Next Article in Journal
On a Class of Nonlinear Elliptic Equations with General Growth in the Gradient
Previous Article in Journal
A Steady-State-Preserving Numerical Scheme for One-Dimensional Blood Flow Model
Previous Article in Special Issue
Cohomology and Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory

1
School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
2
Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
3
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300317, China
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(3), 408; https://doi.org/10.3390/math12030408
Submission received: 22 December 2023 / Revised: 22 January 2024 / Accepted: 22 January 2024 / Published: 26 January 2024

Abstract

:
A left-Alia algebra is a vector space together with a bilinear map satisfying the symmetric Jacobi identity. Motivated by invariant theory, we first construct a class of left-Alia algebras induced by twisted derivations. Then, we introduce the notions of Manin triples and bialgebras of left-Alia algebras. Via specific matched pairs of left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras of left-Alia algebras.
MSC:
17A36; 17A40; 17B10; 17B40; 17B60; 17B63; 17D25

1. Introduction and Main Statements

1.1. Introduction

Let G be a finite group and K an algebraic closed field of characteristic zero. Suppose that V is an n-dimensional faithful representation of G and S = K [ V ] = K [ x 1 , , x n ] is the coordinate ring of V.
The goal of invariant theory is to study the structures of the ring of invariants
S G = { f S : a · f = f , a G } ,
in which the group action is extended from the representation of G (see Section 2.1 for more details). In particular, Hilbert proved that S G is always a finite generated K -algebra [1] and Chevalley [2], Shephard and Todd [3] proved that S G is a polynomial algebra if and only if G is generated by pseudo-reflections (see Section 2.2 for precise definition).
Twisted derivations [4] (also named σ -derivations) play an important role in the study of deformations of Lie algebras. Motivated by the above Chevalley’s Theorem, we apply pseudo-reflections to induce a class of twisted derivations on S (see Theorem 3 for more details). Based on twisted derivations on commutative associative algebras, we obtain a class of left-Alia (left anti-Lie-admissible) algebras [5], which appears in the study of a special class of algebras with a skew-symmetric identity of degree three. Furthermore, we construct Manin triples and bialgebras of left-Alia algebras. Via specific matched pairs of left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras.
Throughout this paper, unless otherwise specified, all vector spaces are finite-dimensional over an algebraically closed field K of characteristic zero and all K-algebras are commutative and associative with the finite Krull dimension, although many results and notions remain valid in the infinite-dimensional case.

1.2. Left-Alia Algebras Associated with Invariant Theory

The notion of a left-Alia algebra was defined for the first time in the table in the Introduction of [5].
Definition 1
([5]). A left-Alia algebra (also named a 0-Alia algebra) is a vector space A together with a bilinear map [ · , · ] : A A A satisfying the symmetric Jacobi identity:
[ [ x , y ] , z ] + [ [ y , z ] , x ] + [ [ z , x ] , y ] = [ [ y , x ] , z ] + [ [ z , y ] , x ] + [ [ x , z ] , y ] , x , y , z A .
There are some typical examples of left-Alia algebras. Firstly, when the bilinear map [ · , · ] is skew-symmetric, ( A , [ · , · ] ) is a Lie algebra. By contrast, any commutative algebra is a left-Alia algebra and, in particular, a mock-Lie algebra [6] (also known as a Jacobi–Jordan algebra in [7]) with a symmetric bilinear map that satisfies the Jacobi identity is a left-Alia algebra. Secondly, the notion of an anti-pre-Lie algebra [8] was recently studied as a left-Alia algebra with an additional condition. Anti-pre-Lie algebras are the underlying algebra structures of nondegenerate commutative 2-cocycles [9] on Lie algebras and are characterized as Lie-admissible algebras whose negative multiplication operators compose representations of commutator Lie algebras. Condition (1) of the identities of an anti-pre-Lie algebra is just to guarantee ( A , [ · , · ] ) is a Lie-admissible algebra. Additionally, we also studied left-Alia algebras in terms of their relationships with Leibniz algebras [10] and Lie triple systems [11].
Let ( A , · ) be a commutative associative algebra and R : A A a linear map on A. For brevity, the operation · will be omitted. A linear map D : A A is called a twisted derivation with respect to an R (also named a σ -derivation in [4]) if D satisfies the twisted Leibniz rule:
D ( f g ) = D ( f ) g + R ( f ) D ( g ) , f , g A .
Non-trivial examples of twisted derivations can be constructed in invariant theory. In particular, each pseudo-reflection R on a vector space V induces a twisted derivation D R on the polynomial ring K [ V ] (see Section 2.2 for details).
Define
[ f , g ] R = D ( f ) g R ( f ) D ( g ) .
We then obtain a class of left-Alia algebras in Theorem A.
Theorem A (Theorems 3 and 4)
(a)
For each twisted derivation D on A, ( A , [ · , · ] R ) is a left-Alia algebra.
(b)
Each pseudo-reflection R on V induces a left-Alia algebra ( K [ V ] , [ · , · ] R ) .
This applies when R = I , [ f , g ] R is skew-symmetric and ( A , [ · , · ] R ) is a Lie algebra of the Witt type [12]. Moreover, Theorem A also provides a class of left-Alia algebras on polynomial rings from invariant theory. As a corollary of Theorem A, we see that when S G is a polynomial algebra, each generator g G corresponds to a left-Alia algebra ( S , [ · , · ] R g ) . The collection of left-Alia algebras is also an interesting research object for further study.
In addition, if we define that [ f , h ] = D R ( f ) h f D R ( h ) on S, ( S , [ · , · ] ) , then it is not a left-Alia algebra in general. However, when [ · , · ] is restricted to V , we obtain a finite-dimensional Lie algebra, which induces a linear Poisson structure on V, and figure out the entrance to the study of twisted relative Poisson structures on graded algebras. See [13] for reference.

