Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics
Abstract
:1. Introduction
2. Experimental Observations
2.1. Rocks
2.2. Concretes
2.3. Fiber-Reinforced Composites
2.4. Compound Coating
2.5. Other Materials
3. Theoretical Modeling
- Colinear cracks:
- Parallel cracks:
4. Numerical Simulation
4.1. Extended Finite Element Method
4.2. Extended Isogeometric Analysis
4.3. Boundary Element Method
4.4. Discrete Element Method
4.5. Meshfree Methods
4.6. Peridynamics
4.7. Phase Field Method
4.8. Other Numerical Methods
5. Discussion
- (1)
- Experimental observation
- (2)
- Theoretical modeling
- (3)
- Numerical simulation
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Budarapu, P.R.; Rabczuk, T. Multiscale Methods for Fracture: A Review. J. Indian Inst. Sci. 2017, 97, 339–376. [Google Scholar] [CrossRef]
- Wu, J.; Sigmund, O.; Groen, J.P. Topology optimization of multi-scale structures: A review. Struct. Multidiscip. Optim. 2021, 63, 1455–1480. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X. Toughness evaluation of hard coatings and thin films. Thin Solid Film. 2012, 520, 2375–2389. [Google Scholar] [CrossRef]
- Correia, J.A.F.O.; Zhu, S.P.; Berto, F. Fatigue in Advanced Materials: Advanced Methods and Applications. J. Mater. Res. Technol. 2023, 26, 4902–4905. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Li, B.; Yang, S.; Shen, Y.; Wang, Q.; Zhou, K. A review on phase field models for fracture and fatigue. Eng. Fract. Mech. 2023, 289, 109419. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Liu, H.; Tan, W. Advanced computational modelling of composite materials. Eng. Fract. Mech. 2024, 305, 110120. [Google Scholar] [CrossRef]
- Zimmermann, N.; Wang, P.H. A review of failure modes and fracture analysis of aircraft composite materials. Eng. Fail. Anal. 2020, 115, 104692. [Google Scholar] [CrossRef]
- Siddique, A.; Abid, S.; Shafiq, F.; Nawab, Y.; Wang, H.; Shi, B.; Saleemi, S.; Sun, B. Mode I fracture toughness of fiber-reinforced polymer composites: A review. J. Ind. Text. 2021, 50, 1165–1192. [Google Scholar] [CrossRef]
- Cervera, M.; Barbat, G.B.; Chiumenti, M.; Wu, J.Y. A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking. Arch. Comput. Methods Eng. 2022, 29, 1009–1083. [Google Scholar] [CrossRef]
- Zhang, M.; Abidin, A.R.Z.; Tan, C.S. State-of-the-art review on Meshless methods in the application of crack problems. Theor. Appl. Fract. Mech. 2024, 131, 104348. [Google Scholar] [CrossRef]
- Ambati, M.; Gerasimov, T.; De Lorenzis, L. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 2015, 55, 383–405. [Google Scholar] [CrossRef]
- Ural, A. Advanced modeling methods—Applications to bone fracture mechanics. Curr. Osteoporos. Rep. 2020, 18, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Amitrano, D.; Gruber, S.; Girard, L. Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall. Earth Planet. Sci. Lett. 2012, 341, 86–93. [Google Scholar] [CrossRef]
- Benson, P.M.; Heap, M.J.; Lavallée, Y.; Flaws, A.; Hess, K.-U.; Selvadurai, A.; Dingwell, D.B.; Schillinger, B. Laboratory simulations of tensile fracture development in a volcanic conduit via cyclic magma pressurisation. Earth Planet. Sci. Lett. 2012, 349, 231–239. [Google Scholar] [CrossRef]
- Le Corvec, N.; Menand, T.; Lindsay, J. Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: An experimental approach. J. Geophys. Res. Solid Earth 2013, 118, 968–984. [Google Scholar] [CrossRef]
- Brantut, N.; Heap, M.; Meredith, P.; Baud, P. Time-dependent cracking and brittle creep in crustal rocks: A review. J. Struct. Geol. 2013, 52, 17–43. [Google Scholar] [CrossRef]
- Tenthorey, E.; Cox, S.F.; Todd, H.F. Evolution of strength recovery and permeability during fluid–rock reaction in experimental fault zones. Earth Planet. Sci. Lett. 2003, 206, 161–172. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, L.Z.; Wang, Y.H. Experimental research on pre-cracked marble under compression. Int. J. Solids Struct. 2005, 42, 2505–2516. [Google Scholar] [CrossRef]
- Lee, J.; Hong, J.W.; Jung, J.W. The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws. Eng. Geol. 2017, 223, 31–47. [Google Scholar] [CrossRef]
- Li, H.; Shen, R.; Li, D.; Jia, H.; Li, T.; Chen, T.; Hou, Z. Acoustic emission multi-parameter analysis of dry and saturated sandstone with cracks under uniaxial compression. Energies 2019, 12, 1959. [Google Scholar] [CrossRef]
- Ma, P.; Li, S.; Wang, X.; Yuan, C.; Li, J.; Zhang, F. Numerical simulation of crack propagation and coalescence in rock materials by the peridynamic method based on strain energy density theory. Comput. Geosci. 2022, 26, 1379–1396. [Google Scholar] [CrossRef]
- Yang, S.Q.; Yang, J.; Mu, Z.L.; Liu, G.J.; Huang, M.; Li, K.S.; Huang, Y.H. Experimental Study on Mechanical Behavior, Fracture Characteristics, and Acoustic Emission Damage Characteristics of Sandstone Under Triaxial Multistage Stress Disturbance. Rock Mech. Rock Eng. 2024, 57, 8633–8655. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Y.; Li, B.; Li, S.; Gao, Y. Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression. Front. Struct. Civ. Eng. 2012, 6, 121–131. [Google Scholar] [CrossRef]
- Shen, Q.-Q.; Rao, Q.-H.; Li, Z.; Yi, W.; Sun, D.-L. Interacting mechanism and initiation prediction of multiple cracks. Trans. Nonferrous Met. Soc. China 2021, 31, 779–791.12. [Google Scholar] [CrossRef]
- Haeri, H. Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression. J. Min. Sci. 2015, 51, 487–496. [Google Scholar] [CrossRef]
- Sun, L.; Tao, S.; Liu, Q. Frost crack propagation and interaction in fissured rocks subjected to freeze–thaw cycles: Experimental and numerical studies. Rock Mech. Rock Eng. 2023, 56, 1077–1097. [Google Scholar] [CrossRef]
- Haeri, H.; Sarfarazi, V.; Marji, M.F. Experimental and numerical investigation of uniaxial compression failure in rock-like specimens with L-shaped nonpersistent cracks. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2555–2575. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Xia, K.; Tong, T. Dynamic tensile response of a microwave damaged granitic rock. Exp. Mech. 2021, 61, 461–468. [Google Scholar] [CrossRef]
- Xu, H.; Li, S.; Xu, D.; Liu, X.; Huang, X.; Zheng, M.; Zhang, S. Investigation on the failure mechanism of hard rock cavern subjected to adjacent structural plane based on physical model experiments. Theor. Appl. Fract. Mech. 2024, 131, 104447. [Google Scholar] [CrossRef]
- Xu, J.; Haque, A.; Gong, W.; Gamage, R.P.; Dai, G.; Zhang, Q.; Xu, F. Experimental study on the bearing mechanisms of rock-socketed piles in soft rock based on micro X-ray CT analysis. Rock Mech. Rock Eng. 2020, 53, 3395–3416. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.; Zheng, Y. In situ dynamic X-ray imaging of fluid-rock interactions inside tight sandstone during hydraulic fracturing: Fluid flow process and fracture network growth. J. Pet. Sci. Eng. 2022, 214, 110490. [Google Scholar] [CrossRef]
- Lei, X.; Kusunose, K.; Rao, M.V.M.S.; Nishizawa, O.; Satoh, T. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J. Geophys. Res. Solid Earth 2000, 105, 6127–6139. [Google Scholar] [CrossRef]
- Liu, T.; Cui, M.; Li, Q.; Yang, S.; Yu, Z.; Sheng, Y.; Cao, P.; Zhou, K. Fracture and damage evolution of multiple-fractured rock-like material subjected to compression. Materials 2022, 15, 4326. [Google Scholar] [CrossRef]
- Ghamgosar, M.; Erarslan, N. Experimental and numerical studies on development of fracture process zone (FPZ) in rocks under cyclic and static loadings. Rock Mech. Rock Eng. 2016, 49, 893–908. [Google Scholar] [CrossRef]
