Analysis of a Weak Galerkin Mixed Formulation for Modified Maxwell’s Equations
Abstract
:1. Introduction
2. Weak Galerkin Formulation
3. Error Estimations
Error Equations
4. Numerical Tests
4.1. Example 1
4.2. Example 2
5. Conclusions and Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Wang, J.; Xia, Z.; Xu, L. Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM Math. Model. Numer. Anal. 2022, 56, 767–789. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Wise, S.M.; Xia, Z.; Xu, L. Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn–Hilliard-Magnetohydrodynamics system of equations. J. Comput. Appl. Math. 2024, 436, 115409. [Google Scholar] [CrossRef]
- Zaghdani, A. An Augmented Mixed DG Scheme for the Electric Field. Int. J. Anal. Appl. 2024, 22, 85. [Google Scholar] [CrossRef]
- Zaghdani, A.; Ezzat, M. A new mixed discontinuous Galerkin method for the electrostatic field. Adv. Differ. Equ. 2019, 487. [Google Scholar] [CrossRef]
- Zaghdani, A.; Hasnaoui, A.; Sayari, S. Analysis of a weak Galerkin mixed formulation for Maxwell’s equations. Kragujev. J. Math. 2026, 50, 387–401. [Google Scholar] [CrossRef]
- Mu, L.; Wang, J.; Ye, X.; Zhang, S. A Weak Galerkin Finite Element Method for the Maxwell Equations. J. Sci. Comput. 2015, 65, 363–386. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Chai, S.; Yue, H. Weak Galerkin method with (r, r − 1, r − 1)-order finite elements for second order parabolic equations. Appl. Math. Comput. 2016, 275, 24–40. [Google Scholar] [CrossRef]
- Li, Q.H.; Wang, J. Weak Galerkin finite element methods for parabolic equations. Numer. Methods Partial. Differ. Equ. 2013, 29, 2004–2024. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Xu, Y.; Zhai, Q.; Yue, H. Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal. Model. 2016, 13, 525–544. [Google Scholar]
- Wang, R.; Wang, X.; Zhai, Q.; Zhang, K. A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers. Numer. Methods Partial. Differ. Equ. 2018, 34, 1009–1032. [Google Scholar] [CrossRef]
- Mu, L.; Wang, J.; Wei, G.; Ye, X.; Zhao, S. Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 2013, 250, 106–125. [Google Scholar] [CrossRef]
- Mu, L.; Wang, J.; Ye, X.; Zhao, S. A new weak Galerkin finite element method for elliptic interface problems. J. Comput. Phys. 2016, 325, 157–173. [Google Scholar] [CrossRef]
- Wang, J.; Ye, X. A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp. 2014, 83, 2101–2126. [Google Scholar] [CrossRef]
- Sayari, S.; Zaghdani, A.; El Hajji, M. Analysis of HDG method for the reaction diffusion. Appl. Numer. Math. 2020, 156, 396–409. [Google Scholar] [CrossRef]
- Zaghdani, A.; Sayari, S.; El Hajji, M. A New Hybridized Mixed Weak Galerkin Method for Second-Order Elliptic Problems. J. Comput. Math. 2022, 40, 499–516. [Google Scholar] [CrossRef]
- Lia, J.; Ye, X.; Zhang, S. A weak Galerkin least-squares finite element method for div-curl systems. J. Comput. Phys. 2018, 363, 79–86. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Simplified weak Galerkin and new finite difference schemes for the Stokes equation. J. Comput. Appl. Math. 2019, 361, 176–206. [Google Scholar] [CrossRef]