1.3. Manin Triples and Bialgebras of Left-Alia Algebras

A bialgebra structure is a vector space equipped with both an algebra structure and a coalgebra structure satisfying certain compatible conditions. Some well-known examples of such structures include Lie bialgebras [14,15], which are closely related to Poisson–Lie groups and play an important role in the infinitesimalization of quantum groups, and antisymmetric infinitesimal bialgebras [16,17,18,19,20] as equivalent structures of double constructions of Frobenius algebras which are widely applied in the 2d topological field and string theory [21,22]. Recently, the notion of anti-pre-Lie bialgebras was studied in [23], which serves as a preliminary to supply a reasonable bialgebra theory for transposed Poisson algebras [24]. The notions of mock-Lie bialgebras [25] and Leibniz bialgebras [26,27] were also introduced with different motivations. These bialgebras have a common property in that they can be equivalently characterized by Manin triples which correspond to nondegenerate invariant bilinear forms on the algebra structures. In this paper, we follow such a procedure to study left-Alia bialgebras.
To develop the bialgebra theory of left-Alia algebras, we first define a representation of a left-Alia algebra to be a triple ( l , r , V ) , where V is a vector space and l , r : A End ( V ) are linear maps such that the following equation holds:
l ( [ x , y ] ) v l ( [ y , x ] ) v = r ( x ) r ( y ) v r ( y ) r ( x ) v + r ( y ) l ( x ) v r ( x ) l ( y ) v , x , y A , v V .
A representation ( ρ , V ) of a Lie algebra ( A , [ · , · ] ) renders representations ( ρ , ρ , V ) and ( ρ , 2 ρ , V ) of ( A , [ · , · ] ) as left-Alia algebras.
Furthermore, we introduce the notion of a quadratic left-Alia algebra, defined as a left-Alia algebra ( A , [ · , · ] ) equipped with a nondegenerate symmetric bilinear form B which is invariant in the sense that
B ( [ x , y ] , z ) = B ( x , [ z , y ] [ y , z ] ) , x , y , z A .
A quadratic left-Alia algebra gives rise to the equivalence between the adjoint representation and the coadjoint representation.
Last, we introduce the notions of a matched pair (Definition 8) of left-Alia algebras, a Manin triple of left-Alia algebras (Definition 11) and a left-Alia bialgebra (Definition 13). Via specific matched pairs of left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras in Theorem B.
Theorem B (Theorems 5 and 6)
Let ( A , [ · , · ] A ) be a left-Alia algebra. Suppose that there is a left-Alia algebra structure ( A , [ · , · ] A ) on the dual space A , and δ : A A A is the linear dual of [ · , · ] A . Then, the following conditions are equivalent:
(a)
There is a Manin triple of left-Alia algebras ( A A , [ · , · ] d , B d ) , A , A , where
B d ( x + a , y + b ) = x , b + a , y , x , y A , a , b A .
(b)
( A , [ · , · ] A , δ ) is a left-Alia bialgebra.
Theorem B naturally leads to the study of Yang–Baxter equations and relative Rota–Baxter operators for left-Alia algebras [28].

2. Pseudo-Reflections and Twisted Deviations in Invariant Theory

2.1. Preliminary on Invariant Theory

Let G be a finite group and K an algebraic closed field of characteristic zero. Suppose that ( ρ , V ) is an n-dimensional faithful representation of G and its dual representation is denoted by ( ρ , V ) . Let S = K [ V ] = K [ x 1 , , x n ] be the coordinate ring of V. Define a G-action on S as
g · i 1 , , i n k i 1 , , i n x 1 i 1 x n i n : = i 1 , , i n k i 1 , , i n ( ρ ( g ) x 1 ) i 1 ( ρ ( g ) x n ) i n , g G .
Define the ring of invariants as
S G = { f S : a · f = f , a G } .
Theorem 1
([1,29]). (a) S G is a finitely generated K -algebra.
(b) S is a finitely generated S G -module.
Definition 2
([29]). A linear automorphism R A u t ( V ) is called a pseudo-reflection if R m = I for some m N and I m ( I R ) is one-dimensional.
In invariant theory, the following theorem gives the equivalent condition that S G is a polynomial algebra:
Theorem 2
([2,3]).  S G is a polynomial algebra if and only if G ρ ( G ) is generated by pseudo-reflections.
Then, we figure out the relation between a pseudo-reflection on V and a twisted deviation on S = K [ V ] .
Lemma 1.
Let R be a pseudo-reflection on V. Then, R induces a pseudo-reflection on V (also denoted by R).
Proof. 
Let { e 1 , , e n } be a basis of V such that W = Span { e 1 , , e n 1 } is fixed by R. By R m = 1 a 1 1 a 2 1 a n 1 a n m = I , we see that R is given by the diagonal matrix d i a g ( 1 , , 1 , ω ) , where ω 1 is an m-th primitive root over K . Denote { x 1 , , x n } , the dual basis of V , such that x i ( e j ) = δ i j . Thus, the induced automorphism on V , defined by R ( x i ) ( e j ) : = x i ( R 1 ( e j ) ) , satisfies that R ( x i ) = x i , 1 i n 1 and R ( x n ) = ( 1 / ω ) x n . Therefore, R is a pseudo-reflection on V . □

2.2. Pseudo-Reflections Induced by Twisted Deviations

Let ( A , · ) be a commutative associative algebra and R : A A a linear map on A. Recall from [4] the definition of a twisted derivation (also named a σ -derivation).
Definition 3.
A linear map D : A A is called a twisted derivation with respect to R if D satisfies the twisted Leibniz rule:
D ( f g ) = D ( f ) g + R ( f ) D ( g ) , f , g A .
Remark 1.
When R = I , D is a derivation on A.
Recall from Section 2.1 that for a fixed non-zero v R I m ( I R ) V , there exists a Δ R V such that
( I R ) v = Δ R ( v ) v R , v V .
By Lemma 1, for a fixed non-zero l R I m ( I R ) V , there also exists a Δ R V such that
( I R ) x = Δ R ( x ) l R , x V .
Also, denote R : S S as an extension of R Aut ( V ) satisfying
R ( k 1 f + k 2 h ) = k 1 R ( f ) + k 2 R ( h ) and R ( f h ) = R ( f ) R ( h ) .
Theorem 3.
For each f S , there exists a twisted derivation D R : S S with respect to R such that
R ( f ) = f D R ( f ) l R .
Proof. 
First, we prove that R ( f ) can be uniquely written as R ( f ) = f D R ( f ) l R for some D R : S S . It follows from (6) that, for 1 a i n ,
R ( x a 1 x a k ) = ( R x a 1 ) ( R x a k ) = ( x a 1 Δ R ( x a 1 ) l R ) ( x a k Δ R ( x a k ) l R )
which can be expressed as
x a 1 x a k D R ( x a 1 x a k ) l R ,
where D R maps the monomial to a polynomial in S. As a consequence, R ( f ) can be written as
R ( f ) = f D R ( f ) l R ,
where D R : S S is a linear map. Then, we prove that D R is a twisted derivation on S with respect to R. On the one hand,
R ( f h ) = f h D R ( f h ) l R .
On the other hand,
R ( f ) R ( h ) = R ( f ) ( h D R ( h ) l R ) = ( f D R ( f ) l R ) h R ( f ) D R ( h ) l R = f h ( D R ( f ) h + R ( f ) D R ( h ) ) l R .
Therefore, R ( f h ) = D R ( f ) h + R ( f ) D R ( h ) . □
Remark 2.
When restricting D R to V , D R = Δ R on V . When restricting ( I D R ) to V , ( I D R ) is a pseudo-reflection on V .

