Detection of Current Transformer Saturation Based on Machine Learning
Abstract
:1. Introduction
- –
- Maloperation of the PS and EA algorithms;
- –
- Slowing down of protection algorithms;
- –
- Reduction in the sensitivity of the PS and EA algorithms;
- –
- False determination of the damage location.
2. Review of the CT Saturation Detection and Compensation Methods
3. Models Description and Selection
3.1. Description and Selection of the ANN Architecture
3.2. SVM Description with Selecting Its Kernel
3.3. Decision Trees
3.4. Model Evaluation and Selection
- –
- correct detection of CT normal operation—TP;
- –
- correct detection of CT saturation—TN;
- –
- false detection of CT normal operation—FP;
- –
- false detection of CT saturation—FN.
4. Description of Generating a DATASET and Data Process
4.1. Generating a DATASET
- –
- Normal operation
- –
- Fault
4.2. Scaling Methods Relatively to CT Saturation Task
5. Computational Experiment: Results and Analysis
5.1. Experiment 1. The Imbalance between Classes 0 and 1
5.2. Experiment 2. Balanced Classes
5.3. Comparison of the Results of Experiments 1 and 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hunt, R. Impact of CT Errors on Protective Relays-Case Studies and Analyses. IEEE Trans. Ind. Appl. 2012, 48, 52–61. [Google Scholar] [CrossRef]
- Guerra, F.D.C.F.; Mota, W.S. Current transformer model. IEEE Trans. Power Deliv. 2007, 22, 187–194. [Google Scholar] [CrossRef]
- Saleh, S.A.; Ozkop, E. Digital Differential Protection for $3\phi $ Solid-State Transformers. IEEE Trans. Ind. Appl. 2021, 57, 3474–3486. [Google Scholar] [CrossRef]
- Chuanjian, W.; Qun, Y. Analysis and Countermeasure of Delay of Line Differential Protection Caused by CT Transient Saturation in Faults in Wind Farms. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 3209–3212. [Google Scholar] [CrossRef]
- Jun, G.; Tao, Z.; Shaofeng, H. The influence and countermeasure to transformer differential protection of CT saturation caused by external fault removal. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 4497–4502. [Google Scholar]
- Khanna, A. Application of ATP-EMTP in determination of optimal settings for differential protection IEDs under CT saturation. In Proceedings of the 13th International Conference on Development in Power System Protection 2016 (DPSP), Edinburgh, UK, 7–10 March 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Pan, J.; Vu, K.; Hu, Y. An efficient compensation algorithm for current transformer saturation effects. IEEE Trans. Power Deliv. 2004, 19, 1623–1628. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, S.; Park, J.; Johns, A.; Aggarwal, R. Development and hardware implementation of a compensating algorithm for the secondary current of current transformers. IEE Proc. Electr. Power Appl. 1996, 143, 41–49. [Google Scholar] [CrossRef]
- Kang, Y.; Park, J.; Rang, S.; Johns, A.; Aggarwal, R. An algorithm for compensating secondary currents of current transformers. IEEE Trans. Power Deliv. 1997, 12, 116–124. [Google Scholar] [CrossRef]
- Kang, Y.; Lim, U.; Kang, S.; Crossley, P. Compensation of the distortion in the secondary current caused by saturation and remanence in a CT. IEEE Trans. Power Deliv. 2004, 19, 1642–1649. [Google Scholar] [CrossRef]
- Kang, Y.; Lim, U.; Kang, S. Compensating algorithm suitable for use with measurement-type current transformers for protection. IEE Proc. -Gener. Transm. Distrib. 2005, 152, 880–890. [Google Scholar] [CrossRef]
- Khorashadi-Zadeh, H.; Sanaye-Pasand, M. An ANN based algorithm for correction of saturated CT secondary current. In Proceedings of the 39th International Universities Power Engineering Conference, UPEC 2004–Conference Proceedings, Bristol, UK, 6–8 September 2004; Volume 1, pp. 468–472. [Google Scholar]