- Zhang, Z.; Ansari, F. Fracture mechanics of air-entrained concrete subjected to compression. Eng. Fract. Mech. 2006, 73, 1913–1924. [Google Scholar] [CrossRef]
- Durand, R.; Vieira, J.; Farias, M. Numerical analysis of bonded and unbonded prestressed RC beams using cohesive and non-compatible rod elements. Eng. Struct. 2023, 288, 116157. [Google Scholar] [CrossRef]
- Rabczuk, T.; Belytschko, T. Application of particle methods to static fracture of reinforced concrete structures. Int. J. Fract. 2006, 137, 19–49. [Google Scholar] [CrossRef]
- Hussien, O.F.; Elafandy, T.H.K.; Abdelrahman, A.A.; Baky, S.A.; Nasr, E.A. Behavior of bonded and unbonded prestressed normal and high strength concrete beams. HBRC J. 2012, 8, 239–251. [Google Scholar] [CrossRef]
- Tao, X.; Du, G. Ultimate stress of unbonded tendons in partially prestressed concrete beams. PCI J. 1985, 30, 72–91. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, H.; Yang, R.; Cai, Z.; Liu, K. Experimental and numerical study on the effect of electrohydraulic shock wave on concrete fracturing. J. Pet. Sci. Eng. 2022, 215, 110685. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Huang, Y. Experimental and Numerical Study of Concrete Fracture Behavior with Multiple Cracks Based on the Meso-Model. Materials 2023, 16, 6311. [Google Scholar] [CrossRef] [PubMed]
- Ghone, M.O.; Long, G.; Yang, K.; Ma, X.; Islam, N. Toughness improvement of low strength ceramsite lightweight concrete by polypropylene fiber and recycled rubber particle. Constr. Build. Mater. 2024, 422, 135716. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Rong, H.; Dong, W.; Zhao, X.; Zhou, X. Investigation on multi-cracks initiation and propagation of fiber reinforced concrete in restrained shrinkage ring tests. Theor. Appl. Fract. Mech. 2021, 111, 102856. [Google Scholar] [CrossRef]
- Pan, J.; Leung, C.K.; Luo, M. Effect of multiple secondary cracks on FRP debonding from the substrate of reinforced concrete beams. Constr. Build. Mater. 2010, 24, 2507–2516. [Google Scholar] [CrossRef]
- Cho, C.G.; Kim, Y.Y.; Feo, L.; Hui, D. Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar. Compos. Struct. 2012, 94, 2246–2253. [Google Scholar] [CrossRef]
- Kachkouch, F.Z.; Noberto, C.C.; Babadopulos, L.F.D.A.L.; Melo, A.R.S.; Machado, A.M.L.; Sebaibi, N.; Boukhelf, F.; El Mendili, Y. Fatigue behavior of concrete: A literature review on the main relevant parameters. Constr. Build. Mater. 2022, 338, 127510. [Google Scholar] [CrossRef]
- Riyar, R.L.; Mansi; Bhowmik, S. Fatigue behaviour of plain and reinforced concrete: A systematic review. Theor. Appl. Fract. Mech. 2023, 125, 103867. [Google Scholar] [CrossRef]
- Elshazli, M.T.; Saras, N.; Ibrahim, A. Structural response of high strength concrete beams using fiber reinforced polymers under reversed cyclic loading. Sustain. Struct. 2022, 2, 000018. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Lu, Y.; Liu, Z. Fatigue fracture characteristics of normal concrete and high ductility geopolymer bonding based on DIC technique. Thin-Walled Struct. 2024, 196, 111469. [Google Scholar] [CrossRef]
- Portal, N.W.; Flansbjer, M.; Zandi, K.; Wlasak, L.; Malaga, K. Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements. Compos. Struct. 2017, 177, 104–118. [Google Scholar] [CrossRef]
- Hernandez, J.; Sawalha, M.; Rivera-Perez, J.; Ozer, H.; Al-Qadi, I.L. Micromechanical modeling of I-FIT asphalt concrete specimens. Eng. Fract. Mech. 2018, 200, 234–250. [Google Scholar] [CrossRef]
- De Sutter, S.; Verbruggen, S.; Tysmans, T.; Aggelis, D. Fracture monitoring of lightweight composite-concrete beams. Compos. Struct. 2017, 167, 11–19. [Google Scholar] [CrossRef]
- Hong, S.; Qin, S.; Dong, P.; Li, G.; Zhang, Y.; Xing, F.; Dong, B. Quantification of rust penetration profile in reinforced concrete deduced by inverse modeling. Cem. Concr. Compos. 2020, 111, 103622. [Google Scholar] [CrossRef]
- Sun, X.; Wang, S.; Jin, J.; Wang, Z.; Gong, F. Computational methods of mass transport in concrete under stress and crack conditions: A review. J. Intell. Constr. 2023, 1, 9180015. [Google Scholar] [CrossRef]
- Gu, Z.; Feng, H.; Gao, D.; Zhao, J.; Wei, C.; Wu, C. Fatigue behavior and calculation methods of high strength steel fiber reinforced concrete beam. Sustain. Struct. 2023, 3, 000028. [Google Scholar] [CrossRef]
- Li, X.; Hallett, S.R.; Wisnom, M.R.; Zobeiry, N.; Vaziri, R.; Poursartip, A. Experimental study of damage propagation in over-height compact tension tests. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1891–1899. [Google Scholar] [CrossRef]
- Garcea, S.; Mavrogordato, M.; Scott, A.; Sinclair, I.; Spearing, S. Fatigue micromechanism characterisation in carbon fibre reinforced polymers using synchrotron radiation computed tomography. Compos. Sci. Technol. 2014, 99, 23–30. [Google Scholar] [CrossRef]
- Moffat, A.J.; Wright, P.; Helfen, L.; Baumbach, T.; Johnson, G.; Spearing, S.M.; Sinclair, I. In situ synchrotron computed laminography of damage in carbon fibre–epoxy [90/0] s laminates. Scr. Mater. 2010, 62, 97–100. [Google Scholar] [CrossRef]
- Ni, X.; Kopp, R.; Kalfon-Cohen, E.; Furtado, C.; Lee, J.; Arteiro, A.; Borstnar, G.; Mavrogordato, M.N.; Helfen, L.; Sinclair, I.; et al. In situ synchrotron computed tomography study of nanoscale interlaminar reinforcement and thin-ply effects on damage progression in composite laminates. Compos. Part B Eng. 2021, 217, 108623. [Google Scholar] [CrossRef]
- Zobeiry, N.; Vaziri, R.; Poursartip, A. Characterization of strain-softening behavior and failure mechanisms of composites under tension and compression. Compos. Part A Appl. Sci. Manuf. 2015, 68, 29–41. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Waas, A.M. Detailed experimental and numerical investigation of single-edge notched tensile cross-ply laminates. Compos. Struct. 2022, 279, 114731. [Google Scholar] [CrossRef]
- Sadowski, T.; Marsavina, L.; Craciun, E.M.; Kneć, M. Modelling and experimental study of parallel cracks propagation in an orthotropic elastic material. Comput. Mater. Sci. 2012, 52, 231–235. [Google Scholar] [CrossRef]
- Rosen, B.W. Tensile failure of fibrous composites. AIAA J. 1964, 2, 1985–1991. [Google Scholar] [CrossRef]
- Sommer, J.; Hajikazemi, M.; De Baere, I.; Van Paepegem, W. Experimental and numerical fatigue damage characterization in multidirectional thermoplastic glass/polypropylene laminates based on in-situ damage observations. Compos. Part B Eng. 2023, 267, 111028. [Google Scholar] [CrossRef]
- Cintra, G.G.; Vieira, J.D.; Cardoso, D.C.; Keller, T. Novel multi-crack damage approach for pultruded fiber-polymer web-flange junctions. Compos. Part B Eng. 2024, 269, 111102. [Google Scholar] [CrossRef]
- Wagih, A.; Maimí, P.; Blanco, N.; Costa, J. A quasi-static indentation test to elucidate the sequence of damage events in low velocity impacts on composite laminates. Compos. Part A Appl. Sci. Manuf. 2016, 82, 180–189. [Google Scholar] [CrossRef]
- Sun, X.C.; Hallett, S.R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos. Part A Appl. Sci. Manuf. 2018, 104, 41–59. [Google Scholar] [CrossRef]
- Thouless, M.D.; Olsson, E.; Gupta, A. Cracking of brittle films on elastic substrates. Acta Metall. Mater. 1992, 40, 1287–1292. [Google Scholar] [CrossRef]
- Beuth, J.L. Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 1992, 29, 1657–1675. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Suo, Z. Mixed mode cracking in layered materials. Adv. Appl. Mech. 1991, 29, 63–191. [Google Scholar]
- Xia, Z.C.; Hutchinson, J.W. Crack patterns in thin films. J. Mech. Phys. Solids 2000, 48, 1107–1131. [Google Scholar] [CrossRef]