3. Left-Alia Algebras and Their Representations

3.1. Left-Alia Algebras and Twisted Derivations

Definition 4
([5]). A left-Alia algebra is a vector space A together with a bilinear map [ · , · ] : A × A A satisfying the symmetric Jacobi property:
[ [ x , y ] , z ] + [ [ y , z ] , x ] + [ [ z , x ] , y ] = [ [ y , x ] , z ] + [ [ z , y ] , x ] + [ [ x , z ] , y ] , x , y , z A .
Remark 3.
A left-Alia algebra ( A , [ · , · ] ) is a Lie algebra if and only if the bilinear map [ · , · ] is skew-symmetric. On the other hand, any commutative algebra ( A , [ · , · ] ) in the sense that [ · , · ] is symmetric is a left-Alia algebra.
We can obtain a class of left-Alia algebras from twisted derivations.
Lemma 2.
Let D : A A be a twisted derivation of the commutative associative algebra ( A , · ) . Then, D satisfies
x D ( y ) D ( x ) y = R ( x ) D ( y ) D ( x ) R ( y ) , x , y A .
Proof. 
By the commutative property of ( A , · ) and (4), we have
D ( x y ) D ( y x ) = D ( x ) y + R ( x ) D ( y ) D ( y ) x R ( y ) D ( x ) = 0 .
Therefore, (9) holds. □
Theorem 4.
Let ( A , · ) be a commutative associative algebra and D be a twisted derivation. For all x , y A , define the bilinear map [ · , · ] R : A × A A by
[ x , y ] R : = [ x , y ] D = x D ( y ) R ( y ) D ( x ) .
Then, ( A , [ · , · ] R ) is a left-Alia algebra.
Proof. 
Let x , y , z A . By (10), we have
[ x , y ] R [ y , x ] R = x D ( y ) R ( y ) D ( x ) y D ( x ) + R ( x ) D ( y ) = ( 9 ) 2 ( x D ( y ) y D ( x ) ) ,
and
D ( x D ( y ) y D ( x ) ) = ( 4 ) D ( x ) D ( y ) R ( y ) D 2 ( x ) D ( y ) D ( x ) + R ( x ) D 2 ( y ) = R ( x ) D 2 ( y ) R ( y ) D 2 ( x ) .
Furthermore,
x , y , z [ [ x , y ] R [ y , x ] R , z ] R = x , y , z 2 [ x D ( y ) y D ( x ) , z ] R = ( 10 ) x , y , z 2 x D ( y ) D ( z ) y D ( x ) D ( z ) R ( x ) D 2 ( y ) R ( z ) + R ( y ) D 2 ( x ) R ( z ) = 0 .
Therefore, the conclusion holds. □
Remark 4.
Theorem 4 can also be verified in the following way. Let ( A , · ) be a commutative associative algebra with linear maps f , g : A A . By [5], there is a left-Alia algebra ( A , [ · , · ] ) given by
[ x , y ] = x · f ( y ) + g ( x · y ) , x , y A ,
which is called a special left-Alia algebra with respect to ( A , · , f , g ) . If D is a twisted derivation of ( A , · ) with respect to R, then we see that ( A , [ · , · ] R ) satisfies (11) for
f = 2 D , g = D .
Hence, ( A , [ · , · ] R ) is left-Alia.

3.2. Examples of Left-Alia Algebras

Example 1.
Let R be a reflection defined by R ( x 1 ) = x 2 , R ( x 2 ) = x 1 , R ( x 3 ) = x 3 on three-dimensional vector space V with a basis { x 1 , x 2 , x 3 } . On the coordinate ring S = K [ x 1 , x 2 , x 3 ] of V, R can be also denoted an extension of R satisfying R ( f g ) = R ( f ) R ( g ) and R ( k 1 f + k 2 h ) = k 1 R ( f ) + k 2 R ( h ) . Let D be the twisted derivation on S induced by the reflection R. It follows from Theorem 3 that R ( f ) = f D ( f ) ( x 1 x 2 ) . Take two polynomials, f = i k i f i , g = j h j g j , k i , h j K , in S, where f i , g j are monomials, f i = x 1 n i , 1 x 2 n i , 2 x 3 n i , 3 , g j = x 1 m j , 1 x 2 m j , 2 x 3 m j , 3 . We have
D ( x 1 ) = 1 , D ( x 2 ) = 1 , D ( x 3 ) = 0 . D ( x 1 n 1 ) = x 1 n 1 1 + x 1 n 1 2 x 2 + + x 2 n 1 1 . D ( x 2 n 2 ) = x 1 n 2 1 x 1 n 2 1 x 2 x 2 n 2 1 . D ( x 3 n 3 ) = 0 . D ( i k i x 1 n i , 1 x 2 n i , 2 x 3 n i , 3 ) = i k i ( D ( x 1 n i , 1 x 2 n i , 2 ) x 3 n i , 3 + R ( x 1 n i , 1 x 2 n i , 2 ) D ( x 3 n i , 3 ) ) = i k i ( x 1 n i , 1 D ( x 2 n i , 2 ) + R ( x 2 n i , 2 ) D ( x 1 n i , 1 ) ) x 3 n i , 3 = i k i ( x 1 n i , 1 + n i , 2 1 + x 1 n i , 1 + n i , 2 2 x 2 + + x 1 n i , 2 x 2 n i , 1 1 x 1 n i , 1 + n i , 2 1 x 1 n 1 x 2 n 2 1 ) x 3 n i , 3 .
Let [ · , · ] R : S × S S be the bilinear map defined in Theorem 4. Then,
[ f , g ] R = i , j k i h j [ f i , g j ] R = i , j k i h j ( f i D ( g j ) R ( g j ) D ( f i ) ) = i , j k i h j ( x 1 n i , 1 + m j , 1 + m j , 2 1 x 2 n i , 2 + + x 1 n i , 1 + m j , 2 x 2 n i , 2 + m j , 1 1 x 1 n i , 1 + m j , 1 + m j , 2 1 x 2 n i , 2 x 1 m j , 1 + n i , 1 x 2 n i , 2 + m j , 2 1 x 1 m j , 2 + n i , 1 + n i , 2 1 x 2 m j , 1 x 1 n i , 2 + m j , 2 x 2 n i , 1 + m j , 1 1 + x 1 m j , 2 + n i , 1 + n i , 2 1 x 2 m j , 1 + + x 1 n i , 1 + m j , 2 x 2 n i , 2 + m j , 1 1 ) x 3 m j , 3 + n i , 3 .
Since ( S , · ) is a commutative associative algebra, by Theorem 4 ( S , [ · , · ] R ) is a left-Alia algebra.
Proposition 1.
Let ( A , [ · , · ] ) be an n-dimensional ( n 2 ) left-Alia algebra and e 1 , , e n be a basis of A. For all positive integers 1 i , j , t n and structural constants C i j t C , set
[ e i , e j ] = t = 1 n C i j t e t .
Then, ( A , [ · , · ] ) is a left-Alia algebra if and only if the structural constants C i j t satisfy the following equation:
k , m = 1 n ( C i j k C j i k ) C k l m + ( C j l k C l j k ) C k i m + ( C l i k C i l k ) C k j m = 0 , 1 i , j , l n .
Proof. 
By (1), for all e i , e j , e l e 1 , , e n ,
[ [ e i , e j ] [ e j , e i ] , e l ] + [ [ e j , e l ] [ e l , e j ] , e i ] + [ [ e l , e i ] [ e i , e l ] , e j ] = 0 .
Set
[ e i , e j ] = k = 1 n C i j k e k , [ e j , e l ] = k = 1 n C j l k e l , [ e l · e i ] = k = 1 n C l i k e k , C i j k , C j l k , C l i k C .
Therefore, Equation (13) holds. □
As a direct consequence, we obtain the following:
Proposition 2.
Let A be a two-dimensional vector space over the complex field C with a basis { e 1 , e 2 } . Then, for any bilinear map [ · , · ] on A, ( A , [ · , · ] ) is a left-Alia algebra.
Next, we give some example of three-dimensional left-Alia algebras.
Example 2.
Let A be a three-dimensional vector space over the complex field C with a basis { e 1 , e 2 , e 3 } . Define a bilinear map [ · , · ] : A × A A by
[ e 1 , e 2 ] = e 1 , [ e 1 , e 3 ] = e 1 , [ e 2 , e 1 ] = e 2 , [ e 3 , e 1 ] = e 3 , [ e 1 , e 1 ] = [ e 2 , e 2 ] = [ e 3 , e 3 ] = [ e 2 , e 3 ] = [ e 3 , e 2 ] = e 1 + e 2 + e 3 .
Then, ( A , [ · , · ] ) is a three-dimensional left-Alia algebra.
Remark 5.
A right-Leibniz algebra [10] is a vector space A together with a bilinear operation [ · , · ] : A A A satisfying
[ [ x , y ] , z ] = [ [ x , z ] , y ] + [ x , [ y , z ] ] , x , y , z A .
Then, we have
[ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = [ [ x , y ] [ y , x ] , z ] + [ [ y , z ] [ z , y ] , x ] + [ [ z , x ] [ x , z ] , y ] .
Therefore, if a right-Leibniz algebra satisfies
[ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0 ,
then ( A , [ · , · ] ) is a left-Alia algebra.

