 3828. https://doi.org/10.3390/math12233828
Jwa Y, Ahn CW, Kim M-J. EGNAS: Efficient Graph Neural Architecture Search Through Evolutionary Algorithm. Mathematics. 2024; 12(23):3828. https://doi.org/10.3390/math12233828
Chicago/Turabian StyleJwa, Younkyung, Chang Wook Ahn, and Man-Je Kim. 2024. "EGNAS: Efficient Graph Neural Architecture Search Through Evolutionary Algorithm" Mathematics 12, no. 23: 3828. https://doi.org/10.3390/math12233828
APA StyleJwa, Y., Ahn, C. W., & Kim, M.-J. (2024). EGNAS: Efficient Graph Neural Architecture Search Through Evolutionary Algorithm. Mathematics, 12(23), 3828. https://doi.org/10.3390/math12233828