- Chen, F.L.; He, X.; Prieto-Munoz, P.A.; Yin, H.M. Opening-mode fractures of a brittle coating bonded to an elasto-plastic substrate. Int. J. Plast. 2015, 67, 171–191. [Google Scholar] [CrossRef]
- Ben Cheikh, I.; Parry, G.; Dalmas, D.; Estevez, R.; Marthelot, J. Analysis of the multi-cracking mechanism of brittle thin films on elastic-plastic substrates. Int. J. Solids Struct. 2019, 180, 176–188. [Google Scholar] [CrossRef]
- Shenoy, V.; Schwartzman, A.; Freund, L. Crack patterns in brittle thin films. Int. J. Fract. 2001, 109, 29–45. [Google Scholar] [CrossRef]
- Andersons, J.; Leterrier, Y.; Fescenko, I. Analysis of the initial fragmentation stage of oxide coatings on polymer substrates under biaxial tension. Thin Solid Film. 2003, 434, 203–215. [Google Scholar] [CrossRef]
- Vellinga, W.P.; Van den Bosch, M.; Geers, M.G.D. Interaction between cracking, delamination and buckling in brittle elastic thin films. Int. J. Fract. 2008, 154, 195–209. [Google Scholar] [CrossRef]
- Ramulu, M.; Kobayashi, A.S. Mechanics of crack curving and branching—A dynamic fracture analysis. Int. J. Fract. 1985, 27, 187–201. [Google Scholar] [CrossRef]
- Fineberg, J.; Marder, M. Instability in dynamic fracture. Phys. Rep. 1999, 313, 1–108. [Google Scholar] [CrossRef]
- Bless, S. Using depth-of-penetration tests to design transparent armor. Exp. Mech. 2013, 53, 47–51. [Google Scholar] [CrossRef]
- Schmidt, J.; Zemanová, A.; Zeman, J.; Šejnoha, M. Phase-field fracture modelling of thin monolithic and laminated glass plates under quasi-static bending. Materials 2020, 13, 5153. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Wang, Y. Multi-tip indenter tool scratch behavior of glass-ceramics. J. Mech. Behav. Biomed. Mater. 2021, 121, 104617. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, S. Analysis of the crack propagation mechanism of multiple scratched glass-ceramics by an interference stress field prediction model and experiment. Ceram. Int. 2022, 48, 2449–2458. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Z.; Wang, Y. Stress interaction and crack propagation behavior of glass ceramics under multi-scratches. J. Non-Cryst. Solids 2019, 523, 119600. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, Y.; Gao, X.; Song, Y.; Wang, F.; Zhang, S. Modeling of fatigue failure for SiC/SiC ceramic matrix composites at elevated temperatures and multi-scale experimental validation. J. Eur. Ceram. Soc. 2022, 42, 3395–3403. [Google Scholar] [CrossRef]
- Jiang, C.P.; Wu, X.F.; Li, J.; Song, F.; Shao, Y.F.; Xu, X.H.; Yan, P. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Mater. 2012, 60, 4540–4550. [Google Scholar] [CrossRef]
- Xu, X.; Tian, C.; Sheng, S.; Lin, Z.; Song, F. Characterization of thermal-shock cracks in ceramic bars. Sci. China Phys. Mech. Astron. 2014, 57, 2205–2208. [Google Scholar] [CrossRef]
- Huang, Q.; Alvarez, N.J.; Shabbir, A.; Hassager, O. Multiple cracks propagate simultaneously in polymer liquids in tension. Phys. Rev. Lett. 2016, 117, 087801. [Google Scholar] [CrossRef]
- Fender, M.L.; Lechenault, F.; Daniels, K.E. Universal shapes formed by two interacting cracks. Phys. Rev. Lett. 2010, 105, 125505. [Google Scholar] [CrossRef]
- Belova, O.N.; Stepanova, L.V.; Kosygina, L.N. Experimental study on the interaction between two cracks by digital photoelasticity method: Construction of the Williams series expansion. Procedia Struct. Integr. 2022, 37, 888–899. [Google Scholar] [CrossRef]
- Goehring, L.; Clegg, W.J.; Routh, A.F. Plasticity and fracture in drying colloidal films. Phys. Rev. Lett. 2013, 110, 024301. [Google Scholar] [CrossRef] [PubMed]
- Willmott, G.R.; Field, J.E. A high-speed photographic study of fast cracks in shocked diamond. Philos. Mag. 2006, 86, 4305–4318. [Google Scholar] [CrossRef]
- Chang, P.Y.; Yen, P.C.; Yang, J.M. Fatigue crack growth in fibre metal laminates with multiple open holes. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 93–107. [Google Scholar] [CrossRef]
- Jin, H.; Cui, B.; Mao, L. Fatigue growth behaviour of two interacting cracks with different crack offset. Materials 2019, 12, 3526. [Google Scholar] [CrossRef]
- Han, Z.; Qian, C.; Li, H. Study of the shielding interactions between double cracks on crack growth behaviors under fatigue loading. Metals 2020, 10, 202. [Google Scholar] [CrossRef]
- Hoang, L.; Nguyen, T.T. Facilitation effect of multiple crack interaction on fatigue life reduction and a quantitative evaluation of interactions factor of two parallel Non-coplanar cracks. Theor. Appl. Fract. Mech. 2023, 125, 103941. [Google Scholar] [CrossRef]
- Schackert, S.M.; Riedel, H.; Schweizer, C. Multiple cracking, crack coalescence and fatigue lifetime–model and experiments on an austenitic steel and on a nickel base alloy. Int. J. Fatigue 2024, 189, 108562. [Google Scholar] [CrossRef]
- Deng, L.; Deng, Y. Study on Multi-Crack Damage Evolution and Fatigue Life of Corroded Steel Wires Inside In-Service Bridge Suspenders. Appl. Sci. 2024, 14, 9596. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Wang, X.-S.; Wu, S.-C.; Yang, H.-H.; Zhang, Z.-H. High-Cycle Microscopic Severe Corrosion Fatigue Behavior and Life Prediction of 25CrMo Steel Used in Railway Axles. Metals 2017, 7, 134. [Google Scholar] [CrossRef]
- Williams, M.L. On the stress distribution at the base of a stationary crack. J. Appl. Mech. 1957, 24, 109–114. [Google Scholar] [CrossRef]
- Sih, G.C.; Paris, P.C.; Irwin, G.R. On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech. 1965, 1, 189–203. [Google Scholar] [CrossRef]
- Muskhelishvili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity; Noordhoff: Groningen, The Netherlands, 1953. [Google Scholar]
- Koiter, W.T. An infinite row of collinear cracks in an infinite elastic sheet. Ingenieur-Archiv 1959, 28, 168–172. [Google Scholar] [CrossRef]
- Sneddon, I. Crack Problems in the Theory of Elasticity//Developments in Theoretical and Applied Mechanics: Proceedings of the Third Southeastern Conference on Theoretical and Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 2013; p. 73. [Google Scholar]
- Horii, H.; Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. Geophys. Res. Solid Earth 1985, 90, 3105–3125. [Google Scholar] [CrossRef]
- Horii, H.; Nemat-Nasser, S. Elastic fields of interacting inhomogeneities. Int. J. Solids Struct. 1985, 21, 731–745. [Google Scholar] [CrossRef]
- Kachanov, M.L. A microcrack model of rock inelasticity part I: Frictional sliding on microcracks. Mech. Mater. 1982, 1, 19–27. [Google Scholar] [CrossRef]
- Kachanov, M. Elastic solids with many cracks: A simple method of analysis. Int. J. Solids Struct. 1987, 23, 23–43. [Google Scholar] [CrossRef]
- Li, Y.P.; Tham, L.G.; Wang, Y.H.; Tsui, Y. A modified Kachanov method for analysis of solids with multiple cracks. Eng. Fract. Mech. 2003, 70, 1115–1129. [Google Scholar] [CrossRef]
- Qing, H.; Yang, W. Characterization of strongly interacted multiple cracks in an infinite plate. Theor. Appl. Fract. Mech. 2006, 46, 209–216. [Google Scholar] [CrossRef]
- Peng, S.; Jing, L.; Li, S.; Wu, D.; Jing, W. Analytical solution of the stress intensity factors of multiple closed collinear cracks. J. Vib. Eng. Technol. 2023, 11, 3737–3745. [Google Scholar] [CrossRef]
- Gao, H.; Qin, Y.; Jia, T.; Zhao, L.; Gu, J. Reliability analysis of plate parts with multiple interacting hole-edge cracks using complex variable function. Appl. Math. Model. 2024, 125, 482–498. [Google Scholar] [CrossRef]