3.3. From Left-Alia Algebras to Anti-Pre-Lie Algebras

Definition 5
([8]). Let A be a vector space with a bilinear map · : A × A A . ( A , · ) is called an anti-pre-Lie algebra if the following equations are satisfied:
x · ( y · z ) y · ( x · z ) = [ y , x ] · z ,
[ x , y ] · z + [ y , z ] · x + [ z , x ] · y = 0 ,
where
[ x , y ] = x · y y · x ,
for all x , y , z A .
Remark 6.
Let ( A , [ · , · ] ) be a left-Alia algebra. If [ · , · ] : A × A A satisfies
[ x , [ y , z ] ] [ y , [ x , z ] ] = [ [ y , x ] , z ] [ [ x , y ] , z ] , x , y , z A ,
then ( A , [ · , · ] ) is an anti-pre-Lie algebra.

3.4. From Left-Alia Algebras to Lie Triple Systems

Lie triple systems originated from Cartan’s studies on the Riemannian geometry of totally geodesic submanifolds [11], which can be constructed using twisted derivations and left-Alia algebras.
Definition 6
([30]). A Lie triple system is a vector space A together with a trilinear operation [ · , · , · ] : A × A × A A such that the following three equations are satisfied, for all x , y , z , a , b in A:
         [ x , x , y ] = 0 ,
[ x , y , z ] + [ y , z , x ] + [ z , x , y ] = 0
and
[ a , b , [ x , y , z ] ] = [ [ a , b , x ] , y , z ] + [ x , [ a , b , y ] , z ] + [ x , y , [ a , b , z ] ] .
Proposition 3.
Let ( A , · ) be a commutative associative algebra and D be a twisted derivation. Define the bilinear map [ · , · ] R : A × A A by (10). And define the trilinear map [ · , · , · ] R : A × A × A A by
[ x , y , z ] R : = 1 2 [ [ x , y ] R [ y , x ] R , z ] R , x , y , z A .
If [ · , · , · ] R satisfies (21), then ( A , [ · , · , · ] R ) is a Lie triple system.
Proof. 
For all x , y A , it is obvious that [ x , x , y ] R = 0 . By the proof of Theorem 4, Equation (20) holds. If, in addition, [ · , · , · ] R satisfies (21), then ( A , [ · , · , · ] R ) is a Lie triple system. □
Remark 7.
Let ( A , [ · , · ] ) be a left-Alia algebra. For all x , y , z A , set a trilinear map [ · , · , · ] : A × A × A A by [ x , y , z ] = [ [ x , y ] [ y , x ] , z ] . If [ · , · , · ] satisfies (21), then ( A , [ · , · , · ] ) is a Lie triple system.