- Khorashadi-Zadeh, H.; Sanaye-Pasand, M. Correction of saturated current transformers secondary current using ANNs. IEEE Trans. Power Deliv. 2006, 21, 73–79. [Google Scholar] [CrossRef]
- Macieira, G.; Coelho, A. Evaluation of numerical time overcurrent relay performance for current transformer saturation compensation methods. Electr. Power Syst. Res. 2017, 149, 55–64. [Google Scholar] [CrossRef]
- Saha, M.; Izykowski, J.; Lukowicz, M.; Rosolowski, E. Application of ANN methods for instrument transformer correction in transmission line protection. In Proceedings of the 7th International Conference on Developments in Power System Protection, Amsterdam, The Netherlands, 9–12 April 2001; pp. 303–306. [Google Scholar]
- Shi, D.; Buse, J.; Wu, Q.; Jiang, L. Fast compensation of current transformer saturation. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe, Gothenburg, Sweden, 11–13 October 2010; pp. 1–7. [Google Scholar]
- Shi, D.; Buse, J.; Wu QGuo, C. Current transformer saturation compensation based on a partial nonlinear model. Electr. Power Syst. Res. 2013, 97, 34–40. [Google Scholar] [CrossRef]
- Wiszniewski, A.; Rebizant, W.; Schiel, L. Correction of current transformer transient performance. IEEE Trans. Power Deliv. 2008, 23, 624–632. [Google Scholar] [CrossRef]
- Yu, D.; Cummins, J.; Wang, Z.; Yoon, H.; Kojovic, L.; David, S. Neural network for current transformer saturation correction. In Proceedings of the 1999 IEEE Transmission and Distribution Conference, New Orleans, LA, USA, 11–16 April 1999; pp. 441–446. [Google Scholar]
- Yu, D.; Cummins, J.; Wang, Z.; Yoon, H.; Kojovic, L. Correction of current transformer distorted secondary currents due to saturation using artificial neural networks. IEEE Trans. Power Deliv. 2001, 16, 189–194. [Google Scholar] [CrossRef]
- Ge, B.; de Almeida, A.T.; Ferreira, F.J. Estimation of primary current in saturated current transform- er using flexible neural network. Trans. Inst. Meas. Control 2006, 28, 81–91. [Google Scholar] [CrossRef]
- Erenturk, K. ANFIS-based compensation algorithm for cur- rent-transformer saturation effects. IEEE Trans. Power Deliv. 2009, 24, 195–201. [Google Scholar] [CrossRef]
- Hajipour, E.; Vakilian, M.; Sanaye-Pasand, M. Current Transformer Saturation Compensation for Transformer Differential Relays. IEEE Trans. Power Deliv. 2015, 30, 2293–2302. [Google Scholar] [CrossRef]
- Dashti, H.; Sanaye-Pasand, M.; Davarpanah, M. Current transformer saturation detectors for busbar differential protection. In Proceedings of the 2007 42nd International Universities Power Engineering Conference, Brighton, UK, 4–6 September 2007; pp. 338–343. [Google Scholar] [CrossRef]
- Hossain, M.; Leevongwat, I.; Rastgoufard, P. A Current Transformer (CT) Saturation Detection Method for Bus Differential Protection. In Proceedings of the 2018 Clemson University Power Systems Conference (PSC), Charleston, SC, USA, 4–7 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Abd Allah, R.; Moussa, S.; Shehab-Eldin, E.; Hamed, M. Advanced detection and compensation scheme for current transformers saturation. In Proceedings of the 11th International Middle East Power Systems Conference, MEPCON’2006, El-Minia, Egypt, 19–21 December 2006; Volume 2, pp. 481–486. [Google Scholar]
- Biswal, S.; Biswal, M. Detection of current transformer saturation phenomenon for secured operation of smart power network. Electr. Power Syst. Res. 2019, 175, 105926. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Crossley, P.; Li, K. A current transformer saturation detection algorithm for use in current differential protection. Proc. Int. Conf. Electr. Control Eng. ICECE 2010, 3, 3142–3146. [Google Scholar] [CrossRef]