- Grytsenko, T.; Galybin, A.N. Numerical analysis of multi-crack large-scale plane problems with adaptive cross approximation and hierarchical matrices. Eng. Anal. Bound. Elem. 2010, 34, 501–510. [Google Scholar] [CrossRef]
- Chen, Y.Z. Multiple crack problems of antiplane elasticity in an infinite body. Eng. Fract. Mech. 1984, 20, 767–775. [Google Scholar] [CrossRef]
- Lam, K.Y.; Phua, S.P. Multiple crack interaction and its effect on stress intensity factor. Eng. Fract. Mech. 1991, 40, 585–592. [Google Scholar] [CrossRef]
- Cheung, Y.K.; Woo, C.W.; Wang, Y.H. A general method for multiple crack problems in a finite plate. Comput. Mech. 1992, 10, 335–343. [Google Scholar] [CrossRef]
- Yavuz, A.; Phoenix, S.; TerMaath, S.C. An accurate and fast analysis for strongly interacting multiple crack configurations including kinked (V) and branched (Y) cracks. Int. J. Solids Struct. 2006, 43, 6727–6750. [Google Scholar] [CrossRef]
- Chen, Y.Z. A survey of new integral equations in plane elasticity crack problem. Eng. Fract. Mech. 1995, 51, 97–134. [Google Scholar] [CrossRef]
- Chen, Y.Z. Solution of multiple crack problem in a finite plate using an alternating method based on two kinds of integral equation. Eng. Anal. Bound. Elem. 2011, 35, 1109–1115. [Google Scholar] [CrossRef]
- Denda, M.; Dong, Y.F. Complex variable approach to the BEM for multiple crack problems. Comput. Methods Appl. Mech. Eng. 1997, 141, 247–264. [Google Scholar] [CrossRef]
- Wang, G.S. The interaction of doubly periodic cracks. Theor. Appl. Fract. Mech. 2004, 42, 249–294. [Google Scholar] [CrossRef]
- Li, X. The effect of a homogeneous cylindrical inlay on cracks in the doubly-periodic complete plane strain problem. Int. J. Fract. 2001, 109, 403–411. [Google Scholar] [CrossRef]
- Shi, P.P. On the plastic zone size of solids containing doubly periodic rectangular-shaped arrays of cracks under longitudinal shear. Mech. Res. Commun. 2015, 67, 39–46. [Google Scholar] [CrossRef]
- Dong, C.Y.; Lee, K.Y. Numerical analysis of doubly periodic array of cracks/rigid-line inclusions in an infinite isotropic medium using the boundary integral equation method. Int. J. Fract. 2005, 133, 389–405. [Google Scholar] [CrossRef]
- Shi, P.P. Interaction between the doubly periodic interfacial cracks in a layered periodic composite: Simulation by the method of singular integral equation. Theor. Appl. Fract. Mech. 2015, 78, 25–39. [Google Scholar] [CrossRef]
- Monfared, M.M.; Ayatollahi, M.; Bagheri, R. In-plane stress analysis of dissimilar materials with multiple interface cracks. Appl. Math. Model. 2016, 40, 8464–8474. [Google Scholar] [CrossRef]
- Fartash, A.H.; Ayatollahi, M.; Bagheri, R. Transient response of dissimilar piezoelectric layers with multiple interacting interface cracks. Appl. Math. Model. 2019, 66, 508–526. [Google Scholar] [CrossRef]
- Bagheri, R.; Ayatollahi, M. Multiple moving cracks in a functionally graded strip. Appl. Math. Model. 2012, 36, 4677–4686. [Google Scholar] [CrossRef]
- Tian, W.Y.; Gabbert, U. Multiple crack interaction problem in magnetoelectroelastic solids. Eur. J. Mech.-A/Solids 2004, 23, 599–614. [Google Scholar] [CrossRef]
- Cao, T.; Feng, X.; Qin, T. Analysis for multiple cracks in 2d piezoelectric bimaterial using the singular integral equation method. Acta Mech. Solida Sin. 2022, 35, 261–272. [Google Scholar] [CrossRef]
- Lauterbach, B.; Gross, D. Crack growth in brittle solids under compression. Mech. Mater. 1998, 29, 81–92. [Google Scholar] [CrossRef]
- Matsumto, T.; Tanaka, M.; Obara, R. Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis. Eng. Fract. Mech. 2000, 65, 683–702. [Google Scholar] [CrossRef]
- Mykhas’kiv, V.V.; Khay, O.M. Interaction between rigid-disc inclusion and penny-shaped crack under elastic time-harmonic wave incidence. Int. J. Solids Struct. 2009, 46, 602–616. [Google Scholar] [CrossRef]
- Nishimura, N.; Yoshida, K.-I.; Kobayashi, S. A fast multipole boundary integral equation method for crack problems in 3D. Eng. Anal. Bound. Elem. 1999, 23, 97–105. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Z.-Y.; Chen, W. Characteristics of crack growth in brittle solids with the effects of material heterogeneity and multi-crack interaction. Int. J. Fract. 2024, 246, 77–99. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Wang, J.; Ju, Y. An h-version adaptive finite element scheme for eigensolutions of free vibration of three-dimensional cracked elasticity utilising element subdivision-based error estimator. J. Intell. Constr. 2024. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Z.; Gao, C.; Gai, P.; Chen, X.; Chen, J.; Bu, F. A novel hybrid PD-FEM-FVM approach for simulating hydraulic fracture propagation in saturated porous media. Comput. Geotech. 2025, 177, 106821. [Google Scholar] [CrossRef]
- Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T. Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Methods Eng. 2000, 48, 1741–1760. [Google Scholar] [CrossRef]
- Belytschko, T.; Moës, N.; Usui, S.; Parimi, C. Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 2001, 50, 993–1013. [Google Scholar] [CrossRef]
- Budyn, E.; Zi, G.; Moës, N.; Belytschko, T. A method for multiple crack growth in brittle materials without remeshing. Int. J. Numer. Methods Eng. 2004, 61, 1741–1770. [Google Scholar] [CrossRef]
- Mousavi, S.E.; Grinspun, E.; Sukumar, N. Harmonic enrichment functions: A unified treatment of multiple, intersecting and branched cracks in the extended finite element method. Int. J. Numer. Methods Eng. 2011, 85, 1306–1322. [Google Scholar] [CrossRef]
- Richardson, C.L.; Hegemann, J.; Sifakis, E.; Hellrung, J.; Teran, J.M. An XFEM method for modeling geometrically elaborate crack propagation in brittle materials. Int. J. Numer. Methods Eng. 2011, 88, 1042–1065. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Liu, X.; Zeng, Q.; Zhuang, Z. Modeling of dynamic crack branching by enhanced extended finite element method. Comput. Mech. 2014, 54, 489–502. [Google Scholar] [CrossRef]
- Sutula, D.; Kerfriden, P.; van Dam, T.; Bordas, S.P. Minimum energy multiple crack propagation. Part I: Theory and state of the art review. Eng. Fract. Mech. 2018, 191, 205–224. [Google Scholar] [CrossRef]
- Sutula, D.; Kerfriden, P.; van Dam, T.; Bordas, S.P. Minimum energy multiple crack propagation. Part-II: Discrete solution with XFEM. Eng. Fract. Mech. 2018, 191, 225–256. [Google Scholar] [CrossRef]
- Sutula, D.; Kerfriden, P.; van Dam, T.; Bordas, S.P. Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications. Eng. Fract. Mech. 2018, 191, 257–276. [Google Scholar] [CrossRef]
- Agathos, K.; Chatzi, E.; Bordas, S.P.A. Multiple crack detection in 3D using a stable XFEM and global optimization. Comput. Mech. 2018, 62, 835–852. [Google Scholar] [CrossRef]
- Chen, J.W.; Zhou, X.P. The enhanced extended finite element method for the propagation of complex branched cracks. Eng. Anal. Bound. Elem. 2019, 104, 46–62. [Google Scholar] [CrossRef]
- Song, J.H.; Areias, P.M.; Belytschko, T. A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 2006, 67, 868–893. [Google Scholar] [CrossRef]
- Ding, J.; Yu, T.; Bui, T.Q. Modeling strong/weak discontinuities by local mesh refinement variable-node XFEM with object-oriented implementation. Theor. Appl. Fract. Mech. 2020, 106, 102434. [Google Scholar] [CrossRef]
- Ding, J.; Yu, T.; Yang, Y.; Bui, T.Q. An efficient variable-node XFEM for modeling multiple crack growth: A Matlab object-oriented implementation. Adv. Eng. Softw. 2020, 140, 102750. [Google Scholar] [CrossRef]
- Wen, L.F.; Tian, R.; Wang, L.X.; Feng, C. Improved XFEM for multiple crack analysis: Accurate and efficient implementations for stress intensity factors. Comput. Methods Appl. Mech. Eng. 2023, 411, 116045. [Google Scholar] [CrossRef]