3.5. Representations and Matched Pairs of Left-Alia Algebras

Definition 7.
A representation of a left-Alia algebra ( A , [ · , · ] ) is a triple ( l , r , V ) , where V is a vector space and l , r : A End ( V ) are linear maps such that the following equation holds:
l ( [ x , y ] ) l ( [ y , x ] ) = r ( x ) r ( y ) v r ( y ) r ( x ) + r ( y ) l ( x ) v r ( x ) l ( y ) , x , y A , v V .
Two representations, ( l , r , V ) and ( l , r , V ) , of a left-Alia algebra ( A , [ · , · ] ) are called equivalent if there is a linear isomorphism ϕ : V V such that
ϕ l ( x ) v = l ( x ) ϕ ( v ) , ϕ r ( x ) v = r ( x ) ϕ ( v ) , x A , v V .
Example 3.
Let ( ρ , V ) be a representation of a Lie algebra ( g , [ · , · ] ) , that is, ρ : g End ( V ) is a linear map such that
ρ ( [ x , y ] ) v = ρ ( x ) ρ ( y ) v ρ ( y ) ρ ( x ) v , x , y g , v V .
Then, both ( ρ , ρ , V ) and ( ρ , 2 ρ , V ) satisfy (22) and, hence, are representations of ( g , [ · , · ] ) as a left-Alia algebra.
Proposition 4.
Let ( A , [ · , · ] ) be a left-Alia algebra, V be a vector space and l , r : A End ( V ) be linear maps. Then, ( l , r , V ) is a representation of ( A , [ · , · ] ) if and only if there is a left-Alia algebra on the direct sum d = A V of vector spaces (the semi-direct product) given by
[ x + u , y + v ] d = [ x , y ] + l ( x ) v + r ( y ) u , x , y A , u , v V .
In this case, we denote ( A V , [ · , · ] d ) = A l , r V .
Proof. 
This is the special case of matched pairs of left-Alia algebras where B = V is equipped with the zero multiplication in Proposition 6. □
For a vector space A with a bilinear map [ · , · ] : A × A A , we set linear maps L [ · , · ] , R [ · , · ] : A End ( A ) using
L [ · , · ] ( x ) y = [ x , y ] = R [ · , · ] ( y ) x , x , y A .
Example 4.
Let ( A , [ · , · ] ) be a left-Alia algebra. Then, ( L [ · , · ] , R [ · , · ] , A ) is a representation of ( A , [ · , · ] ) , which is called an adjoint representation. In particular, for a Lie algebra ( g , [ · , · ] ) with the adjoint representation ad : g End ( g ) given by ad ( x ) y = [ x , y ] , x , y g ,
( L [ · , · ] , R [ · , · ] , g ) = ( ad , ad , g )
is a representation of ( g , [ · , · ] ) as a left-Alia algebra.
Let A and V be vector spaces. For a linear map l : A End ( V ) , we set a linear map l : A End ( V ) using
l ( x ) u , v = u , l ( x ) v , x A , u V , v V .
Proposition 5.
Let ( l , r , V ) be a representation of a left-Alia algebra ( A , [ · , · ] ) . Then, ( l , l r , V ) is also a representation of ( A , [ · , · ] ) . In particular, ( L [ · , · ] , L [ · , · ] R [ · , · ] , A ) is a representation of ( A , [ · , · ] ) , which is called the coadjoint representation.
Proof. 
Let x , y A , u V , v V . Then, we have
( l [ x , y ] l [ y , x ] + ( l r ) ( x ) l ( y ) ( l r ) ( x ) ( l r ) ( y ) + ( l r ) ( y ) ( l r ) ( x ) ( l r ) ( y ) l ( x ) ) u , v = ( l [ x , y ] l [ y , x ] + ( l r ) ( x ) r ( y ) ( l r ) ( y ) r ( x ) ) u , v = u , l [ y , x ] l [ x , y ] + r ( y ) ( l r ) ( x ) r ( x ) ( l r ) ( y ) v = ( 22 ) 0 .
Hence, the conclusion follows. □
Example 5.
Let ( g , [ · , · ] ) be a Lie algebra. Then, the coadjoint representation of ( g , [ · , · ] ) as a left-Alia algebra is
( ad , ad ( ad ) , g ) = ( ad , 2 ad , g ) .
Hence, there is a left-Alia algebra structure g ad , 2 ad g on the direct sum g g of vector spaces.
Remark 8.
In [5], there is also the notion of a right-Alia algebra, defined as a vector space A together with a bilinear map [ · , · ] : A × A A satisfying
[ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = [ x , [ z , y ] ] + [ y , [ x , z ] ] + [ z , [ y , x ] ] , x , y , z A .
It is clear that ( A , [ · , · ] ) is a right-Alia algebra if and only if the opposite algebra ( A , [ · , · ] ) of ( A , [ · , · ] ) , given by [ x , y ] = [ y , x ] , is a left-Alia algebra. Thus, our study on left-Alia algebras can straightforwardly generalize a parallel study on right-Alia algebras. Consequently, if ( l , r , V ) is a representation of a right-Alia algebra ( A , [ · , · ] ) , then ( r l , r , V ) is also a representation of ( A , [ · , · ] ) . Recall [23] that if ( l , r , V ) is a representation of an anti-pre-Lie algebra ( A , [ · , · ] anti ) , then ( r l , r , V ) is also a representation of ( A , [ · , · ] anti ) . Moreover, admissible Novikov algebras [8] are a subclass of anti-pre-Lie algebras. If ( l , r , V ) is a representation of an admissible Novikov algebra ( A , [ · , · ] a d m i s s i b l e N o v i k o v ) , then ( r l , r , V ) is also a representation of the admissible Novikov algebra ( A , [ · , · ] a d m i s s i b l e N o v i k o v ) . Therefore, we have the following algebras which preserve the form ( r l , r , V ) of representations on the dual spaces:
{right-Alia algebras} ⊃ {anti-pre-Lie algebras} ⊃ {admissible Novikov algebras}.
Now, we introduce the notion of matched pairs of left-Alia algebras.
Definition 8.
Let ( A , [ · , · ] A ) and ( B , [ · , · ] B ) be left-Alia algebras and l A , r A : A End ( B ) and l B , r B : B End ( A ) be linear maps. If there is a left-Alia algebra structure [ · , · ] A B on the direct sum A B of vector spaces given by
[ x + a , y + b ] A B = [ x , y ] A + l B ( a ) y + r B ( b ) x + [ a , b ] B + l A ( x ) b + r A ( y ) a , x , y A , a , b B ,
then we say ( A , [ · , · ] A ) , ( B , [ · , · ] B ) , l A , r A , l B , r B is a matched pair of left-Alia algebras.
Proposition 6.
Let ( A , [ · , · ] A ) and ( B , [ · , · ] B ) be left-Alia algebras and l A , r A : A End ( B ) and l B , r B : B End ( A ) be linear maps. Then, ( A , [ · , · ] A ) , ( B , [ · , · ] B ) , l A , r A , l B , r B is a matched pair of left-Alia algebras if and only if the triple ( l A , r A , B ) is a representation of ( A , [ · , · ] A ) , the triple ( l B , r B , A ) is a representation of ( B , [ · , · ] B ) and the following equations hold:
r B ( a ) ( [ x , y ] A [ y , x ] A ) = ( l B r B ) ( a ) [ y , x ] A + ( r B l B ) ( a ) [ x , y ] A + l B ( r A l A ) ( y ) a x + l B ( l A r A ) ( x ) a y ,
r A ( x ) ( [ a , b ] B [ b , a ] B ) = ( l A r A ) ( x ) [ b , a ] B + ( r A l A ) ( x ) [ a , b ] B + l A ( r B l B ) ( b ) x a + l A ( l B r B ) ( a ) x b ,
for all x , y A , a , b B .
Proof. 
The proof follows from a straightforward computation. □

