Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory
Abstract
:1. Introduction and Main Statements
1.1. Introduction
1.2. Left-Alia Algebras Associated with Invariant Theory
- (a)
- For each twisted derivation D on A, is a left-Alia algebra.
- (b)
- Each pseudo-reflection R on V induces a left-Alia algebra .
1.3. Manin Triples and Bialgebras of Left-Alia Algebras
- (a)
- There is a Manin triple of left-Alia algebras , where
- (b)
- is a left-Alia bialgebra.
2. Pseudo-Reflections and Twisted Deviations in Invariant Theory
2.1. Preliminary on Invariant Theory
2.2. Pseudo-Reflections Induced by Twisted Deviations
3. Left-Alia Algebras and Their Representations
3.1. Left-Alia Algebras and Twisted Derivations
3.2. Examples of Left-Alia Algebras
3.3. From Left-Alia Algebras to Anti-Pre-Lie Algebras
3.4. From Left-Alia Algebras to Lie Triple Systems
3.5. Representations and Matched Pairs of Left-Alia Algebras
3.6. Quadratic Left-Alia Algebras
4. Manin Triples of Left-Alia Algebras and Left-Alia Bialgebras
4.1. Manin Triples of Left-Alia Algebras
4.2. Left-Alia Bialgebras
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilbert, D. Ueber die Theorie der algebraischen Formen. Math. Ann. 1890, 36, 473–534. [Google Scholar] [CrossRef]
- Chevalley, C. Invariants of finite groups generated by reflections. Am. J. Math. 1955, 77, 778–782. [Google Scholar] [CrossRef]
- Shephard, G.; Todd, J. Finite unitary reflection groups. Can. J. Math. 1954, 6, 274–304. [Google Scholar] [CrossRef]
- Hartwig, J.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2016, 292, 314–361. [Google Scholar] [CrossRef]
- Dzhumadil’daev, A. Algebras with skew-symmetric identity of degree 3. J. Math. Sci. 2009, 161, 11–30. [Google Scholar] [CrossRef]
- Zusmanovich, P. Special and exceptional mock-Lie algebras. Linear Algebra Appl. 2017, 518, 79–96. [Google Scholar] [CrossRef]
- Burde, D.; Fialowski, A. Jacobi-Jordan algebras. Linear Algebra Appl. 2014, 459, 586–594. [Google Scholar] [CrossRef]
- Liu, G.; Bai, C. Anti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebras. J. Algebra 2022, 609, 337–379. [Google Scholar] [CrossRef]
- Dzhumadil’daev, A.; Zusmanovich, P. Commutative 2-cocycles on Lie algebras. J. Algebra 2010, 324, 732–748. [Google Scholar] [CrossRef]
- Loday, J.-L.; Pirashvili, T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 1993, 296, 139–158. [Google Scholar] [CrossRef]
- Helgason, S. Differential geometry, Lie groups, and symmetric spaces. In Pure and Applied Mathematics, 80; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Su, Y.; Xu, W.; Zhang, H. Derivation-simple algebras and the structures of Lie algebras of Witt type. J. Algebra 2000, 233, 642–662. [Google Scholar] [CrossRef]
- Kang, C.; Yu, S.; Zhang, H. Twisted relative Poisson structures on graded algebras assocaited to invariant theory. in preparation.
- Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Drinfeld, V. Halmiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations. Sov. Math. Dokl. 1983, 27, 68–71. [Google Scholar]
- Aguiar, M. Infinitesimal Hopf algebras. In New Trends in Hopf Algebra Theory, La Falda, 1999; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2000; Volume 267, pp. 1–29. [Google Scholar]
- Aguiar, M. On the associative analog of Lie bialgebras. J. Algebra 2001, 244, 492–532. [Google Scholar] [CrossRef]
- Aguiar, M. Infinitesimal bialgebras, pre-Lie and dendriform algebras. In Hopf Algebras; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 2004; Volume 237, pp. 1–33. [Google Scholar]
- Bai, C. Double constructions of Frobenius algebras, Connes cocycles and their duality. J. Noncommut. Geom. 2010, 4, 475–530. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, Y. Quasi-triangular and factorizable antisymmetric infinitesimal bialgebras. J. Algebra 2023, 628, 415–433. [Google Scholar] [CrossRef]
- Kock, J. Frobenius Algebras and 2d Topological Quantum Field Theories; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lauda, A.; Pfeiffer, H. Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 2005, 155, 623–666. [Google Scholar] [CrossRef]
- Liu, G.; Bai, C. A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie Poisson bialgebras. Commun. Contemp. Math. 2023. [Google Scholar] [CrossRef]
- Bai, C.; Bai, R.; Guo, L.; Wu, Y. Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras. J. Algebra 2023, 632, 535–566. [Google Scholar] [CrossRef]
- Benali, K.; Chtioui, T.; Hajjaji, A.; Mabrouk, S. Bialgebras, the Yang-Baxter equation and Manin triples for mock-Lie algebras. Acta Comment. Univ. Tartu. Math. 2023, 27, 211–233. [Google Scholar]
- Rezaei-Aghdam, A.; Sedghi-Ghadim, L.; Haghighatdoost, G. Leibniz bialgebras, classical Yang-Baxter equations and dynamical systems. Adv. Appl. Clifford Algebr. 2021, 31, 77. [Google Scholar] [CrossRef]
- Tang, R.; Sheng, Y. Leibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation. J. Noncommut. Geom. 2022, 16, 1179–1211. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Liu, G. Yang-Baxter equations and relative Rota-Baxter operators for left-Alia algebras. in prepration.
- Beson, D. Polynomial Invariants of Finite Groups; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Hodge, T.L. Lie Triple Systems, Restricted Lie Triple Systems, and Algebraic Groups. J. Algebra 2001, 244, 533–580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.; Liu, G.; Wang, Z.; Yu, S. Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory. Mathematics 2024, 12, 408. https://doi.org/10.3390/math12030408
Kang C, Liu G, Wang Z, Yu S. Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory. Mathematics. 2024; 12(3):408. https://doi.org/10.3390/math12030408
Chicago/Turabian StyleKang, Chuangchuang, Guilai Liu, Zhuo Wang, and Shizhuo Yu. 2024. "Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory" Mathematics 12, no. 3: 408. https://doi.org/10.3390/math12030408
APA StyleKang, C., Liu, G., Wang, Z., & Yu, S. (2024). Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory. Mathematics, 12(3), 408. https://doi.org/10.3390/math12030408