- Wang, L.X.; Wen, L.F.; Tian, R.; Feng, C. Improved XFEM (IXFEM): Arbitrary multiple crack initiation, propagation and interaction analysis. Comput. Methods Appl. Mech. Eng. 2024, 421, 116791. [Google Scholar] [CrossRef]
- Gajjar, M.; Pathak, H.; Kumar, S. Elasto-plastic fracture modeling for crack interaction with XFEM. Trans. Indian Inst. Met. 2020, 73, 1679–1687. [Google Scholar] [CrossRef]
- Hu, Z.; Suo, X.; Wang, M.; Jiang, F.; Huang, H.; Shen, Y. A phase-field-cohesive-zone framework to simulate multiple failure mechanisms of elastoplastic fiber-reinforced composites. Int. J. Fract. 2023, 244, 43–59. [Google Scholar] [CrossRef]
- Zi, G.; Song, J.-H.; Budyn, E.; Lee, S.-H.; Belytschko, T. A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Model. Simul. Mater. Sci. Eng. 2004, 12, 901. [Google Scholar] [CrossRef]
- Singh, I.V.; Mishra, B.K.; Bhattacharya, S.; Patil, R. The numerical simulation of fatigue crack growth using extended finite element method. Int. J. Fatigue 2012, 36, 109–119. [Google Scholar] [CrossRef]
- Shu, Y.; Li, Y.; Duan, M.; Yang, F. An X-FEM approach for simulation of 3-D multiple fatigue cracks and application to double surface crack problems. Int. J. Mech. Sci. 2017, 130, 331–349. [Google Scholar] [CrossRef]
- Zhu, J.; Jie, Z.; Chen, C.; Zheng, H.; Wang, W. Fatigue Crack Propagation of Corroded High-Strength Steel Wires Using the XFEM and the EIFS. Materials 2023, 16, 4738. [Google Scholar] [CrossRef]
- Chen, Z.; Bao, H.; Dai, Y.; Liu, Y. Numerical prediction based on XFEM for mixed-mode crack growth path and fatigue life under cyclic overload. Int. J. Fatigue 2022, 162, 106943. [Google Scholar] [CrossRef]
- Jafari, A.; Broumand, P.; Vahab, M.; Khalili, N. An eXtended finite element method implementation in COMSOL multiphysics: Solid mechanics. Finite Elem. Anal. Des. 2022, 202, 103707. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, I.V.; Mishra, B.K.; Bhardwaj, G. Analysis of cracked plate using higher-order shear deformation theory: Asymptotic crack-tip fields and XIGA implementation. Comput. Methods Appl. Mech. Eng. 2018, 336, 594–639. [Google Scholar] [CrossRef]
- Bhardwaj, G.; Singh, I.V.; Mishra, B.K.; Kumar, V. Numerical simulations of cracked plate using XIGA under different loads and boundary conditions. Mech. Adv. Mater. Struct. 2016, 23, 704–714. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, I.V.; Mishra, B.K.; Bhardwaj, G. Analysis of cracked functionally graded material plates using XIGA based on generalized higher-order shear deformation theory. Compos. Struct. 2019, 225, 111038. [Google Scholar] [CrossRef]
- Gu, J.; Yu, T.; Van Lich, L.; Tanaka, S.; Qiu, L.; Bui, T.Q. Adaptive orthotropic XIGA for fracture analysis of composites. Compos. Part B Eng. 2019, 176, 107259. [Google Scholar] [CrossRef]
- Gu, J.; Yu, T.; Van Lich, L.; Nguyen, T.-T.; Yang, Y.; Bui, T.Q. Fracture modeling with the adaptive XIGA based on locally refined B-splines. Comput. Methods Appl. Mech. Eng. 2019, 354, 527–567. [Google Scholar] [CrossRef]
- Gu, J.; Yu, T.; Van Lich, L.; Tanaka, S.; Yuan, H.; Bui, T.Q. Crack growth adaptive XIGA simulation in isotropic and orthotropic materials. Comput. Methods Appl. Mech. Eng. 2020, 365, 113016. [Google Scholar] [CrossRef]
- Yu, T.; Yuan, H.; Gu, J.; Tanaka, S.; Bui, T.Q. Error-controlled adaptive LR B-splines XIGA for assessment of fracture parameters in through-cracked Mindlin-Reissner plates. Eng. Fract. Mech. 2020, 229, 106964. [Google Scholar] [CrossRef]
- Bui, T.Q. Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput. Methods Appl. Mech. Eng. 2015, 295, 470–509. [Google Scholar] [CrossRef]
- Singh, S.; Singh, I. Analysis of cracked functionally graded piezoelectric material using XIGA. Eng. Fract. Mech. 2020, 230, 107015. [Google Scholar] [CrossRef]
- Jiang, K.; Zhu, X.; Hu, C.; Hou, W.; Hu, P.; Bordas, S.P. An enhanced extended isogeometric analysis with strong imposition of essential boundary conditions for crack problems using B++ splines. Appl. Math. Model. 2023, 116, 393–414. [Google Scholar] [CrossRef]
- Aliabadi, M. A new generation of boundary element methods in fracture mechanics. Int. J. Fract. 1997, 86, 91–125. [Google Scholar] [CrossRef]
- Sutradhar, A.; Paulino, G.H. Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method. Eng. Anal. Bound. Elem. 2004, 28, 1335–1350. [Google Scholar] [CrossRef]
- Hsieh, J.; Denda, M.; Redondo, J.; Marante, M.; Flórez-López, J. Electronic handbook of fracture: A Java-based boundary element program for fracture analysis of multiple curvilinear cracks in the general anisotropic solids. Adv. Eng. Softw. 2008, 39, 395–406. [Google Scholar] [CrossRef]
- Lei, J.; Yun, L.; Bui, T.Q. Numerical simulation of crack growth in piezoelectric structures by BEM. Eng. Anal. Bound. Elem. 2017, 85, 30–42. [Google Scholar] [CrossRef]
- Fedelinski, P. Analysis of closed branched and intersecting cracks by the boundary element method. Acta Mech. 2022, 233, 1213–1230. [Google Scholar] [CrossRef]
- Denda, M. A dislocation and point force approach to the boundary element method for mixed mode crack analysis of plane anisotropic solids. J. Chin. Inst. Eng. 1999, 22, 677–693. [Google Scholar] [CrossRef]
- Denda, M. Mixed mode I, II and III analysis of multiple cracks in plane anisotropic solids by the BEM: A dislocation and point force approach. Eng. Anal. Bound. Elem. 2001, 25, 267–278. [Google Scholar] [CrossRef]
- Wang, Y.B.; Chau, K.T. A new boundary element method for mixed boundary value problems involving cracks and holes: Interactions between rigid inclusions and cracks. Int. J. Fract. 2001, 110, 387–406. [Google Scholar] [CrossRef]
- Gray, L.J.; Phan, A.V.; Paulino, G.H.; Kaplan, T. Improved quarter-point crack tip element. Eng. Fract. Mech. 2003, 70, 269–283. [Google Scholar] [CrossRef]
- Sáez, A.; García-Sánchez, F.; Domínguez, J. Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids. Comput. Methods Appl. Mech. Eng. 2006, 196, 235–246. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Ma, H.; Huang, S. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements. Eng. Anal. Bound. Elem. 2014, 47, 1–9. [Google Scholar] [CrossRef]
- Wu, X.; Li, X. Simulations of micron-scale fracture using atomistic-based boundary element method. Model. Simul. Mater. Sci. Eng. 2017, 25, 085008. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, Y.X.; Xie, W. Modeling of multiple crack propagation in 2-D elastic solids by the fast multipole boundary element method. Eng. Fract. Mech. 2017, 172, 1–16. [Google Scholar] [CrossRef]
- Hwu, C.; Huang, S.-T.; Li, C.-C. Boundary-based finite element method for two-dimensional anisotropic elastic solids with multiple holes and cracks. Eng. Anal. Bound. Elem. 2017, 79, 13–22. [Google Scholar] [CrossRef]
- Cong, L.; Bin, H.; Zongjun, H.; Zhongrong, N. Analysis of multi-crack propagation by using the extended boundary element method. Eng. Anal. Bound. Elem. 2021, 132, 65–76. [Google Scholar] [CrossRef]
- Park, B.; Min, K.-B. Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int. J. Rock Mech. Min. Sci. 2015, 76, 243–255. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, J.; Li, X.; Chu, X. Macro-and meso-failure mechanism analysis for shale-like brittle materials under uniaxial compression. Eng. Anal. Bound. Elem. 2022, 141, 189–198. [Google Scholar] [CrossRef]
- Li, Y.; Cai, W.; Li, X.; Zhu, W.; Zhang, Q.; Wang, S. Experimental and DEM analysis on secondary crack types of rock-like material containing multiple flaws under uniaxial compression. Appl. Sci. 2019, 9, 1749. [Google Scholar] [CrossRef]