3.6. Quadratic Left-Alia Algebras

Definition 9.
A quadratic left-Alia algebra is a triple ( A , [ · , · ] , B ) , where ( A , [ · , · ] ) is a left-Alia algebra and B is a nondegenerate symmetric bilinear form on A which is invariant in the sense that
B ( [ x , y ] , z ) = B ( x , [ z , y ] [ y , z ] ) , x , y , z A .
Remark 9.
Since B is symmetric, it follows from Definition 9 that
B ( [ x , y ] , z ) + B ( y , [ x , z ] ) = 0 , x , y , z A .
Lemma 3.
Let ( A , [ · , · ] , B ) be a quadratic left-Alia algebra. Then, ( L [ · , · ] , R [ · , · ] , A ) and ( L [ · , · ] , L [ · , · ] R [ · , · ] , A ) are equivalent as representations of ( A , [ · , · ] ) .
Proof. 
We set a linear isomorphism B : A A using
B ( x ) , y = B ( x , y ) .
Then, by (29) we have
B L [ · , · ] ( x ) y , z = B ( [ x , y ] , z ) = B ( y , [ x , z ] ) = B ( y ) , [ x , z ] = L [ · , · ] ( x ) B ( y ) , z ,
that is, B L [ · , · ] ( x ) y = L [ · , · ] ( x ) B ( y ) . Similarly, by (28), we have B R [ · , · ] ( x ) y = ( L [ · , · ] R [ · , · ] ) ( x ) B ( y ) . Hence, the conclusion follows. □
Proposition 7.
Let ( A , · ) be a commutative associative algebra and f : A A be a linear map. Let B be a nondegenerate symmetric invariant bilinear form on ( A , · ) and f ^ : A A be the adjoint map of f with respect to B , given by
B f ^ ( x ) , y = B x , f ( y ) , x , y A .
Then, there is a quadratic left-Alia algebra ( A , [ · , · ] , B ) , where ( A , [ · , · ] ) is the special left-Alia algebra with respect to ( A , · , f , f ^ ) , that is,
[ x , y ] = x · f ( y ) f ^ ( x · y ) .
Proof. 
For all x , y , z A , we have
B ( [ x , y ] , z ) = B x · f ( y ) f ^ ( x · y ) , z = B x , z · f ( y ) y · f ( z ) = B x , z · f ( y ) f ^ ( z · y ) y · f ( z ) f ^ ( y · z ) = B ( x , [ z , y ] [ y , z ] ) .
Hence, the conclusion follows. □
Example 6.
Let ( A , [ · , · ] ) be a left-Alia algebra and ( L [ · , · ] , R [ · , · ] , A ) be the adjoint representation of ( A , [ · , · ] ) . By Propositions 4 and 5, there is a left-Alia algebra A L [ · , · ] , L [ · , · ] R [ · , · ] A on d = A A , given by (24). There is a natural nondegenerate symmetric bilinear form B d on A A , given by
B d ( x + a , y + b ) = x , b + a , y , x , y A , a , b A .
For all x , y , z A , a , b , c A , we have
B d ( [ x + a , y + b ] d , z + c ) = B d [ x , y ] + L [ · , · ] ( x ) b + ( L [ · , · ] R [ · , · ] ) ( y ) a , z + c = [ x , y ] , c + L [ · , · ] ( x ) b + ( L [ · , · ] R [ · , · ] ) ( y ) a , z = [ x , y ] , c [ x , z ] , b + a , [ z , y ] [ y , z ] , B d x + a , [ z + c , x + b ] d = [ z , y ] , a [ z , x ] , b + c , [ y , x ] [ x , y ] , B d x + a , [ y + b , z + c ] d = [ y , z ] , a [ y , x ] , c + b , [ z , x ] [ x , z ] .
Hence, we have
B d [ x + a , y + b ] d , z + c = B d x + a , [ z + c , y + b ] d [ y + b , z + c ] d ,
and, thus, ( A L [ · , · ] , L [ · , · ] R [ · , · ] A , B d ) is a quadratic left-Alia algebra.
Remark 10.
By Example 6, an arbitrary Lie algebra ( g , [ · , · ] ) renders a quadratic left-Alia algebra ( g ad , 2 ad g , B d ) , where ad : g End ( g ) is the adjoint representation of ( g , [ · , · ] ) .
We study the tensor forms of nondegenerate symmetric invariant bilinear forms on left-Alia algebras.
Definition 10.
Let ( A , [ · , · ] ) be a left-Alia algebra and h : A End ( A A ) be a linear map given by
h ( x ) = ( R [ · , · ] L [ · , · ] ) ( x ) id id R [ · , · ] ( x ) , x A .
An element r A A is called invariant on ( A , [ · , · ] ) if h ( x ) r = 0 for all x A .
Proposition 8.
Let ( A , [ · , · ] ) be a left-Alia algebra. Suppose that B is a nondegenerate bilinear form on A and B : A A is the corresponding map given by (30). Set B ˜ A A using
B ˜ , a b = B 1 ( a ) , b , a , b A .
Then, ( A , [ · , · ] , B ) is a quadratic left-Alia algebra if and only if B ˜ is symmetric and invariant on ( A , [ · , · ] ) .
Proof. 
It is clear that B is symmetric if and only if B ˜ is symmetric. Let x , y , z A and a = B ( x ) , c = B ( z ) . Under the symmetric assumption, we have
B ( [ x , y ] , z ) = [ x , y ] , B ( z ) = [ B 1 ( a ) , y ] , c = B 1 ( a ) , R [ · , · ] ( y ) c = B ˜ , a R [ · , · ] ( y ) c = id R [ · , · ] ( y ) B ˜ , a c , B ( x , [ z , y ] [ y , z ] ) = B ( x ) , [ z , y ] [ y , z ] = a , [ B 1 ( c ) , y ] [ y , B 1 ( c ) ] = ( L [ · , · ] R [ · , · ] ) ( y ) a , B 1 ( c ) = B ˜ , c ( L [ · , · ] R [ · , · ] ) ( y ) a = ( R [ · , · ] L [ · , · ] ) ( y ) id B ˜ , a c ,
that is, (28) holds if and only if h ( y ) B ˜ = 0 for all y A . Hence, the conclusion follows. □

4. Manin Triples of Left-Alia Algebras and Left-Alia Bialgebras

In this section, we introduce the notions of Manin triples of left-Alia algebras and left-Alia bialgebras. We show that they are equivalent structures via specific matched pairs of left-Alia algebras.

4.1. Manin Triples of Left-Alia Algebras

Definition 11.
Let ( A , [ · , · ] A ) and ( A , [ · , · ] A ) be left-Alia algebras. Assume that there is a left-Alia algebra structure ( d = A A , [ · , · ] d ) on A A which contains ( A , [ · , · ] A ) and ( A , [ · , · ] A ) as left-Alia subalgebras. Suppose that the natural nondegenerate symmetric bilinear form B d , given by (32), is invariant on ( A A , [ · , · ] d ) , that is, ( A A , [ · , · ] d , B d ) is a quadratic left-Alia algebra. Then, we say that ( A A , [ · , · ] d , B d ) , A , A is a Manin triple of left-Alia algebras.
Recall [19] that a double construction of commutative Frobenius algebras  ( ( A A , · d , B d ) , A , A ) is a commutative associative algebra ( A A , · d ) containing ( A , · A ) and ( A , · A ) as commutative associative subalgebras, such that the natural nondegenerate symmetric bilinear form B d given by (32) is invariant on ( A A , · d ) . Now, we show that double constructions of commutative Frobenius algebras with linear maps naturally give rise to Manin triples of left-Alia algebras.
Corollary 1.
Let ( A A , · d , B d ) , A , A be a double construction of commutative Frobenius algebras. Suppose that P : A A and Q : A A are linear maps. Then, there is a Manin triple of left-Alia algebras ( A A , [ · , · ] d , B d ) , A , A given by
[ x + a , y + b ] d = ( x + a ) · d P ( y ) + Q ( b ) ( Q + P ) ( x + a ) · d ( y + b ) , [ x , y ] A = x · A P ( y ) Q ( x · A y ) , [ a , b ] A = a · A Q ( b ) P ( a · A b ) ,
for all x , y A , a , b A .
Proof. 
The adjoint map of P + Q with respect to B d is Q + P . Hence, the conclusion follows from Proposition 7 by taking f = P + Q . □
Theorem 5.
Let ( A , [ · , · ] A ) and ( A , [ · , · ] A ) be left-Alia algebras. Then, there is a Manin triple of left-Alia algebras ( A A , [ · , · ] d , B d ) , A , A if and only if
( A , [ · , · ] A ) , ( A , [ · , · ] A ) , L [ · , · ] A , L [ · , · ] A R [ · , · ] A , L [ · , · ] A , L [ · , · ] A R [ · , · ] A
is a matched pair of left-Alia algebras.
Proof. 
Let ( A A , [ · , · ] d , B d ) , A , A be a Manin triple of left-Alia algebras. For all x , y A , a , b A , we have
B d ( [ x , b ] d , y ) = ( 28 ) B ( b , [ x , y ] A ) = b , [ x , y ] A = L [ · , · ] A ( x ) b , y = B d L [ · , · ] A ( x ) b , y , B d ( [ x , b ] d , a ) = ( 28 ) B d ( x , [ a , b ] A [ b , a ] A ) = x , [ a , b ] A [ b , a ] A = ( L [ · , · ] A R [ · , · ] A ) ( b ) x , a = B d ( L [ · , · ] A R [ · , · ] A ) ( b ) x , a .
Thus,
B d ( [ x , b ] d , y + a ) = B d ( L [ · , · ] A R [ · , · ] A ) ( b ) x + L [ · , · ] A ( x ) b , y + a
and, by the nondegeneracy of B d , we have
[ x , b ] d = ( L [ · , · ] A R [ · , · ] A ) ( b ) x + L [ · , · ] A ( x ) b .
Similarly,
[ y , a ] d = ( L [ · , · ] A R [ · , · ] A ) ( y ) a + L [ · , · ] A ( a ) y .
Therefore, we have
[ x + a , y + b ] d = [ x , y ] A + L [ · , · ] A ( a ) y + ( L [ · , · ] A R [ · , · ] A ) ( b ) x + [ a , b ] A + L [ · , · ] A ( x ) b + ( L [ · , · ] A R [ · , · ] A ) ( y ) a .
Hence, ( A , [ · , · ] A ) , ( A , [ · , · ] A ) , L [ · , · ] A , L [ · , · ] A R [ · , · ] A , L [ · , · ] A , L [ · , · ] A R [ · , · ] A is a matched pair of left-Alia algebras.
Conversely, if ( A , [ · , · ] A ) , ( A , [ · , · ] A ) , L [ · , · ] A , L [ · , · ] A R [ · , · ] A , L [ · , · ] A , L [ · , · ] A R [ · , · ] A is a matched pair of left-Alia algebras, then it is straightforward to check that B d is invariant on the left-Alia algebra ( A A , [ · , · ] d ) given by (35). □