- Lin, G.; Song, Q.; Zhang, D.; Pan, F.; Wang, L. A hybrid method for current transformer saturation detection and compensation in smart grid. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI 2017), Hangzhou, China, 11–13 November 2017; pp. 369–374. [Google Scholar]
- Schettino, B.M.; Duque, C.A.; Silveira, P.M. Current-Transformer Saturation Detection Using Savitzky-Golay Filter. IEEE Trans. Power Deliv. 2016, 31, 1400–1401. [Google Scholar] [CrossRef]
- Herlender, J.; Iżykowski, J.; Solak, K. Compensation of the current transformer saturation effects for transmission line fault location with impedance-differential relay. Electr. Power Syst. Res. 2020, 182, 106223. [Google Scholar] [CrossRef]
- Kang, Y.; Kang, S.; Crossley, P. An algorithm for detecting CT saturation using the secondary current third-difference function. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003. [Google Scholar]
- Bahari, S.; Hasani, T.; Sevedi, H. A New Stabilizing Method of Differential Protection Against Current Transformer Saturation Using Current Derivatives. In Proceedings of the 2020 14th International Conference on Protection and Automation of Power Systems (IPAPS), Tehran, Iran, 31 December 2019–1 January 2020; pp. 33–38. [Google Scholar] [CrossRef]
- Behi, D.; Allahbakhshi, M.; Bagheri, A.; Tajdinian, M. A new statistical-based algorithm for CT saturation detection utilizing residual-based similarity index. In Proceedings of the 2017 25th Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1072–1077. [Google Scholar] [CrossRef]
- Etumi, A.A.A.; Anayi, F.J. The application of correlation technique in detecting internal and external faults in three-phase transformer and saturation of current transformer. IEEE Trans. Power Deliv. 2016, 31, 2131–2139. [Google Scholar] [CrossRef]
- Zheng, T.; Huang, T.; Ma, Y.; Zhang, Z.; Liu, L. Histogram-Based Method to Avoid Maloperation of Transformer Differential Protection Due to Current- Transformer Saturation under External Faults. IEEE Trans. Power Deliv. 2018, 33, 610–619. [Google Scholar] [CrossRef]
- Hong, C.; Haifeng, L.; Hui, J.; Jianchun, P.; Chun, H. A scheme for detection and assessment of current transformer saturation. In Proceedings of the 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 14–15 January 2017; pp. 90–93. [Google Scholar] [CrossRef]
- Odinaev, I.; Pazderin, A.V.; Murzin, P.V.; Tashchilin, V.A.; Samoylenko, V.O.; Ghociev, B. Detection of the initial region of the current transformer core saturation. Renew. Energy Power Qual. J. 2021, 19, 477–482. [Google Scholar] [CrossRef]
- Ali, M.; Son, D.-H.; Kang, S.-H.; Nam, S.-R. An accurate CT saturation classification using a deep learning approach based on unsupervised feature extraction and supervised fine-tuning strategy. Energies 2017, 10, 1830. [Google Scholar] [CrossRef]
- Key, S.; Ko, C.-S.; Song, K.-J.; Nam, S.-R. Fast Detection of Current Transformer Saturation Using Stacked Denoising Autoencoders. Energies 2023, 16, 1528. [Google Scholar] [CrossRef]
- Rumiantsev, Y.V. Current Transformer Saturation Detection Method Based on Artificial Neural Network. Energ. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 2023, 66, 233–245. [Google Scholar] [CrossRef]
- Odinaev, I.; Gulakhmadov, A.; Murzin, P.; Tavlintsev, A.; Semenenko, S.; Kokorin, E.; Safaraliev, M.; Chen, X. Comparison of Mathematical Methods for Compensating a Current Signal under Current Transformers Saturation Conditions. Sensors 2021, 21, 7273. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.W. What Is a Savitzky-Golay Filter? [Lecture Notes]. EEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Kamalov, F.; Leung, H.H. Deep learning regularization in imbalanced data. In Proceedings of the 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), Sharjah, United Arab Emirates, 3–5 November 2020; pp. 1–5. [Google Scholar]