- Wang, B.; Gerolymatou, E.; Jin, A. Study on mechanical and fracture characteristics of rock-like specimens with rough non-persistent joints by YADE DEM simulation. Comput. Geotech. 2023, 158, 105382. [Google Scholar] [CrossRef]
- Sun, Y.; Kwok, C.Y.; Duan, K. Size effects on crystalline rock masses: Insights from grain-based DEM modeling. Comput. Geotech. 2024, 171, 106376. [Google Scholar] [CrossRef]
- Bai, Q.S.; Tu, S.H.; Zhang, C. DEM investigation of the fracture mechanism of rock disc containing hole (s) and its influence on tensile strength. Theor. Appl. Fract. Mech. 2016, 86, 197–216. [Google Scholar] [CrossRef]
- Yang, S.Q.; Yin, P.F.; Zhang, Y.C.; Chen, M.; Zhou, X.P.; Jing, H.W.; Zhang, Q.Y. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int. J. Rock Mech. Min. Sci. 2019, 114, 101–121. [Google Scholar] [CrossRef]
- Duan, K.; Kwok, C.Y.; Zhang, Q.; Shang, J. On the initiation, propagation and reorientation of simultaneously-induced multiple hydraulic fractures. Comput. Geotech. 2020, 117, 103226. [Google Scholar] [CrossRef]
- Li, M.; Zhang, F.; Wang, S.; Dontsov, E.; Li, P. DEM modeling of simultaneous propagation of multiple hydraulic fractures across different regimes, from toughness-to viscosity-dominated. Rock Mech. Rock Eng. 2024, 57, 481–503. [Google Scholar] [CrossRef]
- Hofmann, H.; Babadagli, T.; Yoon, J.; Zimmermann, G. Multi-branched growth of fractures in shales for effective reservoir contact: A particle based distinct element modeling study. J. Nat. Gas Sci. Eng. 2016, 35, 509–521. [Google Scholar] [CrossRef]
- Hofmann, H.; Babadagli, T.; Yoon, J.S.; Blöcher, G.; Zimmermann, G. A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements. Geothermics 2016, 64, 362–381. [Google Scholar] [CrossRef]
- Papachristos, E.; Scholtès, L.; Donzé, F.; Chareyre, B. Intensity and volumetric characterizations of hydraulically driven fractures by hydro-mechanical simulations. Int. J. Rock Mech. Min. Sci. 2017, 93, 163–178. [Google Scholar] [CrossRef]
- Lee, H.P.; Olson, J.E.; Schultz, R.A. Interaction analysis of propagating opening mode fractures with veins using the discrete element method. Int. J. Rock Mech. Min. Sci. 2018, 103, 275–288. [Google Scholar] [CrossRef]
- Liu, G.; Sun, W.; Lowinger, S.M.; Zhang, Z.; Huang, M.; Peng, J. Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock. Acta Geotech. 2019, 14, 843–868. [Google Scholar] [CrossRef]
- Shao, L.; Mao, J.; Zhao, L.; Li, T. A three-dimensional deformable spheropolyhedral-based discrete element method for simulation of the whole fracture process. Eng. Fract. Mech. 2022, 263, 108290. [Google Scholar] [CrossRef]
- Jiao, K.; Han, D.; Wang, D.; Chen, Y.; Li, J.; Gong, L.; Bai, B.; Yu, B. Investigation of thermal-hydro-mechanical coupled fracture propagation considering rock damage. Comput. Geosci. 2022, 26, 1167–1187. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, J.; Li, X.; Chu, X. Experiments and discrete element simulations of crack initiation angle of mixed-mode I/II in PMMA material. Theor. Appl. Fract. Mech. 2023, 125, 103862. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Shimbo, T. 3-D coupled peridynamics and discrete element method for fracture and post-fracture behavior of soil-like materials. Comput. Geotech. 2023, 158, 105372. [Google Scholar] [CrossRef]
- Belytschko, T.; Lu, Y.Y.; Gu, L. Element-free Galerkin methods. Int. J. Numer. Methods Eng. 1994, 37, 229–256. [Google Scholar] [CrossRef]
- Fleming, M.; Chu, Y.A.; Moran, B.; Belytschko, T. Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 1997, 40, 1483–1504. [Google Scholar] [CrossRef]
- Li, D.M.; Liu, J.H.; Nie, F.H.; Featherston, C.A.; Wu, Z. On tracking arbitrary crack path with complex variable meshless methods. Comput. Methods Appl. Mech. Eng. 2022, 399, 115402. [Google Scholar] [CrossRef]
- Pan, J.H.; Li, D.M.; Luo, X.B.; Zhu, W. An enriched improved complex variable element-free Galerkin method for efficient fracture analysis of orthotropic materials. Theor. Appl. Fract. Mech. 2022, 121, 103488. [Google Scholar] [CrossRef]
- Pan, J.H.; Li, D.M.; Cai, S.; Luo, X.B. A pure complex variable enrichment method for modeling progressive fracture of orthotropic functionally gradient materials. Eng. Fract. Mech. 2023, 277, 108984. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, P.; Cai, Y. Independent cover meshless method for the simulation of multiple crack growth with arbitrary incremental steps and directions. Eng. Anal. Bound. Elem. 2017, 83, 242–255. [Google Scholar] [CrossRef]
- Muravin, B.; Turkel, E. Multiple crack weight for solution of multiple interacting cracks by meshless numerical methods. Int. J. Numer. Methods Eng. 2006, 67, 1146–1159. [Google Scholar] [CrossRef]
- Duflot, M.; Nguyen-Dang, H. A meshless method with enriched weight functions for fatigue crack growth. Int. J. Numer. Methods Eng. 2004, 59, 1945–1961. [Google Scholar] [CrossRef]
- Duflot, M. A meshless method with enriched weight functions for three-dimensional crack propagation. Int. J. Numer. Methods Eng. 2006, 65, 1970–2006. [Google Scholar] [CrossRef]
- Singh, I.V.; Mishra, B.K.; Pant, M. A modified intrinsic enriched element free Galerkin method for multiple cracks simulation. Mater. Des. 2010, 31, 628–632. [Google Scholar] [CrossRef]
- Singh, I.V.; Mishra, B.K.; Pant, M. An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method. Int. J. Fract. 2011, 167, 157–171. [Google Scholar] [CrossRef]
- Pant, M.; Singh, I.V.; Mishra, B.K. A novel enrichment criterion for modeling kinked cracks using element free Galerkin method. Int. J. Mech. Sci. 2013, 68, 140–149. [Google Scholar] [CrossRef]
- Barbieri, E.; Petrinic, N.; Meo, M.; Tagarielli, V.L. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. Int. J. Numer. Methods Eng. 2012, 90, 177–195. [Google Scholar] [CrossRef]
- Barbier, E.; Petrinic, N. Multiple Crack Growth and Coalescence in Meshfree Methods with Adistance Function-Based Enriched Kernel. Key Eng. Mater. 2013, 560, 37–60. [Google Scholar] [CrossRef]
- Ai, W.; Bird, R.E.; Coombs, W.M.; Augarde, C.E. A configurational force driven cracking particle method for modelling crack propagation in 2D. Eng. Anal. Bound. Elem. 2019, 104, 197–208. [Google Scholar] [CrossRef]
- Ai, W.; Augarde, C.E. Thermoelastic fracture modelling in 2D by an adaptive cracking particle method without enrichment functions. Int. J. Mech. Sci. 2019, 160, 343–357. [Google Scholar] [CrossRef]
- Memari, A.; Mohebalizadeh, H. Quasi-static analysis of mixed-mode crack propagation using the meshless local Petrov–Galerkin method. Eng. Anal. Bound. Elem. 2019, 106, 397–411. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, Y.; Zhao, J.; Wang, Q.; He, P.; Liu, A.; Song, P. Numerical investigation of hydraulic fracture extension based on the meshless method. Geofluids 2020, 2020, 8881901. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, M.N.; Van Vu, T.; Truong, T.T.; Bui, T.Q. A meshfree model enhanced by NURBS-based Cartesian transformation method for cracks at finite deformation in hyperelastic solids. Eng. Fract. Mech. 2022, 261, 108176. [Google Scholar] [CrossRef]
- Xiang, P.; Liu, Z.; Shao, Z.; Chen, Y.; Peng, X.; Wang, Q. Meshfree method for bending and free vibration analysis of laminated plates using the Reissner’s mixed variational theorem. Mech. Adv. Mater. Struct. 2024, 1–15. [Google Scholar] [CrossRef]
- Xiang, P.; Shao, Z.; Zhao, H.; Zhang, P.; Xie, X.; Liu, X. A stochastic meshless framework for higher-order free vibration analysis and static bending of porous functionally graded plates. Mech. Based Des. Struct. Mach. 2024, 1–28. [Google Scholar] [CrossRef]
- Shao, Z.; Zhao, H.; Zhang, P.; Xie, X.; Ademiloye, A.; Xiang, P. A meshless computational framework for a modified dynamic system of vehicle coupled with plate structure. Eng. Struct. 2024, 312, 118140. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Shao, Z.; Ademiloye, A.; Yang, D.; Xiang, P.; Xianbiao, W. A size-dependent meshfree model based on nonlocal strain gradient theory for trigonometric functionally graded nanoplates on variable elastic foundations. Structures 2024, 69, 107480. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Z.; Bi, J.; Wang, C.; Wu, Z. Numerical simulation the fracture of rock in the framework of plastic-bond-based SPH and its applications. Comput. Geotech. 2023, 157, 105359. [Google Scholar] [CrossRef]
- Zhou, X.P.; Xiao, N. Analyzing fracture properties of the 3D reconstructed model of porous rocks. Eng. Fract. Mech. 2018, 189, 175–193. [Google Scholar] [CrossRef]
- Xia, C.; Shi, Z.; Li, B. A revisit of disaster process of Vajont rockslide using a coupled discontinuous smooth particle hydrodynamics (CDSPH) method. Landslides 2024, 21, 197–216. [Google Scholar] [CrossRef]
- Islam, M.R.I.; Peng, C.; Patra, P.K. A comparison of numerical stability for ESPH and TLSPH for dynamic brittle fracture. Theor. Appl. Fract. Mech. 2023, 127, 104052. [Google Scholar] [CrossRef]
- Kilic, B.; Madenci, E. Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 2009, 156, 165–177. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q. A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica 2020, 55, 547–566. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, S.; Zhu, Z.; Yu, S.; Xie, X. Improved peridynamic model and its application to crack propagation in rocks. R. Soc. Open Sci. 2022, 9, 221013. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, H.; Cai, Z.; Li, Y.; Wang, W.; Liu, Y. Peridynamic-based investigation of the cracking behavior of multilayer thermal barrier coatings. Ceram. Int. 2022, 48, 23543–23553. [Google Scholar] [CrossRef]
- Agwai, A.; Guven, I.; Madenci, E. Predicting crack propagation with peridynamics: A comparative study. Int. J. Fract. 2011, 171, 65–78. [Google Scholar] [CrossRef]
- Ha, Y.D.; Bobaru, F. Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics. Int. J. Fract. 2010, 162, 229–244. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Z.; Mehrmashhadi, J.; Bobaru, F. A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete. Eng. Fract. Mech. 2020, 229, 106969. [Google Scholar] [CrossRef]
- Peng, X.; Chen, Z.; Bobaru, F. Accurate predictions of dynamic fracture in perforated plates. Int. J. Fract. 2023, 244, 61–84. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Xu, X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Eng. Fract. Mech. 2016, 163, 248–273. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Xu, X. Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. Int. J. Fract. 2016, 201, 213–234. [Google Scholar] [CrossRef]
- Dai, Z.; Xie, J.; Lu, Z.; Qin, S.; Wang, L. Numerical modeling on crack propagation based on a multi-grid bond-based dual-horizon peridynamics. Mathematics 2021, 9, 2848. [Google Scholar] [CrossRef]
- Shojaei, A.; Hermann, A.; Cyron, C.J.; Seleson, P.; Silling, S.A. A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput. Methods Appl. Mech. Eng. 2022, 391, 114544. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q.-Z.; Ni, T.; Vazic, B.; Newell, P.; Bordas, S.P. An extended peridynamic model equipped with a new bond-breakage criterion for mixed-mode fracture in rock-like materials. Comput. Methods Appl. Mech. Eng. 2023, 411, 116016. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, S.; Zhu, Z. Cosserat ordinary state-based peridynamic model and numerical simulation of rock fracture. Comput. Geotech. 2023, 155, 105240. [Google Scholar] [CrossRef]
- Tong, Q.; Li, S. A concurrent multiscale study of dynamic fracture. Comput. Methods Appl. Mech. Eng. 2020, 366, 113075. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, M.; Wang, X.; Huang, Z. Peridynamic Study on Fracture Mode and Crack Propagation Path of a Plate with Multiple Cracks Subjected to Uniaxial Tension. CMES-Comput. Model. Eng. Sci. 2023, 137, 2593–2620. [Google Scholar] [CrossRef]
- Bie, Y.; Ren, H.; Rabczuk, T.; Bui, T.Q.; Wei, Y. The fully coupled thermo-mechanical dual-horizon peridynamic correspondence damage model for homogeneous and heterogeneous materials. Comput. Methods Appl. Mech. Eng. 2024, 420, 116730. [Google Scholar] [CrossRef]
- Chu, S.; Bai, J.; Zhao, Z.-L.; Liu, Y.; Huang, D.; Li, B.; Li, Q.; Feng, X.-Q. Peridynamic fracture analysis of film–substrate systems. J. Mech. Phys. Solids 2024, 191, 105757. [Google Scholar] [CrossRef]
- Chen, Z.; Wan, J.; Chu, X.; Liu, H. Two Cosserat peridynamic models and numerical simulation of crack propagation. Eng. Fract. Mech. 2019, 211, 341–361. [Google Scholar] [CrossRef]
- Giannakeas, I.N.; Papathanasiou, T.K.; Fallah, A.S.; Bahai, H. Coupling XFEM and Peridynamics for brittle fracture simulation: Part II—Adaptive relocation strategy. Comput. Mech. 2020, 66, 683–705. [Google Scholar] [CrossRef]
- Loehnert, S.; Krüger, C.; Klempt, V.; Munk, L. An enriched phase-field method for the efficient simulation of fracture processes. Comput. Mech. 2023, 71, 1015–1039. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Tang, X. A hybrid FEMM-Phase field method for fluid-driven fracture propagation in three dimension. Eng. Anal. Bound. Elem. 2020, 113, 40–54. [Google Scholar] [CrossRef]
- Schänzel, L.; Hofacker, M.; Miehe, C. Phase field modeling of crack propagation at large strains with application to rubbery polymers. PAMM 2011, 11, 429–430. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.; Yue, P.; Sun, W. Fracture failure in crack interaction of asphalt binder by using a phase field approach. Mater. Struct. 2015, 48, 2997–3008. [Google Scholar] [CrossRef]
- Mikelić, A.; Wheeler, M.F.; Wick, T. A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Model. Simul. 2015, 13, 367–398. [Google Scholar] [CrossRef]
- Mikelić, A.; Wheeler, M.F.; Wick, T. Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 2015, 19, 1171–1195. [Google Scholar] [CrossRef]
- Ziaei-Rad, V.; Shen, L.; Jiang, J.; Shen, Y. Identifying the crack path for the phase field approach to fracture with non-maximum suppression. Comput. Methods Appl. Mech. Eng. 2016, 312, 304–321. [Google Scholar] [CrossRef]
- Patil, R.; Mishra, B.; Singh, I.; Bui, T. A new multiscale phase field method to simulate failure in composites. Adv. Eng. Softw. 2018, 126, 9–33. [Google Scholar] [CrossRef]
- Heider, Y.; Sun, W. A phase field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking. Comput. Methods Appl. Mech. Eng. 2020, 359, 112647. [Google Scholar] [CrossRef]
- You, T.; Waisman, H.; Zhu, Q.-Z. Brittle-ductile failure transition in geomaterials modeled by a modified phase-field method with a varying damage-driving energy coefficient. Int. J. Plast. 2021, 136, 102836. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, T.; Ding, J.; Natarajan, S. Low-cycle fatigue crack growth in brittle materials: Adaptive phase-field modeling with variable-node elements. Comput. Methods Appl. Mech. Eng. 2024, 425, 116917. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhou, S. An experimental and numerical study on the influence of filling materials on double-crack propagation. Rock Mech. Rock Eng. 2020, 53, 5571–5591. [Google Scholar] [CrossRef]
- Fei, F.; Choo, J. Double-phase-field formulation for mixed-mode fracture in rocks. Comput. Methods Appl. Mech. Eng. 2021, 376, 113655. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; Vu, M.N.; Shao, J.F. Modeling of mixed cracks in rock-like brittle materials under compressive stresses by a double-phase-field method. Rock Mech. Rock Eng. 2023, 56, 2779–2792. [Google Scholar] [CrossRef]
- Huang, D.; Yang, Y.Y.; Song, Y.X.; Wu, Z.J.; Yang, Y.T.; Tang, X.; Cen, D. Fracture behavior of shale containing two parallel veins under semi-circular bend test using a phase-field method. Eng. Fract. Mech. 2022, 267, 108428. [Google Scholar] [CrossRef]
- Li, X.; Hofmann, H.; Yoshioka, K.; Luo, Y.; Liang, Y. Phase-field modelling of interactions between hydraulic fractures and natural fractures. Rock Mech. Rock Eng. 2022, 55, 6227–6247. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, H.; Xu, W.; Lv, C.; Micheal, M.; Shi, F.; Wu, H. A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model. Eng. Fract. Mech. 2022, 271, 108621. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, Y.; Bi, J.; Zhang, Y.; Wang, C.; Li, Y. A thermodynamically consistent SPH-PFM model for modelling crack propagation and coalescence in rocks. Theor. Appl. Fract. Mech. 2023, 127, 104085. [Google Scholar] [CrossRef]
- Xu, B.; Xu, T.; Xue, Y.; Heap, M.J.; Wasantha, P.; Li, Z. Phase field modeling of mixed-mode crack in rocks incorporating heterogeneity and frictional damage. Eng. Fract. Mech. 2024, 298, 109936. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S.; Zhang, Q.; Shen, W.; Zhang, J.; Huang, Q. A modified phase-field model simulating multiple cracks propagation of fissured rocks under compressive or compressive-shear conditions. Theor. Appl. Fract. Mech. 2024, 133, 104549. [Google Scholar] [CrossRef]
- Xu, D.; Wu, A.; Li, C. A linearly-independent higher-order extended numerical manifold method and its application to multiple crack growth simulation. J. Rock Mech. Geotech. Eng. 2019, 11, 1256–1263. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, S.M.; Han, S.Y.; Fan, L.F. Computation of T-stresses for multiple-branched and intersecting cracks with the numerical manifold method. Eng. Anal. Bound. Elem. 2019, 107, 149–158. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, S.M.; Han, S.Y.; Fan, L.F. T-stress evaluation for multiple cracks in FGMs by the numerical manifold method and the interaction integral. Theor. Appl. Fract. Mech. 2020, 105, 102436. [Google Scholar] [CrossRef]
- He, J.; Liu, Q.; Wu, Z. Creep crack analysis of viscoelastic material by numerical manifold method. Eng. Anal. Bound. Elem. 2017, 80, 72–86. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, X.; Zheng, H.; Liu, Q.S.; He, L. Three-dimensional fracture propagation with numerical manifold method. Eng. Anal. Bound. Elem. 2016, 72, 65–77. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Zheng, H. On the implementation of a hydro-mechanical coupling model in the numerical manifold method. Eng. Anal. Bound. Elem. 2019, 109, 161–175. [Google Scholar] [CrossRef]
- Li, G.; Wang, K.; Tang, C.; Qian, X. An NMM-based fluid-solid coupling model for simulating rock hydraulic fracturing process. Eng. Fract. Mech. 2020, 235, 107193. [Google Scholar] [CrossRef]
- Sun, H.; Xiong, F.; Wei, W. A 2D hybrid NMM-UPM method for waterflooding processes modelling considering reservoir fracturing. Eng. Geol. 2022, 308, 106810. [Google Scholar] [CrossRef]
- Zeng, Q.; Bo, L.; Liu, L.; Li, X.; Sun, J.; Huang, Z.; Yao, J. Analysis of fracture propagation and shale gas production by intensive volume fracturing. Appl. Math. Mech. 2023, 44, 1385–1408. [Google Scholar] [CrossRef]
- Yang, C.X.; Yi, L.P.; Yang, Z.Z.; Li, X.G. Numerical investigation of the fracture network morphology in multi-cluster hydraulic fracturing of horizontal wells: A DDM-FVM study. J. Pet. Sci. Eng. 2022, 215, 110723. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, R.; Jiang, G.; Xie, J. Modelling hydraulic fracturing in a complex-fracture-network reservoir with the DDM and graph theory. J. Nat. Gas Sci. Eng. 2017, 47, 73–82. [Google Scholar] [CrossRef]
- Miao, C.; Wei, Y.; Yan, X. Two collinear square-hole cracks in an infinite plate in tension. Theor. Appl. Fract. Mech. 2015, 75, 32–38. [Google Scholar] [CrossRef]
- Yan, X.; Miao, C. Interaction of multiple cracks in a rectangular plate. Appl. Math. Model. 2012, 36, 5727–5740. [Google Scholar] [CrossRef]
Method | Applicable Objects | Advantages | Limits |
---|---|---|---|
Experiments | Rock and concrete, with a variety of composites, compound facings, glass, polymers, etc. | Great visualization High reference value Verification | Poor repeatability Lack of relevant standards High cost Limited scalability |
Theoretical modeling | Ideal linear elastic or plastic materials (isotropic/anisotropic) | Predictive Deeper understanding Simplified complexity Guiding experiments and numerical simulations | Idealization Mathematical complexity Difficulty of experimental verification Application limitations |
XFEM | Rocks, composites, metals, ceramics, plastics, etc. | Arbitrary crack paths No remeshing required Multi-physics coupling | High computational costs Numerical stability Complex pre-processing |
XIGA | Rocks, composites, functional gradient materials, etc. | High-order accuracy No mesh required Multi-physics coupling Multiscale simulation | High computational costs Complex technical implementation Software limitations |
BEM | Rock, concrete, metals, alloys, ceramics, glass, composites, etc. | Precise boundary condition handling Application to infinite domain problems Low computational cost Stress singularity treatment | Complex integration Complex geometric challenges Multi-crack interaction handling Software limitations |
DEM | Granular materials such as sand, soil, rock, composite materials, etc. | Dynamic crack propagation No mesh required Complex boundary adaptation Multiscale problems | High computational cost High parameter requirements Dynamic loading challenges Complex post-processing |
MM | Rock, concrete, metals, alloys, composites, etc. | No mesh required High order accuracy Dynamic crack paths Localized refinement capability | Technical implementation complexity Stability considerations Software limitations |
PD | Rock, concrete, composites, etc. | Non-localized Arbitrary crack paths No remeshing required Dynamic fracture simulation Internal interactions | High computational cost Numerical stability challenges Parameter calibration |
PFM | Rock, concrete, metals, alloys, composites, etc. | Natural crack path Complex crack processing Multi-field coupling Continuous description Multiscale simulation | High computational costs Parameter calibration Numerical stability Software limitations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-W.; Li, D.M.; Zhong, Y.-F.; Liu, Y.-K.; Shao, Y.-N. Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics. Mathematics 2024, 12, 3881. https://doi.org/10.3390/math12243881
Wang Z-W, Li DM, Zhong Y-F, Liu Y-K, Shao Y-N. Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics. Mathematics. 2024; 12(24):3881. https://doi.org/10.3390/math12243881
Chicago/Turabian StyleWang, Zhao-Wei, D. M. Li, Yi-Fan Zhong, Yi-Kung Liu, and Yu-Nong Shao. 2024. "Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics" Mathematics 12, no. 24: 3881. https://doi.org/10.3390/math12243881
APA StyleWang, Z.-W., Li, D. M., Zhong, Y.-F., Liu, Y.-K., & Shao, Y.-N. (2024). Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics. Mathematics, 12(24), 3881. https://doi.org/10.3390/math12243881