4.2. Left-Alia Bialgebras

Definition 12.
A left-Alia coalgebra is a pair, ( A , δ ) , such that A is a vector space and δ : A A A is a co-multiplication satisfying
( id 3 + ξ + ξ 2 ) ( τ id id 3 ) ( δ id ) δ = 0 ,
where τ ( x y ) = y x and ξ ( x y z ) = y z x for all x , y , z A .
Proposition 9.
Let A be a vector space and δ : A A A be a co-multiplication. Let [ · , · ] A : A A A be the linear dual of δ, that is,
[ a , b ] A , x = δ ( a b ) , x = a b , δ ( x ) , a , b A , x A .
Then, ( A , δ ) is a left-Alia coalgebra if and only if ( A , [ · , · ] A ) is a left-Alia algebra.
Proof. 
For all x A , a , b , c A , we have
[ [ a , b ] A , c ] A [ [ b , a ] A , c ] A , x = δ ( δ id ) ( id 3 τ id ) a b c , x = a b c , ( id 3 τ id ) ( δ id ) δ ( x ) , [ [ b , c ] A , a ] A [ [ c , b ] A , a ] A , x = b c a , ( id 3 τ id ) ( δ id ) δ ( x ) = a b c , ξ 2 ( id 3 τ id ) ( δ id ) δ ( x ) , [ [ c , a ] A , b ] A [ [ a , c ] A , b ] A , x = c a b , ( id 3 τ id ) ( δ id ) δ ( x ) = a b c , ξ ( id 3 τ id ) ( δ id ) δ ( x ) .
Hence, (1) holds for ( A , [ · , · ] A ) if and only if (36) holds. □
Definition 13.
A left-Alia bialgebra is a triple ( A , [ · , · ] , δ ) , such that ( A , [ · , · ] ) is a left-Alia algebra, ( A , δ ) is a left-Alia coalgebra and the following equation holds:
( τ id 2 ) δ ( [ x , y ] [ y , x ] ) + ( R [ · , · ] ( x ) id ) δ ( y ) ( R [ · , · ] ( y ) id ) δ ( x ) = 0 , x , y A .
Theorem 6.
Let ( A , [ · , · ] A ) be a left-Alia algebra. Suppose that there is a left-Alia algebra structure ( A , [ · , · ] A ) on the dual space A , and δ : A A A is the linear dual of [ · , · ] A . Then, ( A , [ · , · ] A ) , ( A , [ · , · ] A ) , L [ · , · ] A , L [ · , · ] A R [ · , · ] A , L [ · , · ] A , L [ · , · ] A R [ · , · ] A is a matched pair of left-Alia algebras if and only if ( A , [ · , · ] A , δ ) is a left-Alia bialgebra.
Proof. 
For all x , y A , a , b A , we have
( L [ · , · ] A R [ · , · ] A ) ( a ) ( [ x , y ] A [ y , x ] A ) , b = [ x , y ] A [ y , x ] A , [ b , a ] A [ a , b ] A = ( τ id 2 ) δ ( [ x , y ] A [ y , x ] A ) , a b , [ R [ · , · ] A ( a ) y , x ] A , b = R [ · , · ] A ( a ) y , R [ · , · ] A ( x ) b = y , [ R [ · , · ] A ( x ) b , a ] A = R [ · , · ] A ( x ) id δ ( y ) , b a = τ R [ · , · ] A ( x ) id δ ( y ) , a b , [ R [ · , · ] A ( a ) y , x ] A , b = τ R [ · , · ] A ( y ) id δ ( x ) , a b , L [ · , · ] A R [ · , · ] A ( y ) a x , b = x , [ R [ · , · ] A ( y ) a , b ] A = R [ · , · ] A ( y ) id δ ( x ) , a b , L [ · , · ] A R [ · , · ] A ( x ) a ) y , b = R [ · , · ] A ( x ) id δ ( y ) , a b .
Thus, (38) holds if and only if (26) holds for l A = L [ · , · ] A , r A = L [ · , · ] A R [ · , · ] A , l B = L [ · , · ] A , r B = L [ · , · ] A R [ · , · ] A . Similarly, (38) holds if and only if (27) holds for l A = L [ · , · ] A , r A = L [ · , · ] A R [ · , · ] A , l B = L [ · , · ] A , r B = L [ · , · ] A R [ · , · ] A . Hence, the conclusion follows. □
Summarizing Theorems 5 and 6, we have the following corollary:
Corollary 2.
Let ( A , [ · , · ] A ) be a left-Alia algebra. Suppose that there is a left-Alia algebra structure ( A , [ · , · ] A ) on the dual space A , and δ : A A A is the linear dual of [ · , · ] A . Then, the following conditions are equivalent:
(a) There is a Manin triple of left-Alia algebras ( d = A A , [ · , · ] d , B d ) , A , A .
(b) ( A , [ · , · ] A ) , ( A , [ · , · ] A ) , L [ · , · ] A , L [ · , · ] A R [ · , · ] A , L [ · , · ] A , L [ · , · ] A R [ · , · ] A is a matched pair of left-Alia algebras.
(c) ( A , [ · , · ] A , δ ) is a left-Alia bialgebra.
Example 7.
Let ( A , [ · , · ] A ) be the three-dimensional left-Alia algebra given in Example 2.
Then, there is a left-Alia bialgebra ( A , [ · , · ] A , δ ) with a non-zero co-multiplication δ on A, given by
δ ( e 1 ) = e 1 e 1 .
Then, by Corollary 2, there is a Manin triple ( A A , [ · , · ] , B d ) , A , A . Here, the multiplication [ · , · ] A on A is given through δ by (39), that is,
[ e 1 , e 1 ] A = e 1 ,
and the multiplication [ · , · ] on A A is given by (35). Moreover, ( ( A , [ · , · ] A ) , ( A , [ · , · ] A ) , L [ · , · ] A , L [ · , · ] A R [ · , · ] A , L [ · , · ] A , L [ · , · ] A R [ · , · ] A ) is a matched pair of left-Alia algebras.