- Elreedy, D.; Atiya, A.F.; Kamalov, F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach. Learn. 2023, 1–21. [Google Scholar] [CrossRef]
- Senyuk, M.; Safaraliev, M.; Kamalov, F.; Sulieman, H. Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology. Mathematics 2023, 11, 525. [Google Scholar] [CrossRef]
- Romanyuk, F.; Novash, I.; Rumiantsev, Y.; Węgierek, P. Wye-connected current transformers simplified model validation in MATLAB-Simulink. Przegląd Elektrotechniczny 2015, 91, 292–295. [Google Scholar] [CrossRef]
- Khalyasmaa, A.I.; Senyuk, M.D.; Eroshenko, S.A. Analysis of the State of High-Voltage Current Transformers Based on Gradient Boosting on Decision Trees. IEEE Trans. Power Deliv. 2021, 36, 2154–2163. [Google Scholar] [CrossRef]
- Senyuk, M.; Beryozkina, S.; Gubin, P.; Dmitrieva, A.; Kamalov, F.; Safaraliev, M.; Zicmane, I. Fast Algorithms for Estimating the Disturbance Inception Time in Power Systems Based on Time Series of Instantaneous Values of Current and Voltage with a High Sampling Rate. Mathematics 2022, 10, 3949. [Google Scholar] [CrossRef]
Sources | Approach | Advantages/Disadvantages |
---|---|---|
[24,25,26,27,28,29,30,31,32] | mathematical analysis | (+) low computational costs, time efficiency (−) sensitivity to noise and harmonics, disable to detect light CT saturation |
[33,34,35,36,37,38] | statistical signal processing | (+) robustness to noise and harmonic components (−) delay in processing the measurement signal |
[39,40,41] | machine learning | (+) high flexibility and range of coverage of complex current shapes under fault conditions (−) severe delay due to scaling methods, computational effort |
Name of the Parameter | ANN | SVM | DT |
---|---|---|---|
Architecture | Feedforward | - | - |
Number of input and output nodes | 32 and 1 | 32 and 1 | - |
Number of (hidden) layers/depth | 2 | - | 5 |
Number of neurons in hidden layers | 200 | - | - |
Activation functions of layers/levels | sigmoid | - | entropy |
Distribution of initial weights | normal | - | - |
Regularization parameter C | - | 1 | - |
Kernel | - | 3-order polynomial | - |
Kernel coefficient for poly, gamma | 0.5 | - | |
DATASET size | 220,000 | ||
Training set | 80% | 90% | 90% |
Validation set | 10% | - | - |
Test set | 10% | 10% | 10% |
Learning rate | 0.07 | - | - |
Number of iterations | 200 | 10,000 | - |
Size of SGD minibatches | 128 | - | - |
Decay rate β of Momentum | 0.7 | - | - |
Sampling rate of the signal | 32 samples/cyc. | 32 samples/cyc. | 32 samples/cyc. |
Class labels |
Model | Time | Metric | Experiment 1 | Experiment 2 | Difference |
---|---|---|---|---|---|
ANN | 14.43 ms | F-score | 99.7% | 99% | −0.7% |
SVM | 0.035 ms | F-score | 91.96% | 63.66% | −28.3% |
DT | 0.017 ms | F-score | 97.32% | 68.41% | −28.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odinaev, I.; Pazderin, A.; Safaraliev, M.; Kamalov, F.; Senyuk, M.; Gubin, P.Y. Detection of Current Transformer Saturation Based on Machine Learning. Mathematics 2024, 12, 389. https://doi.org/10.3390/math12030389
Odinaev I, Pazderin A, Safaraliev M, Kamalov F, Senyuk M, Gubin PY. Detection of Current Transformer Saturation Based on Machine Learning. Mathematics. 2024; 12(3):389. https://doi.org/10.3390/math12030389
Chicago/Turabian StyleOdinaev, Ismoil, Andrey Pazderin, Murodbek Safaraliev, Firuz Kamalov, Mihail Senyuk, and Pavel Y. Gubin. 2024. "Detection of Current Transformer Saturation Based on Machine Learning" Mathematics 12, no. 3: 389. https://doi.org/10.3390/math12030389
APA StyleOdinaev, I., Pazderin, A., Safaraliev, M., Kamalov, F., Senyuk, M., & Gubin, P. Y. (2024). Detection of Current Transformer Saturation Based on Machine Learning. Mathematics, 12(3), 389. https://doi.org/10.3390/math12030389