- Babuška, I. The finite element method with Lagrangian multiplier. Numer. Math. 1973, 20, 179–192. [Google Scholar] [CrossRef]
- Brezzi, F. On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O. Anal. Numér. 1974, 8, 129–151. [Google Scholar] [CrossRef]
h | Rate | Rate | Rate | |||
---|---|---|---|---|---|---|
2.5000 × | 9.7222 × | - | 6.8626 × | - | 7.2247 × | - |
1.2500 × | 2.3299 × | 2.0610 × | 3.6323 × | 9.1786 × | 1.8181 × | 1.9905 × |
6.2500 × | 5.7839 × | 2.0101 × | 1.8435 × | 9.7843 × | 4.5607 × | 1.9951 × |
3.1250 × | 1.4436 × | 2.0024 × | 9.2524 × | 9.9456 × | 1.1413 × | 1.9986 × |
1.5625 × | 3.6074 × | 2.0006 × | 4.6306 × | 9.9864 × | 2.8539 × | 1.9996 × |
7.8125 × | 9.0176 × | 2.0002 × | 2.3158 × | 9.9966 × | 7.1351 × | 1.9999 × |
h | Rate | Rate | Rate | |||
---|---|---|---|---|---|---|
2.5000 × | 1.3732 × | - | 6.8509 × | - | 7.2632 × | - |
1.2500 × | 3.3933 × | 2.6515 × | 3.6282 × | 9.1702 × | 1.8266 × | 1.9915 × |
6.2500 × | 8.4512 × | 2.0054 × | 2.0168 × | 9.7833 × | 4.5814 × | 1.9953 × |
3.1250 × | 2.1105 × | 2.0016 × | 9.2428 × | 9.9454 × | 1.1464 × | 1.9987 × |
1.5625 × | 5.2746 × | 2.0004 × | 4.6258 × | 9.9863 × | 2.8667 × | 1.9997 × |
7.8125 × | 1.3185 × | 2.0001 × | 2.3134 × | 9.9966 × | 7.1671 × | 1.9999 × |
h | Rate | Rate | Rate | |||
---|---|---|---|---|---|---|
2.5000 × | 9.7235 × | - | 6.7923 × | - | 7.1752 × | - |
1.2500 × | 2.3313 × | 2.0603 × | 3.5962 × | 9.1742 × | 1.8055 × | 1.9906 × |
6.2500 × | 5.7882 × | 2.0100 × | 1.8254 × | 9.7829 × | 4.5293 × | 1.9951 × |
3.1250 × | 1.4447 × | 2.0023 × | 9.1616 × | 9.9452 × | 1.1334 × | 1.9986 × |
1.5625 × | 3.6103 × | 2.0006 × | 4.5852 × | 9.9863 × | 2.8342 × | 1.9996 × |
7.8125 × | 9.0249 × | 2.0001 × | 2.2931 × | 9.9966 × | 7.0860 × | 1.9999 × |
h | Rate | Rate | Rate | |||
---|---|---|---|---|---|---|
2.5000 × | 1.3723 × | - | 6.7808 × | - | 7.2139 × | - |
1.2500 × | 3.3929 × | 2.0160 × | 3.5922 × | 9.1659 × | 1.8141 × | 1.9915 × |
6.2500 × | 8.4513 × | 2.0053 × | 1.8235 × | 9.7819 × | 4.5500 × | 1.9953 × |
3.1250 × | 2.1106 × | 2.0015 × | 9.1521 × | 9.9450 × | 1.1386 × | 1.9987 × |
1.5625 × | 5.2749 × | 2.0004 × | 4.5804 × | 9.9862 × | 2.8471 × | 1.9997 × |
7.8125 × | 1.3186 × | 2.0001 × | 2.2908 × | 9.9966 × | 7.1181 × | 1.9999 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaghdani, A.; Hasnaoui, A. Analysis of a Weak Galerkin Mixed Formulation for Modified Maxwell’s Equations. Mathematics 2024, 12, 3901. https://doi.org/10.3390/math12243901
Zaghdani A, Hasnaoui A. Analysis of a Weak Galerkin Mixed Formulation for Modified Maxwell’s Equations. Mathematics. 2024; 12(24):3901. https://doi.org/10.3390/math12243901
Chicago/Turabian StyleZaghdani, Abdelhamid, and Abdelhalim Hasnaoui. 2024. "Analysis of a Weak Galerkin Mixed Formulation for Modified Maxwell’s Equations" Mathematics 12, no. 24: 3901. https://doi.org/10.3390/math12243901
APA StyleZaghdani, A., & Hasnaoui, A. (2024). Analysis of a Weak Galerkin Mixed Formulation for Modified Maxwell’s Equations. Mathematics, 12(24), 3901. https://doi.org/10.3390/math12243901