Author Contributions

Conceptualization, G.L. and S.Y.; formal analysis, C.K. and Z.W.; writing—original draft preparation, C.K. and G.L.; writing—review and editing, Z.W. and S.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by NSF China grant number 12101328 and NSF China grant number 12371039.

Data Availability Statement

Data will be made available on request.

Acknowledgments

The fourth author would like to thank Siu-Por Lam, Yu Li and Chuijia Wang for helpful discussions on invariant theory. We also thank the referees for helpful suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hilbert, D. Ueber die Theorie der algebraischen Formen. Math. Ann. 1890, 36, 473–534. [Google Scholar] [CrossRef]
  2. Chevalley, C. Invariants of finite groups generated by reflections. Am. J. Math. 1955, 77, 778–782. [Google Scholar] [CrossRef]
  3. Shephard, G.; Todd, J. Finite unitary reflection groups. Can. J. Math. 1954, 6, 274–304. [Google Scholar] [CrossRef]
  4. Hartwig, J.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2016, 292, 314–361. [Google Scholar] [CrossRef]
  5. Dzhumadil’daev, A. Algebras with skew-symmetric identity of degree 3. J. Math. Sci. 2009, 161, 11–30. [Google Scholar] [CrossRef]
  6. Zusmanovich, P. Special and exceptional mock-Lie algebras. Linear Algebra Appl. 2017, 518, 79–96. [Google Scholar] [CrossRef]
  7. Burde, D.; Fialowski, A. Jacobi-Jordan algebras. Linear Algebra Appl. 2014, 459, 586–594. [Google Scholar] [CrossRef]
  8. Liu, G.; Bai, C. Anti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebras. J. Algebra 2022, 609, 337–379. [Google Scholar] [CrossRef]
  9. Dzhumadil’daev, A.; Zusmanovich, P. Commutative 2-cocycles on Lie algebras. J. Algebra 2010, 324, 732–748. [Google Scholar] [CrossRef]
  10. Loday, J.-L.; Pirashvili, T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 1993, 296, 139–158. [Google Scholar] [CrossRef]
  11. Helgason, S. Differential geometry, Lie groups, and symmetric spaces. In Pure and Applied Mathematics, 80; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
  12. Su, Y.; Xu, W.; Zhang, H. Derivation-simple algebras and the structures of Lie algebras of Witt type. J. Algebra 2000, 233, 642–662. [Google Scholar] [CrossRef]
  13. Kang, C.; Yu, S.; Zhang, H. Twisted relative Poisson structures on graded algebras assocaited to invariant theory. in preparation.
  14. Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
  15. Drinfeld, V. Halmiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations. Sov. Math. Dokl. 1983, 27, 68–71. [Google Scholar]
  16. Aguiar, M. Infinitesimal Hopf algebras. In New Trends in Hopf Algebra Theory, La Falda, 1999; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2000; Volume 267, pp. 1–29. [Google Scholar]
  17. Aguiar, M. On the associative analog of Lie bialgebras. J. Algebra 2001, 244, 492–532. [Google Scholar] [CrossRef]
  18. Aguiar, M. Infinitesimal bialgebras, pre-Lie and dendriform algebras. In Hopf Algebras; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 2004; Volume 237, pp. 1–33. [Google Scholar]
  19. Bai, C. Double constructions of Frobenius algebras, Connes cocycles and their duality. J. Noncommut. Geom. 2010, 4, 475–530. [Google Scholar] [CrossRef]
  20. Sheng, Y.; Wang, Y. Quasi-triangular and factorizable antisymmetric infinitesimal bialgebras. J. Algebra 2023, 628, 415–433. [Google Scholar] [CrossRef]
  21. Kock, J. Frobenius Algebras and 2d Topological Quantum Field Theories; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
  22. Lauda, A.; Pfeiffer, H. Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 2005, 155, 623–666. [Google Scholar] [CrossRef]
  23. Liu, G.; Bai, C. A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie Poisson bialgebras. Commun. Contemp. Math. 2023. [Google Scholar] [CrossRef]
  24. Bai, C.; Bai, R.; Guo, L.; Wu, Y. Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras. J. Algebra 2023, 632, 535–566. [Google Scholar] [CrossRef]
  25. Benali, K.; Chtioui, T.; Hajjaji, A.; Mabrouk, S. Bialgebras, the Yang-Baxter equation and Manin triples for mock-Lie algebras. Acta Comment. Univ. Tartu. Math. 2023, 27, 211–233. [Google Scholar]
  26. Rezaei-Aghdam, A.; Sedghi-Ghadim, L.; Haghighatdoost, G. Leibniz bialgebras, classical Yang-Baxter equations and dynamical systems. Adv. Appl. Clifford Algebr. 2021, 31, 77. [Google Scholar] [CrossRef]
  27. Tang, R.; Sheng, Y. Leibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation. J. Noncommut. Geom. 2022, 16, 1179–1211. [Google Scholar] [CrossRef] [PubMed]
  28. Kang, C.; Liu, G. Yang-Baxter equations and relative Rota-Baxter operators for left-Alia algebras. in prepration.
  29. Beson, D. Polynomial Invariants of Finite Groups; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
  30. Hodge, T.L. Lie Triple Systems, Restricted Lie Triple Systems, and Algebraic Groups. J. Algebra 2001, 244, 533–580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kang, C.; Liu, G.; Wang, Z.; Yu, S. Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory. Mathematics 2024, 12, 408. https://doi.org/10.3390/math12030408

AMA Style

Kang C, Liu G, Wang Z, Yu S. Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory. Mathematics. 2024; 12(3):408. https://doi.org/10.3390/math12030408

Chicago/Turabian Style

Kang, Chuangchuang, Guilai Liu, Zhuo Wang, and Shizhuo Yu. 2024. "Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory" Mathematics 12, no. 3: 408. https://doi.org/10.3390/math12030408

APA Style

Kang, C., Liu, G., Wang, Z., & Yu, S. (2024). Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory. Mathematics, 12(3), 408. https://doi.org/10.3390/math12030408

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop